Country_Code <- c("ABW","AFG","AGO","ALB","ARE","ARG","ARM","ATG","AUS","AUT","AZE","BDI","BEL","BEN","BFA","BGD","BGR","BHR","BHS","BIH","BLR","BLZ","BOL","BRA","BRB","BRN","BTN","BWA","CAF","CAN","CHE","CHL","CHN","CIV","CMR","COG","COL","COM","CPV","CRI","CUB","CYP","CZE","DEU","DJI","DNK","DOM","DZA","ECU","EGY","ERI","ESP","EST","ETH","FIN","FJI","FRA","FSM","GAB","GBR","GEO","GHA","GIN","GMB","GNB","GNQ","GRC","GRD","GTM","GUM","GUY","HKG","HND","HRV","HTI","HUN","IDN","IND","IRL","IRN","IRQ","ISL","ITA","JAM","JOR","JPN","KAZ","KEN","KGZ","KHM","KIR","KOR","KWT","LAO","LBN","LBR","LBY","LCA","LKA","LSO","LTU","LUX","LVA","MAC","MAR","MDA","MDG","MDV","MEX","MKD","MLI","MLT","MMR","MNE","MNG","MOZ","MRT","MUS","MWI","MYS","NAM","NCL","NER","NGA","NIC","NLD","NOR","NPL","NZL","OMN","PAK","PAN","PER","PHL","PNG","POL","PRI","PRT","PRY","PYF","QAT","ROU","RUS","RWA","SAU","SDN","SEN","SGP","SLB","SLE","SLV","SOM","SSD","STP","SUR","SVK","SVN","SWE","SWZ","SYR","TCD","TGO","THA","TJK","TKM","TLS","TON","TTO","TUN","TUR","TZA","UGA","UKR","URY","USA","UZB","VCT","VEN","VIR","VNM","VUT","WSM","YEM","ZAF","COD","ZMB","ZWE")
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
Life_Expectancy_At_Birth_1960 <- c(65.5693658536586,32.328512195122,32.9848292682927,62.2543658536585,52.2432195121951,65.2155365853659,65.8634634146342,61.7827317073171,70.8170731707317,68.5856097560976,60.836243902439,41.2360487804878,69.7019512195122,37.2782682926829,34.4779024390244,45.8293170731707,69.2475609756098,52.0893658536585,62.7290487804878,60.2762195121951,67.7080975609756,59.9613658536585,42.1183170731707,54.2054634146342,60.7380487804878,62.5003658536585,32.3593658536585,50.5477317073171,36.4826341463415,71.1331707317073,71.3134146341463,57.4582926829268,43.4658048780488,36.8724146341463,41.523756097561,48.5816341463415,56.716756097561,41.4424390243903,48.8564146341463,60.5761951219512,63.9046585365854,69.5939268292683,70.3487804878049,69.3129512195122,44.0212682926829,72.1765853658537,51.8452682926829,46.1351219512195,53.215,48.0137073170732,37.3629024390244,69.1092682926829,67.9059756097561,38.4057073170732,68.819756097561,55.9584878048781,69.8682926829268,57.5865853658537,39.5701219512195,71.1268292682927,63.4318536585366,45.8314634146342,34.8863902439024,32.0422195121951,37.8404390243902,36.7330487804878,68.1639024390244,59.8159268292683,45.5316341463415,61.2263414634146,60.2787317073171,66.9997073170732,46.2883170731707,64.6086585365854,42.1000975609756,68.0031707317073,48.6403170731707,41.1719512195122,69.691756097561,44.945512195122,48.0306829268293,73.4286585365854,69.1239024390244,64.1918292682927,52.6852682926829,67.6660975609756,58.3675853658537,46.3624146341463,56.1280731707317,41.2320243902439,49.2159756097561,53.0013170731707,60.3479512195122,43.2044634146342,63.2801219512195,34.7831707317073,42.6411951219512,57.303756097561,59.7471463414634,46.5107073170732,69.8473170731707,68.4463902439024,69.7868292682927,64.6609268292683,48.4466341463415,61.8127804878049,39.9746829268293,37.2686341463415,57.0656341463415,60.6228048780488,28.2116097560976,67.6017804878049,42.7363902439024,63.7056097560976,48.3688048780488,35.0037073170732,43.4830975609756,58.7452195121951,37.7736341463415,59.4753414634146,46.8803902439024,58.6390243902439,35.5150487804878,37.1829512195122,46.9988292682927,73.3926829268293,73.549756097561,35.1708292682927,71.2365853658537,42.6670731707317,45.2904634146342,60.8817073170732,47.6915853658537,57.8119268292683,38.462243902439,67.6804878048781,68.7196097560976,62.8089268292683,63.7937073170732,56.3570487804878,61.2060731707317,65.6424390243903,66.0552926829268,42.2492926829268,45.6662682926829,48.1876341463415,38.206,65.6598292682927,49.3817073170732,30.3315365853659,49.9479268292683,36.9658780487805,31.6767073170732,50.4513658536585,59.6801219512195,69.9759268292683,68.9780487804878,73.0056097560976,44.2337804878049,52.768243902439,38.0161219512195,40.2728292682927,54.6993170731707,56.1535365853659,54.4586829268293,33.7271219512195,61.3645365853659,62.6575853658537,42.009756097561,45.3844146341463,43.6538780487805,43.9835609756098,68.2995365853659,67.8963902439025,69.7707317073171,58.8855365853659,57.7238780487805,59.2851219512195,63.7302195121951,59.0670243902439,46.4874878048781,49.969512195122,34.3638048780488,49.0362926829268,41.0180487804878,45.1098048780488,51.5424634146342)
Life_Expectancy_At_Birth_2013 <- c(75.3286585365854,60.0282682926829,51.8661707317073,77.537243902439,77.1956341463415,75.9860975609756,74.5613658536585,75.7786585365854,82.1975609756098,80.890243902439,70.6931463414634,56.2516097560976,80.3853658536585,59.3120243902439,58.2406341463415,71.245243902439,74.4658536585366,76.5459512195122,75.0735365853659,76.2769268292683,72.4707317073171,69.9820487804878,67.9134390243903,74.1224390243903,75.3339512195122,78.5466585365854,69.1029268292683,64.3608048780488,49.8798780487805,81.4011219512195,82.7487804878049,81.1979268292683,75.3530243902439,51.2084634146342,55.0418048780488,61.6663902439024,73.8097317073171,62.9321707317073,72.9723658536585,79.2252195121951,79.2563902439025,79.9497804878049,78.2780487804878,81.0439024390244,61.6864634146342,80.3024390243903,73.3199024390244,74.5689512195122,75.648512195122,70.9257804878049,63.1778780487805,82.4268292682927,76.4243902439025,63.4421951219512,80.8317073170732,69.9179268292683,81.9682926829268,68.9733902439024,63.8435853658537,80.9560975609756,74.079512195122,61.1420731707317,58.216487804878,59.9992682926829,54.8384146341464,57.2908292682927,80.6341463414634,73.1935609756098,71.4863902439024,78.872512195122,66.3100243902439,83.8317073170732,72.9428536585366,77.1268292682927,62.4011463414634,75.2682926829268,68.7046097560976,67.6604146341463,81.0439024390244,75.1259756097561,69.4716829268293,83.1170731707317,82.290243902439,73.4689268292683,73.9014146341463,83.3319512195122,70.45,60.9537804878049,70.2024390243902,67.7720487804878,65.7665853658537,81.459756097561,74.462756097561,65.687243902439,80.1288780487805,60.5203902439024,71.6576829268293,74.9127073170732,74.2402926829268,49.3314634146342,74.1634146341464,81.7975609756098,73.9804878048781,80.3391463414634,73.7090487804878,68.811512195122,64.6739024390244,76.6026097560976,76.5326585365854,75.1870487804878,57.5351951219512,80.7463414634146,65.6540975609756,74.7583658536585,69.0618048780488,54.641512195122,62.8027073170732,74.46,61.466,74.567512195122,64.3438780487805,77.1219512195122,60.8281463414634,52.4421463414634,74.514756097561,81.1048780487805,81.4512195121951,69.222,81.4073170731707,76.8410487804878,65.9636829268293,77.4192195121951,74.2838536585366,68.1315609756097,62.4491707317073,76.8487804878049,78.7111951219512,80.3731707317073,72.7991707317073,76.3340731707317,78.4184878048781,74.4634146341463,71.0731707317073,63.3948292682927,74.1776341463415,63.1670487804878,65.878756097561,82.3463414634146,67.7189268292683,50.3631219512195,72.4981463414634,55.0230243902439,55.2209024390244,66.259512195122,70.99,76.2609756097561,80.2780487804878,81.7048780487805,48.9379268292683,74.7157804878049,51.1914878048781,59.1323658536585,74.2469268292683,69.4001707317073,65.4565609756098,67.5223658536585,72.6403414634147,70.3052926829268,73.6463414634147,75.1759512195122,64.2918292682927,57.7676829268293,71.159512195122,76.8361951219512,78.8414634146341,68.2275853658537,72.8108780487805,74.0744146341464,79.6243902439024,75.756487804878,71.669243902439,73.2503902439024,63.583512195122,56.7365853658537,58.2719268292683,59.2373658536585,55.633)

data <- read.csv(file.choose())
data
head(data)
tail(data)
str(data)
'data.frame':   374 obs. of  5 variables:
 $ Country.Name  : chr  "Aruba" "Afghanistan" "Angola" "Albania" ...
 $ Country.Code  : chr  "ABW" "AFG" "AGO" "ALB" ...
 $ Region        : chr  "The Americas" "Asia" "Africa" "Europe" ...
 $ Year          : int  1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
 $ Fertility.Rate: num  4.82 7.45 7.38 6.19 6.93 ...
summary(data)
 Country.Name       Country.Code          Region               Year      Fertility.Rate 
 Length:374         Length:374         Length:374         Min.   :1960   Min.   :1.124  
 Class :character   Class :character   Class :character   1st Qu.:1960   1st Qu.:2.243  
 Mode  :character   Mode  :character   Mode  :character   Median :1986   Median :3.994  
                                                          Mean   :1986   Mean   :4.191  
                                                          3rd Qu.:2013   3rd Qu.:6.252  
                                                          Max.   :2013   Max.   :8.187  
#Insight into the next section:
data$Year
  [1] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [18] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [35] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [52] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [69] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [86] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[103] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[120] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[137] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[154] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[171] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[188] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[205] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[222] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[239] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[256] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[273] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[290] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[307] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[324] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[341] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[358] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
temp <- factor(data$Year)
temp
  [1] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [18] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [35] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [52] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [69] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
 [86] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[103] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[120] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[137] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[154] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[171] 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960
[188] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[205] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[222] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[239] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[256] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[273] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[290] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[307] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[324] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[341] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
[358] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013
Levels: 1960 2013
levels(temp)
[1] "1960" "2013"
#filter data frame
data$Year==1960
  [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [15]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [29]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [43]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [57]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [71]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [85]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [99]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[113]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[127]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[141]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[155]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[169]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[183]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[197] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[211] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[225] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[239] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[267] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[281] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[295] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[309] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[323] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[351] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[365] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
data1960 <- data[data$Year==1960,]
data2013 <- data[data$Year==2013,]

#check row counts
nrow(data1960) #187
[1] 187
nrow(data2013) #187
[1] 187
#create additional data frames
add1960 <- data.frame(Code=Country_Code, Life.Exp=Life_Expectancy_At_Birth_1960)
add2013 <- data.frame(Code=Country_Code, Life.Exp=Life_Expectancy_At_Birth_2013)

#check summaries
summary(add1960)
     Code              Life.Exp    
 Length:187         Min.   :28.21  
 Class :character   1st Qu.:43.47  
 Mode  :character   Median :54.70  
                    Mean   :53.73  
                    3rd Qu.:64.05  
                    Max.   :73.55  
summary(add2013)
     Code              Life.Exp    
 Length:187         Min.   :48.94  
 Class :character   1st Qu.:64.52  
 Mode  :character   Median :73.25  
                    Mean   :70.76  
                    3rd Qu.:76.84  
                    Max.   :83.83  
#merge pairs of data frames
merged1960 <- merge(data1960, add1960, by.x="Country.Code", by.y="Code")
merged2013 <-  merge(data2013, add2013, by.x="Country.Code", by.y="Code")

#check structure
str(merged1960)
'data.frame':   187 obs. of  6 variables:
 $ Country.Code  : chr  "ABW" "AFG" "AGO" "ALB" ...
 $ Country.Name  : chr  "Aruba" "Afghanistan" "Angola" "Albania" ...
 $ Region        : chr  "The Americas" "Asia" "Africa" "Europe" ...
 $ Year          : int  1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 ...
 $ Fertility.Rate: num  4.82 7.45 7.38 6.19 6.93 ...
 $ Life.Exp      : num  65.6 32.3 33 62.3 52.2 ...
str(merged2013)
'data.frame':   187 obs. of  6 variables:
 $ Country.Code  : chr  "ABW" "AFG" "AGO" "ALB" ...
 $ Country.Name  : chr  "Aruba" "Afghanistan" "Angola" "Albania" ...
 $ Region        : chr  "The Americas" "Asia" "Africa" "Europe" ...
 $ Year          : int  2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
 $ Fertility.Rate: num  1.67 5.05 6.17 1.77 1.8 ...
 $ Life.Exp      : num  75.3 60 51.9 77.5 77.2 ...
#delete columns
merged1960$Year <- NULL
merged2013$Year <- NULL

#Visualization
qplot(data=merged1960, x=Fertility.Rate, y=Life.Exp, color=Region, size=I(5), alpha=I(0.6), main="Life Expectancy vs Fertility (1960)")

qplot(data=merged2013, x=Fertility.Rate, y=Life.Exp, color=Region, size=I(5), alpha=I(0.6), main="Life Expectancy vs Fertility (2013)")

LS0tCnRpdGxlOiAiTGlmZSBFeHBlY3RhbmN5IHZzIEZlcnRpbGl0eSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgpgYGB7cn0KCiNFeGVjdXRlIGJlbG93IGNvZGUgdG8gZ2VuZXJhdGUgdGhyZWUgbmV3IHZlY3RvcnMKQ291bnRyeV9Db2RlIDwtIGMoIkFCVyIsIkFGRyIsIkFHTyIsIkFMQiIsIkFSRSIsIkFSRyIsIkFSTSIsIkFURyIsIkFVUyIsIkFVVCIsIkFaRSIsIkJESSIsIkJFTCIsIkJFTiIsIkJGQSIsIkJHRCIsIkJHUiIsIkJIUiIsIkJIUyIsIkJJSCIsIkJMUiIsIkJMWiIsIkJPTCIsIkJSQSIsIkJSQiIsIkJSTiIsIkJUTiIsIkJXQSIsIkNBRiIsIkNBTiIsIkNIRSIsIkNITCIsIkNITiIsIkNJViIsIkNNUiIsIkNPRyIsIkNPTCIsIkNPTSIsIkNQViIsIkNSSSIsIkNVQiIsIkNZUCIsIkNaRSIsIkRFVSIsIkRKSSIsIkROSyIsIkRPTSIsIkRaQSIsIkVDVSIsIkVHWSIsIkVSSSIsIkVTUCIsIkVTVCIsIkVUSCIsIkZJTiIsIkZKSSIsIkZSQSIsIkZTTSIsIkdBQiIsIkdCUiIsIkdFTyIsIkdIQSIsIkdJTiIsIkdNQiIsIkdOQiIsIkdOUSIsIkdSQyIsIkdSRCIsIkdUTSIsIkdVTSIsIkdVWSIsIkhLRyIsIkhORCIsIkhSViIsIkhUSSIsIkhVTiIsIklETiIsIklORCIsIklSTCIsIklSTiIsIklSUSIsIklTTCIsIklUQSIsIkpBTSIsIkpPUiIsIkpQTiIsIktBWiIsIktFTiIsIktHWiIsIktITSIsIktJUiIsIktPUiIsIktXVCIsIkxBTyIsIkxCTiIsIkxCUiIsIkxCWSIsIkxDQSIsIkxLQSIsIkxTTyIsIkxUVSIsIkxVWCIsIkxWQSIsIk1BQyIsIk1BUiIsIk1EQSIsIk1ERyIsIk1EViIsIk1FWCIsIk1LRCIsIk1MSSIsIk1MVCIsIk1NUiIsIk1ORSIsIk1ORyIsIk1PWiIsIk1SVCIsIk1VUyIsIk1XSSIsIk1ZUyIsIk5BTSIsIk5DTCIsIk5FUiIsIk5HQSIsIk5JQyIsIk5MRCIsIk5PUiIsIk5QTCIsIk5aTCIsIk9NTiIsIlBBSyIsIlBBTiIsIlBFUiIsIlBITCIsIlBORyIsIlBPTCIsIlBSSSIsIlBSVCIsIlBSWSIsIlBZRiIsIlFBVCIsIlJPVSIsIlJVUyIsIlJXQSIsIlNBVSIsIlNETiIsIlNFTiIsIlNHUCIsIlNMQiIsIlNMRSIsIlNMViIsIlNPTSIsIlNTRCIsIlNUUCIsIlNVUiIsIlNWSyIsIlNWTiIsIlNXRSIsIlNXWiIsIlNZUiIsIlRDRCIsIlRHTyIsIlRIQSIsIlRKSyIsIlRLTSIsIlRMUyIsIlRPTiIsIlRUTyIsIlRVTiIsIlRVUiIsIlRaQSIsIlVHQSIsIlVLUiIsIlVSWSIsIlVTQSIsIlVaQiIsIlZDVCIsIlZFTiIsIlZJUiIsIlZOTSIsIlZVVCIsIldTTSIsIllFTSIsIlpBRiIsIkNPRCIsIlpNQiIsIlpXRSIpCkxpZmVfRXhwZWN0YW5jeV9BdF9CaXJ0aF8xOTYwIDwtIGMoNjUuNTY5MzY1ODUzNjU4NiwzMi4zMjg1MTIxOTUxMjIsMzIuOTg0ODI5MjY4MjkyNyw2Mi4yNTQzNjU4NTM2NTg1LDUyLjI0MzIxOTUxMjE5NTEsNjUuMjE1NTM2NTg1MzY1OSw2NS44NjM0NjM0MTQ2MzQyLDYxLjc4MjczMTcwNzMxNzEsNzAuODE3MDczMTcwNzMxNyw2OC41ODU2MDk3NTYwOTc2LDYwLjgzNjI0MzkwMjQzOSw0MS4yMzYwNDg3ODA0ODc4LDY5LjcwMTk1MTIxOTUxMjIsMzcuMjc4MjY4MjkyNjgyOSwzNC40Nzc5MDI0MzkwMjQ0LDQ1LjgyOTMxNzA3MzE3MDcsNjkuMjQ3NTYwOTc1NjA5OCw1Mi4wODkzNjU4NTM2NTg1LDYyLjcyOTA0ODc4MDQ4NzgsNjAuMjc2MjE5NTEyMTk1MSw2Ny43MDgwOTc1NjA5NzU2LDU5Ljk2MTM2NTg1MzY1ODUsNDIuMTE4MzE3MDczMTcwNyw1NC4yMDU0NjM0MTQ2MzQyLDYwLjczODA0ODc4MDQ4NzgsNjIuNTAwMzY1ODUzNjU4NSwzMi4zNTkzNjU4NTM2NTg1LDUwLjU0NzczMTcwNzMxNzEsMzYuNDgyNjM0MTQ2MzQxNSw3MS4xMzMxNzA3MzE3MDczLDcxLjMxMzQxNDYzNDE0NjMsNTcuNDU4MjkyNjgyOTI2OCw0My40NjU4MDQ4NzgwNDg4LDM2Ljg3MjQxNDYzNDE0NjMsNDEuNTIzNzU2MDk3NTYxLDQ4LjU4MTYzNDE0NjM0MTUsNTYuNzE2NzU2MDk3NTYxLDQxLjQ0MjQzOTAyNDM5MDMsNDguODU2NDE0NjM0MTQ2Myw2MC41NzYxOTUxMjE5NTEyLDYzLjkwNDY1ODUzNjU4NTQsNjkuNTkzOTI2ODI5MjY4Myw3MC4zNDg3ODA0ODc4MDQ5LDY5LjMxMjk1MTIxOTUxMjIsNDQuMDIxMjY4MjkyNjgyOSw3Mi4xNzY1ODUzNjU4NTM3LDUxLjg0NTI2ODI5MjY4MjksNDYuMTM1MTIxOTUxMjE5NSw1My4yMTUsNDguMDEzNzA3MzE3MDczMiwzNy4zNjI5MDI0MzkwMjQ0LDY5LjEwOTI2ODI5MjY4MjksNjcuOTA1OTc1NjA5NzU2MSwzOC40MDU3MDczMTcwNzMyLDY4LjgxOTc1NjA5NzU2MSw1NS45NTg0ODc4MDQ4NzgxLDY5Ljg2ODI5MjY4MjkyNjgsNTcuNTg2NTg1MzY1ODUzNywzOS41NzAxMjE5NTEyMTk1LDcxLjEyNjgyOTI2ODI5MjcsNjMuNDMxODUzNjU4NTM2Niw0NS44MzE0NjM0MTQ2MzQyLDM0Ljg4NjM5MDI0MzkwMjQsMzIuMDQyMjE5NTEyMTk1MSwzNy44NDA0MzkwMjQzOTAyLDM2LjczMzA0ODc4MDQ4NzgsNjguMTYzOTAyNDM5MDI0NCw1OS44MTU5MjY4MjkyNjgzLDQ1LjUzMTYzNDE0NjM0MTUsNjEuMjI2MzQxNDYzNDE0Niw2MC4yNzg3MzE3MDczMTcxLDY2Ljk5OTcwNzMxNzA3MzIsNDYuMjg4MzE3MDczMTcwNyw2NC42MDg2NTg1MzY1ODU0LDQyLjEwMDA5NzU2MDk3NTYsNjguMDAzMTcwNzMxNzA3Myw0OC42NDAzMTcwNzMxNzA3LDQxLjE3MTk1MTIxOTUxMjIsNjkuNjkxNzU2MDk3NTYxLDQ0Ljk0NTUxMjE5NTEyMiw0OC4wMzA2ODI5MjY4MjkzLDczLjQyODY1ODUzNjU4NTQsNjkuMTIzOTAyNDM5MDI0NCw2NC4xOTE4MjkyNjgyOTI3LDUyLjY4NTI2ODI5MjY4MjksNjcuNjY2MDk3NTYwOTc1Niw1OC4zNjc1ODUzNjU4NTM3LDQ2LjM2MjQxNDYzNDE0NjMsNTYuMTI4MDczMTcwNzMxNyw0MS4yMzIwMjQzOTAyNDM5LDQ5LjIxNTk3NTYwOTc1NjEsNTMuMDAxMzE3MDczMTcwNyw2MC4zNDc5NTEyMTk1MTIyLDQzLjIwNDQ2MzQxNDYzNDIsNjMuMjgwMTIxOTUxMjE5NSwzNC43ODMxNzA3MzE3MDczLDQyLjY0MTE5NTEyMTk1MTIsNTcuMzAzNzU2MDk3NTYxLDU5Ljc0NzE0NjM0MTQ2MzQsNDYuNTEwNzA3MzE3MDczMiw2OS44NDczMTcwNzMxNzA3LDY4LjQ0NjM5MDI0MzkwMjQsNjkuNzg2ODI5MjY4MjkyNyw2NC42NjA5MjY4MjkyNjgzLDQ4LjQ0NjYzNDE0NjM0MTUsNjEuODEyNzgwNDg3ODA0OSwzOS45NzQ2ODI5MjY4MjkzLDM3LjI2ODYzNDE0NjM0MTUsNTcuMDY1NjM0MTQ2MzQxNSw2MC42MjI4MDQ4NzgwNDg4LDI4LjIxMTYwOTc1NjA5NzYsNjcuNjAxNzgwNDg3ODA0OSw0Mi43MzYzOTAyNDM5MDI0LDYzLjcwNTYwOTc1NjA5NzYsNDguMzY4ODA0ODc4MDQ4OCwzNS4wMDM3MDczMTcwNzMyLDQzLjQ4MzA5NzU2MDk3NTYsNTguNzQ1MjE5NTEyMTk1MSwzNy43NzM2MzQxNDYzNDE1LDU5LjQ3NTM0MTQ2MzQxNDYsNDYuODgwMzkwMjQzOTAyNCw1OC42MzkwMjQzOTAyNDM5LDM1LjUxNTA0ODc4MDQ4NzgsMzcuMTgyOTUxMjE5NTEyMiw0Ni45OTg4MjkyNjgyOTI3LDczLjM5MjY4MjkyNjgyOTMsNzMuNTQ5NzU2MDk3NTYxLDM1LjE3MDgyOTI2ODI5MjcsNzEuMjM2NTg1MzY1ODUzNyw0Mi42NjcwNzMxNzA3MzE3LDQ1LjI5MDQ2MzQxNDYzNDIsNjAuODgxNzA3MzE3MDczMiw0Ny42OTE1ODUzNjU4NTM3LDU3LjgxMTkyNjgyOTI2ODMsMzguNDYyMjQzOTAyNDM5LDY3LjY4MDQ4NzgwNDg3ODEsNjguNzE5NjA5NzU2MDk3Niw2Mi44MDg5MjY4MjkyNjgzLDYzLjc5MzcwNzMxNzA3MzIsNTYuMzU3MDQ4NzgwNDg3OCw2MS4yMDYwNzMxNzA3MzE3LDY1LjY0MjQzOTAyNDM5MDMsNjYuMDU1MjkyNjgyOTI2OCw0Mi4yNDkyOTI2ODI5MjY4LDQ1LjY2NjI2ODI5MjY4MjksNDguMTg3NjM0MTQ2MzQxNSwzOC4yMDYsNjUuNjU5ODI5MjY4MjkyNyw0OS4zODE3MDczMTcwNzMyLDMwLjMzMTUzNjU4NTM2NTksNDkuOTQ3OTI2ODI5MjY4MywzNi45NjU4NzgwNDg3ODA1LDMxLjY3NjcwNzMxNzA3MzIsNTAuNDUxMzY1ODUzNjU4NSw1OS42ODAxMjE5NTEyMTk1LDY5Ljk3NTkyNjgyOTI2ODMsNjguOTc4MDQ4NzgwNDg3OCw3My4wMDU2MDk3NTYwOTc2LDQ0LjIzMzc4MDQ4NzgwNDksNTIuNzY4MjQzOTAyNDM5LDM4LjAxNjEyMTk1MTIxOTUsNDAuMjcyODI5MjY4MjkyNyw1NC42OTkzMTcwNzMxNzA3LDU2LjE1MzUzNjU4NTM2NTksNTQuNDU4NjgyOTI2ODI5MywzMy43MjcxMjE5NTEyMTk1LDYxLjM2NDUzNjU4NTM2NTksNjIuNjU3NTg1MzY1ODUzNyw0Mi4wMDk3NTYwOTc1NjEsNDUuMzg0NDE0NjM0MTQ2Myw0My42NTM4NzgwNDg3ODA1LDQzLjk4MzU2MDk3NTYwOTgsNjguMjk5NTM2NTg1MzY1OSw2Ny44OTYzOTAyNDM5MDI1LDY5Ljc3MDczMTcwNzMxNzEsNTguODg1NTM2NTg1MzY1OSw1Ny43MjM4NzgwNDg3ODA1LDU5LjI4NTEyMTk1MTIxOTUsNjMuNzMwMjE5NTEyMTk1MSw1OS4wNjcwMjQzOTAyNDM5LDQ2LjQ4NzQ4NzgwNDg3ODEsNDkuOTY5NTEyMTk1MTIyLDM0LjM2MzgwNDg3ODA0ODgsNDkuMDM2MjkyNjgyOTI2OCw0MS4wMTgwNDg3ODA0ODc4LDQ1LjEwOTgwNDg3ODA0ODgsNTEuNTQyNDYzNDE0NjM0MikKTGlmZV9FeHBlY3RhbmN5X0F0X0JpcnRoXzIwMTMgPC0gYyg3NS4zMjg2NTg1MzY1ODU0LDYwLjAyODI2ODI5MjY4MjksNTEuODY2MTcwNzMxNzA3Myw3Ny41MzcyNDM5MDI0MzksNzcuMTk1NjM0MTQ2MzQxNSw3NS45ODYwOTc1NjA5NzU2LDc0LjU2MTM2NTg1MzY1ODUsNzUuNzc4NjU4NTM2NTg1NCw4Mi4xOTc1NjA5NzU2MDk4LDgwLjg5MDI0MzkwMjQzOSw3MC42OTMxNDYzNDE0NjM0LDU2LjI1MTYwOTc1NjA5NzYsODAuMzg1MzY1ODUzNjU4NSw1OS4zMTIwMjQzOTAyNDM5LDU4LjI0MDYzNDE0NjM0MTUsNzEuMjQ1MjQzOTAyNDM5LDc0LjQ2NTg1MzY1ODUzNjYsNzYuNTQ1OTUxMjE5NTEyMiw3NS4wNzM1MzY1ODUzNjU5LDc2LjI3NjkyNjgyOTI2ODMsNzIuNDcwNzMxNzA3MzE3MSw2OS45ODIwNDg3ODA0ODc4LDY3LjkxMzQzOTAyNDM5MDMsNzQuMTIyNDM5MDI0MzkwMyw3NS4zMzM5NTEyMTk1MTIyLDc4LjU0NjY1ODUzNjU4NTQsNjkuMTAyOTI2ODI5MjY4Myw2NC4zNjA4MDQ4NzgwNDg4LDQ5Ljg3OTg3ODA0ODc4MDUsODEuNDAxMTIxOTUxMjE5NSw4Mi43NDg3ODA0ODc4MDQ5LDgxLjE5NzkyNjgyOTI2ODMsNzUuMzUzMDI0MzkwMjQzOSw1MS4yMDg0NjM0MTQ2MzQyLDU1LjA0MTgwNDg3ODA0ODgsNjEuNjY2MzkwMjQzOTAyNCw3My44MDk3MzE3MDczMTcxLDYyLjkzMjE3MDczMTcwNzMsNzIuOTcyMzY1ODUzNjU4NSw3OS4yMjUyMTk1MTIxOTUxLDc5LjI1NjM5MDI0MzkwMjUsNzkuOTQ5NzgwNDg3ODA0OSw3OC4yNzgwNDg3ODA0ODc4LDgxLjA0MzkwMjQzOTAyNDQsNjEuNjg2NDYzNDE0NjM0Miw4MC4zMDI0MzkwMjQzOTAzLDczLjMxOTkwMjQzOTAyNDQsNzQuNTY4OTUxMjE5NTEyMiw3NS42NDg1MTIxOTUxMjIsNzAuOTI1NzgwNDg3ODA0OSw2My4xNzc4NzgwNDg3ODA1LDgyLjQyNjgyOTI2ODI5MjcsNzYuNDI0MzkwMjQzOTAyNSw2My40NDIxOTUxMjE5NTEyLDgwLjgzMTcwNzMxNzA3MzIsNjkuOTE3OTI2ODI5MjY4Myw4MS45NjgyOTI2ODI5MjY4LDY4Ljk3MzM5MDI0MzkwMjQsNjMuODQzNTg1MzY1ODUzNyw4MC45NTYwOTc1NjA5NzU2LDc0LjA3OTUxMjE5NTEyMiw2MS4xNDIwNzMxNzA3MzE3LDU4LjIxNjQ4NzgwNDg3OCw1OS45OTkyNjgyOTI2ODI5LDU0LjgzODQxNDYzNDE0NjQsNTcuMjkwODI5MjY4MjkyNyw4MC42MzQxNDYzNDE0NjM0LDczLjE5MzU2MDk3NTYwOTgsNzEuNDg2MzkwMjQzOTAyNCw3OC44NzI1MTIxOTUxMjIsNjYuMzEwMDI0MzkwMjQzOSw4My44MzE3MDczMTcwNzMyLDcyLjk0Mjg1MzY1ODUzNjYsNzcuMTI2ODI5MjY4MjkyNyw2Mi40MDExNDYzNDE0NjM0LDc1LjI2ODI5MjY4MjkyNjgsNjguNzA0NjA5NzU2MDk3Niw2Ny42NjA0MTQ2MzQxNDYzLDgxLjA0MzkwMjQzOTAyNDQsNzUuMTI1OTc1NjA5NzU2MSw2OS40NzE2ODI5MjY4MjkzLDgzLjExNzA3MzE3MDczMTcsODIuMjkwMjQzOTAyNDM5LDczLjQ2ODkyNjgyOTI2ODMsNzMuOTAxNDE0NjM0MTQ2Myw4My4zMzE5NTEyMTk1MTIyLDcwLjQ1LDYwLjk1Mzc4MDQ4NzgwNDksNzAuMjAyNDM5MDI0MzkwMiw2Ny43NzIwNDg3ODA0ODc4LDY1Ljc2NjU4NTM2NTg1MzcsODEuNDU5NzU2MDk3NTYxLDc0LjQ2Mjc1NjA5NzU2MSw2NS42ODcyNDM5MDI0MzksODAuMTI4ODc4MDQ4NzgwNSw2MC41MjAzOTAyNDM5MDI0LDcxLjY1NzY4MjkyNjgyOTMsNzQuOTEyNzA3MzE3MDczMiw3NC4yNDAyOTI2ODI5MjY4LDQ5LjMzMTQ2MzQxNDYzNDIsNzQuMTYzNDE0NjM0MTQ2NCw4MS43OTc1NjA5NzU2MDk4LDczLjk4MDQ4NzgwNDg3ODEsODAuMzM5MTQ2MzQxNDYzNCw3My43MDkwNDg3ODA0ODc4LDY4LjgxMTUxMjE5NTEyMiw2NC42NzM5MDI0MzkwMjQ0LDc2LjYwMjYwOTc1NjA5NzYsNzYuNTMyNjU4NTM2NTg1NCw3NS4xODcwNDg3ODA0ODc4LDU3LjUzNTE5NTEyMTk1MTIsODAuNzQ2MzQxNDYzNDE0Niw2NS42NTQwOTc1NjA5NzU2LDc0Ljc1ODM2NTg1MzY1ODUsNjkuMDYxODA0ODc4MDQ4OCw1NC42NDE1MTIxOTUxMjIsNjIuODAyNzA3MzE3MDczMiw3NC40Niw2MS40NjYsNzQuNTY3NTEyMTk1MTIyLDY0LjM0Mzg3ODA0ODc4MDUsNzcuMTIxOTUxMjE5NTEyMiw2MC44MjgxNDYzNDE0NjM0LDUyLjQ0MjE0NjM0MTQ2MzQsNzQuNTE0NzU2MDk3NTYxLDgxLjEwNDg3ODA0ODc4MDUsODEuNDUxMjE5NTEyMTk1MSw2OS4yMjIsODEuNDA3MzE3MDczMTcwNyw3Ni44NDEwNDg3ODA0ODc4LDY1Ljk2MzY4MjkyNjgyOTMsNzcuNDE5MjE5NTEyMTk1MSw3NC4yODM4NTM2NTg1MzY2LDY4LjEzMTU2MDk3NTYwOTcsNjIuNDQ5MTcwNzMxNzA3Myw3Ni44NDg3ODA0ODc4MDQ5LDc4LjcxMTE5NTEyMTk1MTIsODAuMzczMTcwNzMxNzA3Myw3Mi43OTkxNzA3MzE3MDczLDc2LjMzNDA3MzE3MDczMTcsNzguNDE4NDg3ODA0ODc4MSw3NC40NjM0MTQ2MzQxNDYzLDcxLjA3MzE3MDczMTcwNzMsNjMuMzk0ODI5MjY4MjkyNyw3NC4xNzc2MzQxNDYzNDE1LDYzLjE2NzA0ODc4MDQ4NzgsNjUuODc4NzU2MDk3NTYxLDgyLjM0NjM0MTQ2MzQxNDYsNjcuNzE4OTI2ODI5MjY4Myw1MC4zNjMxMjE5NTEyMTk1LDcyLjQ5ODE0NjM0MTQ2MzQsNTUuMDIzMDI0MzkwMjQzOSw1NS4yMjA5MDI0MzkwMjQ0LDY2LjI1OTUxMjE5NTEyMiw3MC45OSw3Ni4yNjA5NzU2MDk3NTYxLDgwLjI3ODA0ODc4MDQ4NzgsODEuNzA0ODc4MDQ4NzgwNSw0OC45Mzc5MjY4MjkyNjgzLDc0LjcxNTc4MDQ4NzgwNDksNTEuMTkxNDg3ODA0ODc4MSw1OS4xMzIzNjU4NTM2NTg1LDc0LjI0NjkyNjgyOTI2ODMsNjkuNDAwMTcwNzMxNzA3Myw2NS40NTY1NjA5NzU2MDk4LDY3LjUyMjM2NTg1MzY1ODUsNzIuNjQwMzQxNDYzNDE0Nyw3MC4zMDUyOTI2ODI5MjY4LDczLjY0NjM0MTQ2MzQxNDcsNzUuMTc1OTUxMjE5NTEyMiw2NC4yOTE4MjkyNjgyOTI3LDU3Ljc2NzY4MjkyNjgyOTMsNzEuMTU5NTEyMTk1MTIyLDc2LjgzNjE5NTEyMTk1MTIsNzguODQxNDYzNDE0NjM0MSw2OC4yMjc1ODUzNjU4NTM3LDcyLjgxMDg3ODA0ODc4MDUsNzQuMDc0NDE0NjM0MTQ2NCw3OS42MjQzOTAyNDM5MDI0LDc1Ljc1NjQ4NzgwNDg3OCw3MS42NjkyNDM5MDI0MzksNzMuMjUwMzkwMjQzOTAyNCw2My41ODM1MTIxOTUxMjIsNTYuNzM2NTg1MzY1ODUzNyw1OC4yNzE5MjY4MjkyNjgzLDU5LjIzNzM2NTg1MzY1ODUsNTUuNjMzKQoKZGF0YSA8LSByZWFkLmNzdihmaWxlLmNob29zZSgpKQpkYXRhCmhlYWQoZGF0YSkKdGFpbChkYXRhKQpzdHIoZGF0YSkKc3VtbWFyeShkYXRhKQoKI0luc2lnaHQgaW50byB0aGUgbmV4dCBzZWN0aW9uOgpkYXRhJFllYXIKdGVtcCA8LSBmYWN0b3IoZGF0YSRZZWFyKQp0ZW1wCmxldmVscyh0ZW1wKQoKI2ZpbHRlciBkYXRhIGZyYW1lCmRhdGEkWWVhcj09MTk2MApkYXRhMTk2MCA8LSBkYXRhW2RhdGEkWWVhcj09MTk2MCxdCmRhdGEyMDEzIDwtIGRhdGFbZGF0YSRZZWFyPT0yMDEzLF0KCiNjaGVjayByb3cgY291bnRzCm5yb3coZGF0YTE5NjApICMxODcKbnJvdyhkYXRhMjAxMykgIzE4NwoKI2NyZWF0ZSBhZGRpdGlvbmFsIGRhdGEgZnJhbWVzCmFkZDE5NjAgPC0gZGF0YS5mcmFtZShDb2RlPUNvdW50cnlfQ29kZSwgTGlmZS5FeHA9TGlmZV9FeHBlY3RhbmN5X0F0X0JpcnRoXzE5NjApCmFkZDIwMTMgPC0gZGF0YS5mcmFtZShDb2RlPUNvdW50cnlfQ29kZSwgTGlmZS5FeHA9TGlmZV9FeHBlY3RhbmN5X0F0X0JpcnRoXzIwMTMpCgojY2hlY2sgc3VtbWFyaWVzCnN1bW1hcnkoYWRkMTk2MCkKc3VtbWFyeShhZGQyMDEzKQoKI21lcmdlIHBhaXJzIG9mIGRhdGEgZnJhbWVzCm1lcmdlZDE5NjAgPC0gbWVyZ2UoZGF0YTE5NjAsIGFkZDE5NjAsIGJ5Lng9IkNvdW50cnkuQ29kZSIsIGJ5Lnk9IkNvZGUiKQptZXJnZWQyMDEzIDwtICBtZXJnZShkYXRhMjAxMywgYWRkMjAxMywgYnkueD0iQ291bnRyeS5Db2RlIiwgYnkueT0iQ29kZSIpCgojY2hlY2sgc3RydWN0dXJlCnN0cihtZXJnZWQxOTYwKQpzdHIobWVyZ2VkMjAxMykKCiNkZWxldGUgY29sdW1ucwptZXJnZWQxOTYwJFllYXIgPC0gTlVMTAptZXJnZWQyMDEzJFllYXIgPC0gTlVMTAoKI1Zpc3VhbGl6YXRpb24KcXBsb3QoZGF0YT1tZXJnZWQxOTYwLCB4PUZlcnRpbGl0eS5SYXRlLCB5PUxpZmUuRXhwLCBjb2xvcj1SZWdpb24sIHNpemU9SSg1KSwgYWxwaGE9SSgwLjYpLCBtYWluPSJMaWZlIEV4cGVjdGFuY3kgdnMgRmVydGlsaXR5ICgxOTYwKSIpCnFwbG90KGRhdGE9bWVyZ2VkMjAxMywgeD1GZXJ0aWxpdHkuUmF0ZSwgeT1MaWZlLkV4cCwgY29sb3I9UmVnaW9uLCBzaXplPUkoNSksIGFscGhhPUkoMC42KSwgbWFpbj0iTGlmZSBFeHBlY3RhbmN5IHZzIEZlcnRpbGl0eSAoMjAxMykiKQoKYGBgCgoKCg==