“Life is not measured by the number of breaths we take, but by the moments that take our breath away.” Maya Angelou
“Life shrinks or expands in proportion to one’s courage.” Anais Nin
“Devotion to the truth is the hallmark of morality; there is no greater, nobler, more heroic form of devotion than the act of a man who assumes the responsibility of thinking.” Ayn Rand in Atlas Shrugged
yorkr, this time, rocks women’s cricket!!! In this post, my R package yorkr analyzes women’s One Day International and International T20. The latest changes in my R package yorkr, as mentioned in my last post Revitalizing R package yorkr, included the modifications for the segregation men’s and women’s ODI and T20 matches into separate folders while converting them from YAML to R data frames. As the data was already converted I could just use the yorkr functions 45+ to analyze the women’s ODI and women’s T20. The data for this post is taken from Cricsheet
My R package yorkr has 4 classes of functions
The converted data is available at yorkrData
This RMarkdown file has been published at RPubs at yorkrAnalyzesWomensODIT20
You can download this as a PDF at yorkrAnalyzesWomensODIT20
install.packages("../../../yorkrgit/yorkr_0.0.9.tar.gz",repos = NULL, type="source")
##1. Analysis of women’s ODI matches
library(yorkr)
#saveAllMatchesBetweenTeams("../../../yorkrData2020/odi/odiWomenMatches/","../../../yorkrData2020/odi/odiWomenMatches2Teams/")
#saveAllMatchesAllOpposition("../../../yorkrData2020/odi/odiWomenMatches/","../../../yorkrData2020/odi/odiWomenAllMatchesAllTeams/")
Since there are several functions in each class, I have randomly selected a few functions to demonstrate yorkr’s analysis ## ODI Match Analysis (Class 1) In the functions below ODI women matches are analyzed as in the India-Australia ODI in 7 Feb 2016.
load("../../../yorkrData2020/odi/odiWomenMatches/Australia-India-2016-02-07.RData")
aus_ind <- overs
teamBattingScorecardMatch(aus_ind,'India')
## Total= 223
## # A tibble: 7 x 5
## batsman ballsPlayed fours sixes runs
## <chr> <int> <int> <dbl> <dbl>
## 1 H Kaur 42 2 0 22
## 2 J Goswami 4 1 0 4
## 3 M Raj 113 12 0 89
## 4 PG Raut 31 2 0 24
## 5 S Mandhana 52 7 0 55
## 6 S Pandey 18 2 0 17
## 7 V Krishnamurthy 21 2 0 12
The partnerships in this match between India and Australia. Mithali Raj tops the list, with partnerships with Smriti Mandhana, Harmanpreet Kaur and Punam Raut. The next highest partnership is Smriti Mandhana
teamBatsmenPartnershipMatch(aus_ind,"India","Australia")
load("../../../yorkrData2020/odi/odiWomenMatches/England-New Zealand-2013-02-15.RData")
eng_nz <- overs
teamBowlingWicketKindMatch(eng_nz,"England","New Zealand")
Plot the match worm graph for Pakistan-South Africa women’s ODI 25 Jun 2017
load("../../../yorkrData2020/odi/odiWomenMatches/Pakistan-South Africa-2017-06-25.RData")
pak_sa <-overs
matchWormGraph(pak_sa,'Pakistan',"South Africa")
The functions below analyze all matches between South Africa and Sri Lanka.
load("../../../yorkrData2020/odi/odiWomenMatches2Teams/South Africa-Sri Lanka-allMatches.RData")
sa_sl_matches <- matches
m <-teamBatsmenPartnershiOppnAllMatches(sa_sl_matches,'South Africa',report="summary")
m
## # A tibble: 16 x 2
## batsman totalRuns
## <chr> <dbl>
## 1 M du Preez 241
## 2 M Kapp 194
## 3 L Wolvaardt 168
## 4 D van Niekerk 138
## 5 L Lee 138
## 6 T Chetty 136
## 7 A Steyn 118
## 8 L Goodall 89
## 9 S Luus 71
## 10 N de Klerk 35
## 11 CL Tryon 15
## 12 F Tunnicliffe 15
## 13 S Ismail 9
## 14 M Klaas 2
## 15 Y Fourie 1
## 16 B Bezuidenhout 0
teamBatsmenPartnershipOppnAllMatchesChart(sa_sl_matches,"Sri Lanka","South Africa")
The plot below gives the performance if women Indian ODI bowlers in all ODI matches against England. The top wicket takers are Jhulan Goswami, Ekta Bisht, Gouher Sultana
load("../../../yorkrData2020/odi/odiWomenMatches2Teams/India-England-allMatches.RData")
ind_eng_matches <- matches
teamBowlersWicketsOppnAllMatches(ind_eng_matches,"India","England")
West Indies top scorers in ODI in all matches. The top scorers in West Indies are 1. Stafanie Taylor 2. Deandra Dottin 3. Hayley Matthews
load("../../../yorkrData2020/odi/odiWomenAllMatchesAllteams/allMatchesAllOpposition-West Indies.RData")
wi_matches <- matches
m <-teamBattingScorecardAllOppnAllMatches(wi_matches,theTeam="West Indies")
## Total= 4629
m
## # A tibble: 31 x 5
## batsman ballsPlayed fours sixes runs
## <chr> <int> <int> <int> <dbl>
## 1 SR Taylor 1087 83 7 766
## 2 DJS Dottin 778 69 21 641
## 3 HK Matthews 734 71 4 527
## 4 SA Campbelle 649 39 4 396
## 5 Kycia A Knight 517 35 2 284
## 6 CN Nation 554 31 1 274
## 7 Kyshona A Knight 578 35 NA 264
## 8 MR Aguilleira 481 20 3 252
## 9 B Cooper 289 19 3 176
## 10 NY McLean 230 18 2 155
## # … with 21 more rows
The functions below perform individual batsman and bowler analysis. I chose the top women ODI batsman
#india_details <- getTeamBattingDetails("India",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
#eng_details <- getTeamBattingDetails("England",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
#nz_details <- getTeamBattingDetails("New Zealand",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
mithali <- getBatsmanDetails(team="India",name="M Raj",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/odi/odiWomenBattingBowlingDetails/India-BattingDetails.RData"
charlotte <- getBatsmanDetails(team="England",name="CM Edwards",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/odi/odiWomenBattingBowlingDetails/England-BattingDetails.RData"
suzie<- getBatsmanDetails(team="New Zealand",name="SW Bates",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/odi/odiWomenBattingBowlingDetails/New Zealand-BattingDetails.RData"
library(grid)
library(gridExtra)
p1 <-batsmanRunsVsStrikeRate(mithali,"Mithali Raj")
p2 <- batsmanRunsVsStrikeRate(charlotte, "Charlotte E")
p3 <- batsmanRunsVsStrikeRate(suzie, "Suzie Bates")
grid.arrange(p1,p2,p3, ncol=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
p1 <-batsmanMovingAverage(mithali,"Mithali Raj")
p2 <- batsmanMovingAverage(charlotte, "Charlotte E")
p3 <- batsmanMovingAverage(suzie, "Suzie Bates")
grid.arrange(p1,p2,p3, ncol=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
p1 <-batsmanCumulativeAverageRuns(mithali,"Mithali Raj")
p2 <- batsmanCumulativeAverageRuns(charlotte, "Charlotte E")
p3 <- batsmanCumulativeAverageRuns(suzie, "Suzie Bates")
grid.arrange(p1,p2,p3, ncol=2)
The following 3 bowlers have been chosen for analysis
#india_details <- getTeamBowlingDetails("India",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
#wi_details <- getTeamBowlingDetails("West Indies",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
#pak_details <- getTeamBowlingDetails("Pakistan",dir="../../../yorkrData2020/odi/odiWomenMatches", save=TRUE,odir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
jhulan <- getBowlerWicketDetails(team="India",name="J Goswami",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
anisa <- getBowlerWicketDetails(team="West Indies",name="A Mohammed",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
sana <- getBowlerWicketDetails(team="Pakistan",name="Sana Mir",dir="../../../yorkrData2020/odi/odiWomenBattingBowlingDetails")
Plot the bowler Mean Economy Rate
p1<-bowlerMeanEconomyRate(jhulan,"Jhulan G")
p2<-bowlerMeanEconomyRate(anisa, "Anisa M")
p3<-bowlerMeanEconomyRate(sana, "Sana Mir")
grid.arrange(p1,p2,p3, ncol=2)
Plot the cumulative average wickets taken by the bowlers
p1<-bowlerCumulativeAvgWickets(jhulan,"Jhulan G")
p2<-bowlerCumulativeAvgWickets(anisa, "Anisa M")
p3<-bowlerCumulativeAvgWickets(sana, "Sana Mir")
grid.arrange(p1,p2,p3, ncol=2)
##2. Analysis of women’s International Twenty 20 matches
I have chosen some random yorkr functions to show the analysis of T20 players and matches
There are the following class of T20 functions
You can also refer to the yorkr template that I created Analysis of International T20 matches with yorkr templates
#saveAllMatchesBetweenTeams("../../../yorkrData2020/t20/t20WomenMatches/","../../../yorkrData2020/t20/t20WomenMatches2Teams/")
#saveAllMatchesAllOpposition("../../../yorkrData2020/t20/t20WomenMatches/","../../../yorkrData2020/t20/t20WomenAllMatchesAllTeams/")
Print the scorecard for the Bangladesh- Ireland match played on 3 Apr 2014
load("../../../yorkrData2020/t20/t20WomenMatches/Bangladesh-Ireland-2014-04-03.RData")
ban_ire <- overs
teamBattingScorecardMatch(ban_ire,'Bangladesh')
## Total= 95
## # A tibble: 9 x 5
## batsman ballsPlayed fours sixes runs
## <chr> <int> <dbl> <dbl> <dbl>
## 1 Ayasha Rahman 19 2 0 12
## 2 Fahima Khatun 2 0 0 0
## 3 Lata Mondal 12 1 0 8
## 4 Panna Ghosh 3 0 0 4
## 5 Rumana Ahmed 14 3 0 16
## 6 Salma Khatun 6 1 0 7
## 7 Shaila Sharmin 7 0 0 6
## 8 Shamima Sultana 11 0 0 7
## 9 Sharmin Akhter 46 3 0 35
Plot the performance of T20 batsmen against in bowlers in Germany - Netherlands.
load("../../../yorkrData2020/t20/t20WomenMatches/Germany-Netherlands-2019-06-27.RData")
ger_net <- overs
teamBatsmenVsBowlersMatch(ger_net,'Netherlands',"Germany",plot=TRUE)
Print the bowling scorecard of Hong Kong-Kuwait T20 match played on 25 Feb 2019
load("../../../yorkrData2020/t20/t20WomenMatches/Hong Kong-Kuwait-2019-02-25.RData")
hk_kuw <-overs
teamBowlingScorecardMatch(hk_kuw,'Hong Kong')
## # A tibble: 5 x 5
## bowler overs maidens runs wickets
## <chr> <int> <int> <dbl> <int>
## 1 Chan Ka Man 2 0 5 1
## 2 KY Chan 3 1 2 4
## 3 M Hill 2 0 6 1
## 4 M Wai Siu 2 0 11 1
## 5 M Yousaf 1 1 0 3
Print the partnership among Indian T20 women in all matches against England
load("../../../yorkrData2020/t20/t20WomenMatches2Teams/India-England-allMatches.RData")
ind_eng_matches <- matches
m <-teamBatsmenPartnershiOppnAllMatches(ind_eng_matches,'India',report="detailed")
m[1:30,]
## batsman nonStriker partnershipRuns totalRuns
## 1 M Raj A Sharma 2 233
## 2 M Raj BS Fulmali 25 233
## 3 M Raj DB Sharma 16 233
## 4 M Raj H Kaur 18 233
## 5 M Raj J Goswami 6 233
## 6 M Raj KV Jain 5 233
## 7 M Raj L Kumari 5 233
## 8 M Raj N Niranjana 3 233
## 9 M Raj N Tanwar 17 233
## 10 M Raj PG Raut 41 233
## 11 M Raj R Malhotra 5 233
## 12 M Raj S Mandhana 17 233
## 13 M Raj S Naik 10 233
## 14 M Raj S Pandey 19 233
## 15 M Raj SK Naidu 37 233
## 16 M Raj V Krishnamurthy 7 233
## 17 S Mandhana H Deol 20 145
## 18 S Mandhana JI Rodrigues 47 145
## 19 S Mandhana M Raj 32 145
## 20 S Mandhana Shafali Verma 46 145
## 21 H Kaur A Sharma 1 137
## 22 H Kaur AA Patil 8 137
## 23 H Kaur DB Sharma 14 137
## 24 H Kaur E Bisht 3 137
## 25 H Kaur J Goswami 11 137
## 26 H Kaur JI Rodrigues 12 137
## 27 H Kaur M Raj 19 137
## 28 H Kaur MR Meshram 33 137
## 29 H Kaur N Tanwar 2 137
## 30 H Kaur PG Raut 0 137
Plot the batting partnetship of Indian T20 womern against England
The best batsmen are Mithali Raj, Smriti Mandhana and Harmanpreet Kaur in that order
teamBatsmenPartnershipOppnAllMatchesChart(ind_eng_matches,"India","England")
Plot the wicket kind taken by the bowlers of Scotland against USA
load("../../../yorkrData2020/t20/t20WomenMatches2Teams/Scotland-United States of America-allMatches.RData")
sco_usa_matches <- matches
teamBowlersWicketsOppnAllMatches(sco_usa_matches,"Scotalnd","USA")
Print the batting scorecard of Zimbabwe against all other teams
load("../../../yorkrData2020/t20/t20WomenAllMatchesAllTeams/allMatchesAllOpposition-Zimbabwe.RData")
zim_matches <- matches
m <-teamBattingScorecardAllOppnAllMatches(zim_matches,theTeam="Zimbabwe")
## Total= 571
m
## # A tibble: 7 x 5
## batsman ballsPlayed fours sixes runs
## <chr> <int> <int> <int> <dbl>
## 1 SM Mayers 181 20 3 216
## 2 M Mupachikwa 139 9 NA 125
## 3 CS Mugeri 88 9 2 119
## 4 M Musonda 38 2 1 46
## 5 J Nkomo 25 3 NA 34
## 6 A Ndiraya 14 3 NA 18
## 7 AC Mushangwe 13 NA NA 13
Pring the batting partnership of West Indies. The best performances are by 1. Stafanie Taylor 2. Deandra Dottin 3. Hayley Matthews
load("../../../yorkrData2020/t20/t20WomenAllMatchesAllTeams/allMatchesAllOpposition-West Indies.RData")
wi_matches <- matches
m <- teamBatsmenPartnershipAllOppnAllMatches(wi_matches,theTeam='West Indies')
m
## # A tibble: 29 x 2
## batsman totalRuns
## <chr> <dbl>
## 1 SR Taylor 1199
## 2 DJS Dottin 912
## 3 HK Matthews 458
## 4 SA Campbelle 407
## 5 B Cooper 300
## 6 SACA King 287
## 7 MR Aguilleira 250
## 8 CN Nation 243
## 9 Kycia A Knight 240
## 10 NY McLean 142
## # … with 19 more rows
The plot below shows the women T20 bowlers who have performed the best against India namely 1. Katherine Brunt (Eng) 2. Elysse Perry (Aus) 3. Anya Shrubsole
load("../../../yorkrData2020/t20/t20WomenAllMatchesAllTeams/allMatchesAllOpposition-India.RData")
ind_matches <- matches
teamBowlingWicketKindAllOppnAllMatches(ind_matches,t1="India",t2="All")
The following 4 players were chosen
#india_details <- getTeamBattingDetails("India",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#eng_details <- getTeamBattingDetails("England",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#aus_details <- getTeamBattingDetails("Australia",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#wi_details <- getTeamBattingDetails("West Indies",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#nz_details <- getTeamBattingDetails("New Zealand",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
harmanpreet <- getBatsmanDetails(team="India",name="H Kaur",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/t20/t20WomenBattingBowlingDetails/India-BattingDetails.RData"
suzie <- getBatsmanDetails(team="New Zealand",name="SW Bates",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/t20/t20WomenBattingBowlingDetails/New Zealand-BattingDetails.RData"
meg <- getBatsmanDetails(team="Australia",name="MM Lanning",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/t20/t20WomenBattingBowlingDetails/Australia-BattingDetails.RData"
stafanie <- getBatsmanDetails(team="West Indies",name="SR Taylor",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
## [1] "../../../yorkrData2020/t20/t20WomenBattingBowlingDetails/West Indies-BattingDetails.RData"
Plot the performance of the players against opposition.
batsmanRunsAgainstOpposition(harmanpreet,"Harmanpreet")
batsmanRunsAgainstOpposition(suzie,"Suzie Bates")
batsmanRunsAgainstOpposition(stafanie,"Stafanie Taylor")
batsmanRunsAgainstOpposition(meg,"Meg Lanning")
Plot the cumulative strike rate of the players. Meg Lanning has the best strike rate of the lot. Stafanie and Suzie also touch a strike rate of 100
p1<-batsmanCumulativeStrikeRate(harmanpreet,"Harmanpreet")
p2<-batsmanCumulativeStrikeRate(suzie,"Suzie Bates")
p3<-batsmanCumulativeStrikeRate(stafanie,"Stafanie Taylor")
p4 <-batsmanCumulativeStrikeRate(meg,"Meg Lanning")
grid.arrange(p1,p2,p3,p4, ncol=2)
Analyze women’s T20 bowlers.
The following bowlers were chosen for analysis
#india_details <- getTeamBowlingDetails("India",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#wi_details <- getTeamBowlingDetails("West Indies",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#aus_details <- getTeamBowlingDetails("Australia",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
#eng_details <- getTeamBowlingDetails("England",dir="../../../yorkrData2020/t20/t20WomenMatches", save=TRUE,odir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
poonam <- getBowlerWicketDetails(team="India",name="Poonam Yadav",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
anisa <- getBowlerWicketDetails(team="West Indies",name="A Mohammed",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
ellyse <- getBowlerWicketDetails(team="Australia",name="EA Perry",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
anya <- getBowlerWicketDetails(team="England",name="A Shrubsole",dir="../../../yorkrData2020/t20/t20WomenBattingBowlingDetails")
Plot the bowler’s moving average
p1<-bowlerMovingAverage(poonam,"Poonam Yadav")
p2<-bowlerMovingAverage(anisa,"Anisa M")
p3 <-bowlerMovingAverage(ellyse,"Ellyse Perry")
p4 <-bowlerMovingAverage(anya,"Anya Shrubsole")
grid.arrange(p1,p2,p3,p4, ncol=2)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Plot the bowlers Cumulative Average
p1<-bowlerCumulativeAvgWickets(poonam,"Poonam Yadav")
p2<-bowlerCumulativeAvgWickets(anisa,"Anisa M")
p3 <-bowlerCumulativeAvgWickets(ellyse,"Ellyse Perry")
p4 <-bowlerCumulativeAvgWickets(anya,"Anya Shrubsole")
grid.arrange(p1,p2,p3,p4, ncol=2)
library(yorkr)
dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/odi/odiWomenMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/odi/odiWomenBattingBowlingDetails"
rankODIBatsmen(dir=dir,odir=odir,minMatches=30)
## [1] "Australia"
## [1] "India"
## [1] "Pakistan"
## [1] "West Indies"
## [1] "Sri Lanka"
## [1] "England"
## [1] "Bangladesh"
## [1] "Netherlands"
## [1] "No data"
## [1] "Scotland"
## [1] "No data"
## [1] "Afghanistan"
## [1] "No data"
## [1] "Zimbabwe"
## [1] "No data"
## [1] "Ireland"
## [1] "New Zealand"
## [1] "South Africa"
## [1] "Canada"
## [1] "No data"
## [1] "Bermuda"
## [1] "No data"
## [1] "Kenya"
## [1] "No data"
## [1] "Hong Kong"
## [1] "No data"
## [1] "Nepal"
## [1] "No data"
## [1] "Oman"
## [1] "No data"
## [1] "Papua New Guinea"
## [1] "No data"
## [1] "United Arab Emirates"
## [1] "No data"
## [1] "Namibia"
## [1] "No data"
## [1] "Cayman Islands"
## [1] "No data"
## [1] "Singapore"
## [1] "No data"
## [1] "United States of America"
## [1] "No data"
## [1] "Bhutan"
## [1] "No data"
## [1] "Maldives"
## [1] "No data"
## [1] "Botswana"
## [1] "No data"
## [1] "Nigeria"
## [1] "No data"
## [1] "Denmark"
## [1] "No data"
## [1] "Germany"
## [1] "No data"
## [1] "Jersey"
## [1] "No data"
## [1] "Norway"
## [1] "No data"
## [1] "Qatar"
## [1] "No data"
## [1] "Malaysia"
## [1] "No data"
## [1] "Vanuatu"
## [1] "No data"
## [1] "Thailand"
## [1] "No data"
## [1] "Australia-BattingDetails.RData"
## [1] "India-BattingDetails.RData"
## [1] "Pakistan-BattingDetails.RData"
## [1] "West Indies-BattingDetails.RData"
## [1] "Sri Lanka-BattingDetails.RData"
## [1] "England-BattingDetails.RData"
## [1] "Bangladesh-BattingDetails.RData"
## [1] "Ireland-BattingDetails.RData"
## [1] "New Zealand-BattingDetails.RData"
## [1] "South Africa-BattingDetails.RData"
## # A tibble: 24 x 4
## batsman matches meanRuns meanSR
## <chr> <int> <dbl> <dbl>
## 1 AE Satterthwaite 32 61.5 81.2
## 2 MM Lanning 47 49.5 85.0
## 3 TT Beaumont 35 45.8 68.5
## 4 EA Perry 42 45.7 74.3
## 5 SW Bates 42 44.0 70.9
## 6 NR Sciver 35 43.0 94.7
## 7 M Raj 35 42.8 64.1
## 8 AC Jayangani 48 38.6 59.9
## 9 NE Bolton 32 36.5 60.5
## 10 T Chetty 34 33.1 70.3
## # … with 14 more rows
library(yorkr)
dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/odi/odiWomenMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/odi/odiWomenBattingBowlingDetails"
rankODIBowlers(dir=dir,odir=odir,minMatches=30)
## [1] "Australia"
## [1] "India"
## [1] "Pakistan"
## [1] "West Indies"
## [1] "Sri Lanka"
## [1] "England"
## [1] "Bangladesh"
## [1] "Netherlands"
## [1] "No data"
## [1] "Scotland"
## [1] "No data"
## [1] "Afghanistan"
## [1] "No data"
## [1] "Zimbabwe"
## [1] "No data"
## [1] "Ireland"
## [1] "New Zealand"
## [1] "South Africa"
## [1] "Canada"
## [1] "No data"
## [1] "Bermuda"
## [1] "No data"
## [1] "Kenya"
## [1] "No data"
## [1] "Hong Kong"
## [1] "No data"
## [1] "Nepal"
## [1] "No data"
## [1] "Oman"
## [1] "No data"
## [1] "Papua New Guinea"
## [1] "No data"
## [1] "United Arab Emirates"
## [1] "No data"
## [1] "Namibia"
## [1] "No data"
## [1] "Cayman Islands"
## [1] "No data"
## [1] "Singapore"
## [1] "No data"
## [1] "United States of America"
## [1] "No data"
## [1] "Bhutan"
## [1] "No data"
## [1] "Maldives"
## [1] "No data"
## [1] "Botswana"
## [1] "No data"
## [1] "Nigeria"
## [1] "No data"
## [1] "Denmark"
## [1] "No data"
## [1] "Germany"
## [1] "No data"
## [1] "Jersey"
## [1] "No data"
## [1] "Norway"
## [1] "No data"
## [1] "Qatar"
## [1] "No data"
## [1] "Malaysia"
## [1] "No data"
## [1] "Vanuatu"
## [1] "No data"
## [1] "Thailand"
## [1] "No data"
## [1] "Australia-BowlingDetails.RData"
## [1] "India-BowlingDetails.RData"
## [1] "Pakistan-BowlingDetails.RData"
## [1] "West Indies-BowlingDetails.RData"
## [1] "Sri Lanka-BowlingDetails.RData"
## [1] "England-BowlingDetails.RData"
## [1] "Bangladesh-BowlingDetails.RData"
## [1] "Ireland-BowlingDetails.RData"
## [1] "New Zealand-BowlingDetails.RData"
## [1] "South Africa-BowlingDetails.RData"
## # A tibble: 19 x 4
## bowler matches totalWickets meanER
## <chr> <int> <dbl> <dbl>
## 1 JL Jonassen 44 76 3.90
## 2 M Kapp 49 70 3.80
## 3 S Ismail 44 65 3.82
## 4 KH Brunt 42 62 3.57
## 5 EA Perry 43 58 4.44
## 6 A Shrubsole 41 58 4.07
## 7 J Goswami 33 58 3.59
## 8 S Luus 41 54 4.82
## 9 D van Niekerk 40 53 3.84
## 10 ML Schutt 35 48 4.46
## 11 A Khaka 33 47 4.08
## 12 JL Gunn 30 43 4.23
## 13 I Ranaweera 35 42 4.89
## 14 Sana Mir 32 41 4.29
## 15 LA Marsh 30 40 4.16
## 16 NR Sciver 36 37 4.64
## 17 NR Sciver 36 37 4.64
## 18 NR Sciver 36 37 4.64
## 19 NR Sciver 36 37 4.64
library(yorkr)
dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/t20/t20WomenMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/t20/t20WomenBattingBowlingDetails"
rankT20Batsmen(dir=dir,odir=odir,minMatches=30)
## [1] "Australia"
## [1] "India"
## [1] "Pakistan"
## [1] "West Indies"
## [1] "Sri Lanka"
## [1] "England"
## [1] "Bangladesh"
## [1] "Netherlands"
## [1] "Scotland"
## [1] "Afghanistan"
## [1] "No data"
## [1] "Zimbabwe"
## [1] "Ireland"
## [1] "New Zealand"
## [1] "South Africa"
## [1] "Canada"
## [1] "Bermuda"
## [1] "No data"
## [1] "Kenya"
## [1] "Hong Kong"
## [1] "Nepal"
## [1] "Oman"
## [1] "Papua New Guinea"
## [1] "United Arab Emirates"
## [1] "Namibia"
## [1] "Cayman Islands"
## [1] "No data"
## [1] "Singapore"
## [1] "United States of America"
## [1] "Bhutan"
## [1] "No data"
## [1] "Maldives"
## [1] "Botswana"
## [1] "Nigeria"
## [1] "Denmark"
## [1] "No data"
## [1] "Germany"
## [1] "Jersey"
## [1] "No data"
## [1] "Norway"
## [1] "No data"
## [1] "Qatar"
## [1] "No data"
## [1] "Malaysia"
## [1] "Vanuatu"
## [1] "Thailand"
## [1] "Australia-BattingDetails.RData"
## [1] "India-BattingDetails.RData"
## [1] "Pakistan-BattingDetails.RData"
## [1] "West Indies-BattingDetails.RData"
## [1] "Sri Lanka-BattingDetails.RData"
## [1] "England-BattingDetails.RData"
## [1] "Bangladesh-BattingDetails.RData"
## [1] "Netherlands-BattingDetails.RData"
## [1] "Scotland-BattingDetails.RData"
## [1] "Zimbabwe-BattingDetails.RData"
## [1] "Ireland-BattingDetails.RData"
## [1] "New Zealand-BattingDetails.RData"
## [1] "South Africa-BattingDetails.RData"
## [1] "Canada-BattingDetails.RData"
## [1] "Kenya-BattingDetails.RData"
## [1] "Hong Kong-BattingDetails.RData"
## [1] "Nepal-BattingDetails.RData"
## [1] "Oman-BattingDetails.RData"
## [1] "Papua New Guinea-BattingDetails.RData"
## [1] "United Arab Emirates-BattingDetails.RData"
## [1] "Namibia-BattingDetails.RData"
## [1] "Singapore-BattingDetails.RData"
## [1] "United States of America-BattingDetails.RData"
## [1] "Maldives-BattingDetails.RData"
## [1] "Botswana-BattingDetails.RData"
## [1] "Nigeria-BattingDetails.RData"
## [1] "Germany-BattingDetails.RData"
## [1] "Malaysia-BattingDetails.RData"
## [1] "Vanuatu-BattingDetails.RData"
## [1] "Thailand-BattingDetails.RData"
## # A tibble: 30 x 4
## batsman matches meanRuns meanSR
## <chr> <int> <dbl> <dbl>
## 1 SR Taylor 39 33.1 96.7
## 2 MM Lanning 53 29.3 102.
## 3 EJ Villani 32 28.2 94.8
## 4 D van Niekerk 41 27.3 88.2
## 5 SJ Taylor 46 26.7 100.
## 6 SW Bates 35 26.1 99.8
## 7 AC Jayangani 41 25.5 94.7
## 8 Bismah Maroof 52 24.5 83.0
## 9 DJS Dottin 38 24 109.
## 10 CM Edwards 44 23.7 94.1
## # … with 20 more rows
library(yorkr)
dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/t20/t20WomenMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/t20/t20WomenBattingBowlingDetails"
rankT20Bowlers(dir=dir,odir=odir,minMatches=30)
## [1] "Australia"
## [1] "India"
## [1] "Pakistan"
## [1] "West Indies"
## [1] "Sri Lanka"
## [1] "England"
## [1] "Bangladesh"
## [1] "Netherlands"
## [1] "Scotland"
## [1] "Afghanistan"
## [1] "No data"
## [1] "Zimbabwe"
## [1] "Ireland"
## [1] "New Zealand"
## [1] "South Africa"
## [1] "Canada"
## [1] "Bermuda"
## [1] "No data"
## [1] "Kenya"
## [1] "Hong Kong"
## [1] "Nepal"
## [1] "Oman"
## [1] "Papua New Guinea"
## [1] "United Arab Emirates"
## [1] "Namibia"
## [1] "Cayman Islands"
## [1] "No data"
## [1] "Singapore"
## [1] "United States of America"
## [1] "Bhutan"
## [1] "No data"
## [1] "Maldives"
## [1] "Botswana"
## [1] "Nigeria"
## [1] "Denmark"
## [1] "No data"
## [1] "Germany"
## [1] "Jersey"
## [1] "No data"
## [1] "Norway"
## [1] "No data"
## [1] "Qatar"
## [1] "No data"
## [1] "Malaysia"
## [1] "Vanuatu"
## [1] "Thailand"
## [1] "Australia-BowlingDetails.RData"
## [1] "India-BowlingDetails.RData"
## [1] "Pakistan-BowlingDetails.RData"
## [1] "West Indies-BowlingDetails.RData"
## [1] "Sri Lanka-BowlingDetails.RData"
## [1] "England-BowlingDetails.RData"
## [1] "Bangladesh-BowlingDetails.RData"
## [1] "Netherlands-BowlingDetails.RData"
## [1] "Scotland-BowlingDetails.RData"
## [1] "Zimbabwe-BowlingDetails.RData"
## [1] "Ireland-BowlingDetails.RData"
## [1] "New Zealand-BowlingDetails.RData"
## [1] "South Africa-BowlingDetails.RData"
## [1] "Canada-BowlingDetails.RData"
## [1] "Kenya-BowlingDetails.RData"
## [1] "Hong Kong-BowlingDetails.RData"
## [1] "Nepal-BowlingDetails.RData"
## [1] "Oman-BowlingDetails.RData"
## [1] "Papua New Guinea-BowlingDetails.RData"
## [1] "United Arab Emirates-BowlingDetails.RData"
## [1] "Namibia-BowlingDetails.RData"
## [1] "Singapore-BowlingDetails.RData"
## [1] "United States of America-BowlingDetails.RData"
## [1] "Maldives-BowlingDetails.RData"
## [1] "Botswana-BowlingDetails.RData"
## [1] "Nigeria-BowlingDetails.RData"
## [1] "Germany-BowlingDetails.RData"
## [1] "Malaysia-BowlingDetails.RData"
## [1] "Vanuatu-BowlingDetails.RData"
## [1] "Thailand-BowlingDetails.RData"
## # A tibble: 20 x 4
## bowler matches totalWickets meanER
## <chr> <int> <dbl> <dbl>
## 1 A Shrubsole 50 76 5.95
## 2 Nida Dar 50 59 5.99
## 3 KH Brunt 49 57 5.93
## 4 JL Jonassen 50 55 5.31
## 5 EA Perry 51 52 5.67
## 6 S Ismail 50 52 5.40
## 7 ML Schutt 39 50 6.17
## 8 D van Niekerk 39 47 5.45
## 9 D Hazell 35 44 4.95
## 10 NR Sciver 44 43 6.30
## 11 JL Gunn 30 41 6.14
## 12 A Mohammed 43 41 5.80
## 13 M Kapp 31 39 5.08
## 14 Asmavia Iqbal 33 36 6.39
## 15 Sana Mir 46 36 5.85
## 16 HASD Siriwardene 35 33 6.31
## 17 EA Osborne 30 31 5.62
## 18 S Luus 37 29 7.13
## 19 KDU Prabodhani 33 25 4.87
## 20 Bismah Maroof 35 22 6.49
While I have just shown how to use a small subset of functions, you can use the entire set of yorkr functions to analyze individual matches, head-2-head confrontation of two teams, performance of a teams against all other teams and finally performance of individual batsmen and bowlers in women’s ODI and T20 games.
You may also like
To see all posts click Index of posts