This week, we’ll work out some Taylor Series expansions of popular functions.
For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as a R-Markdown document.
Taylor’s Theorem states that any function that is infinitely differentiable can be represented as a polynomial of the following form:
\[f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)} (a)}{n!} (x-a)^n\]
The first three derivatives for \(f(x) = \frac{1}{1-x}\) are \[f'(x) = \frac{1}{(1-x)^2} \\ f''(x) = \frac{2}{(1-x)^3} \\ f'''(x) = \frac{6}{(1-x)^4}\]
This can be generalized as \[f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}\]
Substituting this into the general equation, \[\frac{1}{1-x} \approx \sum_{n=0}^{\infty} \frac{n!}{(1-a)^{n+1}} \times \frac{(x-a)^n}{n!} = \frac{(x-a)^n}{(1-a)^n}\]
At \(a=0\), this becomes \[\frac{1}{1-x} \approx \sum_{n=0}^{\infty} x^n\]
Using the ratio series for infinite series: \[\frac{A_{n+1}}{A_n} = \frac{x^{n+1}}{x^n} = x \\ \lim_{n \to \infty} x = x\]
So the series converges for \(|x| < 1\).
The true values and series approximations are plotted for \(n=25\):
taylor1 <- function(x, n) {
sum <- 0
for(i in 0:n) {
sum <- sum + x^i
}
sum
}
It can be seen in the plot above that there is some divergence between the function and its Taylor series approximation at the edges of the range (-1, 1).
library(pracma)
##
## Attaching package: 'pracma'
## The following object is masked from 'package:car':
##
## logit
## The following object is masked from 'package:purrr':
##
## cross
c = -5
f <- function(x) {1/(1-x)}
A1 <- taylor(f, x0=c, 5)
A1
## [1] 1.000293 25.007447 250.076532 1250.401437 3126.111100 3126.512977
plot(A1)
The derivative of \(f(x) = e^x\) is \(e^x\), so any derivative \(f^{(n)}(x) = e^x\).
\[f(x) = e^x = e^a + e^a (x-a) + e^a (x-a)^2 + e^a (x-a)^3+ ...\]
\[f(0)=1\] \[f'(0)/1!*(x)* 1 =1*x=x\] \[f'(0)=x\] \[f''(0)/2!*(x)^2 =1/2*(x)^2 =x^2/2\] \[f''(0) = x^2/2\] \[f'''(0)/3!*(x) 3 =1/6*(x)^ 3 =x^3/6\] \[f'''=x^3/6\]
So the Taylor series for \(f(x) = e^x\)
\[f(x)= 1 + x + \frac {x^2}{2} + \frac {x^3}{6} + \frac {x^4} {24} + ..\] \[ \sum _{n=0}^{\infty} \frac{x^n}{n!} \]
Substituting this into the general equation,
\[e^x \approx \sum_{n=0}^{\infty} e^x \times \frac{(x-a)^n}{n!} = \frac{e^x (x-a)^n}{n! (1-a)^n}\]
At \(a=0\), this becomes \[\frac{1}{1-x} \approx \sum_{n=0}^{\infty} \frac{x^n}{n!}\]
\[f(x) = e^x = e^0 + e^0 (x-0) + e^0 (x-0)^2 + e^0 (x-0)^3+ ...\] \[f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ...\] \[f(x)\quad =\sum _{ n=0 }^{ \infty }{ \frac { x^{ n } }{ n! } ,\quad x\quad \in \quad R }\]
Using the ratio series for infinite series: \[\frac{A_{n+1}}{A_n} = \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} = \frac{x}{n+1} \\ \lim_{n \to \infty} \frac{x}{n+1} = 0\]
So the series converges for all values of x.
The true values and series approximations are plotted for \(n=25\):
taylor2 <- function(x, n) {
sum <- 0
for(i in 0:n) {
sum <- sum + x^i / factorial(i)
}
sum
}
It can be seen in the plot above that the function and its taylor series approximation entirely overlap.
c = -5
f <- function(x) {exp(x)}
A2 <- taylor(f, x0=c, 5)
A2
## [1] 0.008334245 0.208636869 2.090299109 10.480131597 26.309539362
## [6] 26.485006242
plot(A2)
The first four derivatives for \(f(x) = \ln(1+x)\) are \[f'(x) = \frac{1}{1+x} \\ f''(x) = \frac{-1}{(1+x)^2} \\ f'''(x) = \frac{2}{(1+x)^3} \\ f''''(x) = \frac{-6}{(1+x)^4}\]
This can be generalized as \[f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}}\]
\[f(x) + \frac {f'(x)} {1!} x^1 + \frac {f''(x)} {2!} x^2 \] \[f(x) = f(0) + f'(0)(x - c) + \frac {f''(c)}{2!} (x-c)^2 + \frac {f'''(c)}{3!} (x- c)^3 + \]
Substituting this into the general equation, \[\ln(1+x) \approx \sum_{n=0}^{\infty} (-1)^{n+1} \frac{(n-1)!}{(1+a)^{n}} \times \frac{(x-a)^n}{n!} = (-1)^{n+1} \frac{(x-a)^n}{n (1+a)^n}\]
At \(a=0\), this becomes \[\ln(1+x) \approx \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n}\]
So the Taylor series for \(f(x)=ln(1+x)\) is: \[ f(x) = x - \frac {1} {2} x^2 + \frac {1}{3} x^3 - \frac {1}{4} x^4 + ... \] \[ \sum _{n=1}^{\infty} (-1)^{n+1} * \frac{x^n}{n} \]
Using the ratio series for infinite series: \[\frac{A_{n+1}}{A_n} = - \frac{x^{n+1}}{n} \frac{n}{x^n} = - \frac{-xn}{n+1} \\ \lim_{n \to \infty} \frac{-xn}{n+1} = -x\]
So the series converges for \(|x| < 1\).
The true values and series approximations are plotted for \(n=25\):
taylor3 <- function(x, n) {
sum <- 0
for(i in 1:n) { # starting at n=1 since n=0 causes Inf
sum <- sum + (-1)^(i + 1) * x^i / i
}
sum
}
As in the first plot, there is some divergence between the function and its Taylor series approximation at the lower edge of the valid range near -1.
c = 0
f <- function(x) {log(1+x)}
A3 <- taylor(f, x0=c, 5)
A3
## [1] 0.2000413 -0.2500044 0.3333339 -0.5000000 1.0000000 0.0000000
plot(A3)