This is an extension of the tidytuesday assignment you have already done. Complete the questions below, using the screencast you chose for the tidytuesday assigment.
library(tidyverse)
theme_set(theme_light())
media_franchises <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-07-02/media_franchises.csv")
media_franchises %>%
count(franchise, sort = TRUE)
## # A tibble: 103 x 2
## franchise n
## <chr> <int>
## 1 Spider-Man 7
## 2 Dragon Ball 6
## 3 Final Fantasy 6
## 4 Neon Genesis Evangelion 6
## 5 Star Wars 6
## 6 Superman 6
## 7 Wizarding World / Harry Potter 6
## 8 A Song of Ice and Fire / Game of Thrones 5
## 9 Aladdin 5
## 10 Detective Conan / Case Closed 5
## # … with 93 more rows
franchises <- media_franchises %>%
group_by(franchise, original_media, year_created, creators, owners) %>%
summarize(categories = n(),
total_revenue = sum(revenue),
most_profitable = revenue_category[which.max(revenue)]) %>%
ungroup()
franchises
## # A tibble: 103 x 8
## franchise original_media year_created creators owners categories
## <chr> <chr> <dbl> <chr> <chr> <int>
## 1 A Song o… Novel 1996 George … Rando… 5
## 2 Aladdin Animated film 1992 Walt Di… The W… 5
## 3 Angry Bi… Video game 2009 Jaakko … Rovio 4
## 4 Anpanman Manga 1973 Takashi… Froeb… 2
## 5 Assassin… Video game 2007 Patrice… Ubiso… 3
## 6 Avengers Comic book 1963 Stan Le… Marve… 4
## 7 Barbie Animated film 1987 Ruth Ha… Mattel 3
## 8 Batman Comic book 1939 Bob Kan… DC En… 4
## 9 Ben 10 Animated seri… 2005 Man of … Carto… 1
## 10 Beyblade Manga 1999 Takao A… Shoga… 2
## # … with 93 more rows, and 2 more variables: total_revenue <dbl>,
## # most_profitable <chr>
media_franchises
## # A tibble: 321 x 7
## franchise revenue_category revenue year_created original_media creators
## <chr> <chr> <dbl> <dbl> <chr> <chr>
## 1 A Song o… Book sales 0.9 1996 Novel George …
## 2 A Song o… Box Office 0.001 1996 Novel George …
## 3 A Song o… Home Video/Ente… 0.28 1996 Novel George …
## 4 A Song o… TV 4 1996 Novel George …
## 5 A Song o… Video Games/Gam… 0.132 1996 Novel George …
## 6 Aladdin Box Office 0.76 1992 Animated film Walt Di…
## 7 Aladdin Home Video/Ente… 1 1992 Animated film Walt Di…
## 8 Aladdin Merchandise, Li… 0.5 1992 Animated film Walt Di…
## 9 Aladdin Music 0.447 1992 Animated film Walt Di…
## 10 Aladdin Video Games/Gam… 2.2 1992 Animated film Walt Di…
## # … with 311 more rows, and 1 more variable: owners <chr>
Hint: One graph of your choice.
library(glue)
top_franchises <- franchises %>%
mutate(franchise = glue("{ franchise } ({ year_created })")) %>%
top_n(20, total_revenue)
media_franchises %>%
mutate(franchise = glue("{ franchise } ({ year_created })")) %>%
semi_join(top_franchises, by = "franchise") %>%
mutate(franchise = fct_reorder(franchise, revenue, sum),
revenue_category = fct_reorder(revenue_category, revenue, sum)) %>%
ggplot(aes(franchise, revenue)) +
geom_col(aes(fill = revenue_category)) +
geom_text(aes(y = total_revenue,
label = paste0(scales::dollar(total_revenue, accuracy = 1), "B")),
data = top_franchises,
hjust = 0) +
scale_y_continuous(labels = scales::dollar) +
expand_limits(y = 100) +
coord_flip() +
theme(panel.grid.major.y = element_blank()) +
guides(fill = guide_legend(reverse = TRUE)) +
labs(title = "What are the most profitable franchises of all time?",
fill = "Category",
x = "",
y = "Revenue (Billions)")
The graph desplays the biggest franchises of all time. The colors in the graph are the categorys in withch they are broken down to make a profit, with the number being desplayed to the right in billions. Categorys are, merchandise, video games, box office, comic, home/entertainment, book sales, tv, music.