In General, Taylor Series expansion is:

\[f\left( x \right) \quad =\quad \sum _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(a) }{ n! } { (x-a) }^{ n } }\] Let’s write Taylor series of a function f(x) centered at 0:

\[ \begin{split} f(x) &= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n \\ &= f(0) + \frac{f'(0)}{1!}x + \frac{f(0)}{2!}x^2 + \frac{f'(0)}{3!}x^3...+\frac{f^{(n)}(0)}{n!}x^n \end{split} \]

So in General: \[\boxed{f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f(0)}{2!}x^2 + \frac{f'(0)}{3!}x^3...+\frac{f^{(n)}(0)}{n!}x^n}\]


Now, let rip through our functions and apply:

\(f(x) = \frac{1}{(1-x)}\)

This function is not defined at x=1.

Function Evaluation at 0
\(f(x) = \frac{1}{(1-x)}\) \(f(0) = 1\)
\(f'(x) = -\frac{1}{(1-x)^2}\) \(f'(0) = -1\)
\(f''(x) = \frac{2}{(1-x)^3}\) \(f''(0) = 2\)
\(f'''(x) = -\frac{6}{(1-x)^4}\) \(f'''(0) = -6\)
\(f''''(x) = \frac{24}{(1-x)^5}\) \(f''''(0) = 24\)

Pluging the numbers in, we obrain:

\[ \begin{split} \frac{1}{(1-x)} &= 1 + \frac{1}{1!} x^1 + \frac{2}{2!} x^2 + \frac{6}{3!}x^3 + \frac{24}{4!}x^4 + ...\\ &= 1 + x +x^2 + x^3 + ... + x^n \\ &= \boxed{\sum_{n=0}^{\infty} x^n } \text { for |x| < 1 } \end{split} \]

Check the first 4 terms in R (given in backward):

library(pracma)
equation <- function(x) {1/(1-x)}
p <- taylor(equation, x0 = 0, n = 4)
p
## [1] 1.000029 1.000003 1.000000 1.000000 1.000000



\(f(x) = e^x\)

Function Evaluation at 0
\(f(x) = e^x\) \(f(0) = 1\)
\(f'(x) = e^x\) \(f'(0) = 1\)
\(f''(x) = e^x\) \(f''(0) = 1\)
\(f'''(x) = e^x\) \(f'''(0) = 1\)
\(f''''(x) = e^x\) \(f'''(0) = 1\)

\[ \begin{split} e^x &= 1 + \frac{1}{1!} x^1 + \frac{1}{2!} x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4...\\ &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}+ \frac{x^4}{4!}... \\ &= \boxed{\sum_{n=0}^{\infty} \frac{x^n}{n!} } \end{split} \]

Check the first 4 terms in R (given in backward):

equation <- function(x) {exp(x)}
p <- taylor(equation, x0 = 0, n = 4)
p
## [1] 0.04166657 0.16666673 0.50000000 1.00000000 1.00000000



\(f(x) = ln(1+x)\)

Function Evaluation at 0
\(f(x) = ln(1+x)\) \(f(0) = 0\)
\(f'(x) = \frac{1}{(1+x)}\) \(f'(0) = 1\)
\(f''(x) = -\frac{1}{(1+x)^2}\) \(f''(0) = -1\)
\(f'''(x) = \frac{2}{(1+x)^3}\) \(f'''(0) = 2\)
\(f''''(x) = -\frac{6}{(1+x)^4}\) \(f''''(0) = -6\)

Pluging the numbers in, we should obtain:

\[ \begin{split} ln(1+x) &= 0 + \frac{1}{1!} x^1 - \frac{1}{2!} x^2 + \frac{2}{3!}x^3 - \frac{6}{4!}x^4...\\ &= x - \frac{1}{2} x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4... \\ &= x - \frac{1}{2} x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4... (-1)^{n+1}\frac{1}{n}x^n \\ &= \boxed{ \sum_{n=0}^{\infty} (-1)^{n+1}\frac{1}{n}x^n } \end{split} \]

Check the first 4 terms in R (given in backward):

equation <- function(x) {log(1+x)}
p <- taylor(equation, x0 = 0, n = 4)
p
## [1] -0.2500044  0.3333339 -0.5000000  1.0000000  0.0000000