library(yuima)
# Brownian Motion
m1=setModel(drift="0",diffusion="1", state.var="x",time.var="t",solve.var="x",xinit=100)
X=simulate(m1)

YUIMA: 'delta' (re)defined.
plot(X)

d1=X@data@original.data
d1
Time Series:
Start = c(0, 1) 
End = c(1, 1) 
Frequency = 100 
        Series 1
  [1,] 100.00000
  [2,] 100.07864
  [3,] 100.14744
  [4,] 100.26101
  [5,] 100.19600
  [6,] 100.32525
  [7,] 100.36930
  [8,] 100.40041
  [9,] 100.37561
 [10,] 100.40049
 [11,] 100.37754
 [12,] 100.34133
 [13,] 100.33243
 [14,] 100.29706
 [15,] 100.10629
 [16,]  99.96946
 [17,]  99.97327
 [18,]  99.78895
 [19,]  99.95958
 [20,]  99.93938
 [21,]  99.91650
 [22,]  99.74287
 [23,]  99.63650
 [24,]  99.73448
 [25,]  99.79344
 [26,]  99.79658
 [27,]  99.76694
 [28,]  99.82420
 [29,]  99.73991
 [30,]  99.70667
 [31,]  99.75231
 [32,]  99.75777
 [33,]  99.73275
 [34,]  99.79234
 [35,]  99.96229
 [36,] 100.01699
 [37,]  99.94456
 [38,] 100.04605
 [39,] 100.12503
 [40,]  99.83230
 [41,]  99.66571
 [42,]  99.73146
 [43,]  99.67869
 [44,]  99.82062
 [45,]  99.85868
 [46,]  99.90330
 [47,]  99.86971
 [48,]  99.92948
 [49,]  99.92796
 [50,]  99.97979
 [51,] 100.00060
 [52,]  99.84626
 [53,]  99.93828
 [54,] 100.02102
 [55,] 100.10759
 [56,] 100.05319
 [57,] 100.03747
 [58,] 100.01580
 [59,]  99.98291
 [60,] 100.21446
 [61,] 100.06334
 [62,] 100.02742
 [63,] 100.01447
 [64,] 100.06580
 [65,] 100.12965
 [66,] 100.11220
 [67,] 100.19206
 [68,] 100.05881
 [69,] 100.09331
 [70,]  99.98243
 [71,]  99.84947
 [72,]  99.76524
 [73,]  99.76862
 [74,]  99.84772
 [75,]  99.78450
 [76,]  99.76108
 [77,]  99.76783
 [78,]  99.66762
 [79,]  99.68972
 [80,]  99.75127
 [81,]  99.90197
 [82,]  99.71865
 [83,]  99.71770
 [84,]  99.79685
 [85,]  99.83034
 [86,]  99.79276
 [87,]  99.75700
 [88,]  99.84208
 [89,]  99.73915
 [90,] 100.04932
 [91,]  99.96380
 [92,] 100.20145
 [93,] 100.37708
 [94,] 100.58153
 [95,] 100.50820
 [96,] 100.52103
 [97,] 100.57906
 [98,] 100.58203
 [99,] 100.57689
[100,] 100.58789
[101,] 100.43905
grid=setSampling(Terminal=1,n=1000)

YUIMA: 'delta' (re)defined.
X=simulate(m1,sampling=grid)
plot(X)

# Geometric BM
m1=setModel(drift="mu*s",diffusion="sigma*s", state.var="s",time.var="t",solve.var="s",xinit=100)
X=simulate(m1,true.param=list(mu=0.1,sigma=0.2))

YUIMA: 'delta' (re)defined.
plot(X)

# Prob distr associated with the GBM
m1=setModel(drift="mu*s",diffusion="sigma*s", state.var="s",time.var="t",solve.var="s",xinit=100)
simnum=100
dist=c(.31, .52,0.6,0.7, .95)
newsim=function(i){simulate(m1,true.param=list(mu=0.1,sigma=0.2))@data@original.data}
newsim(1)

YUIMA: 'delta' (re)defined.
Time Series:
Start = c(0, 1) 
End = c(1, 1) 
Frequency = 100 
        Series 1
  [1,] 100.00000
  [2,]  97.19203
  [3,]  97.84168
  [4,]  97.07919
  [5,] 100.65220
  [6,] 103.98439
  [7,] 107.48986
  [8,] 106.58158
  [9,] 107.81131
 [10,] 109.20865
 [11,] 105.70226
 [12,] 103.38126
 [13,] 103.35130
 [14,] 103.81394
 [15,] 103.37128
 [16,] 102.28601
 [17,] 100.40426
 [18,] 102.63987
 [19,] 103.72516
 [20,] 106.72968
 [21,] 105.87837
 [22,] 105.21644
 [23,] 105.03845
 [24,] 103.82663
 [25,] 105.18940
 [26,] 103.71588
 [27,] 105.47425
 [28,] 107.79912
 [29,] 108.36675
 [30,] 107.39034
 [31,] 104.99071
 [32,] 106.53712
 [33,] 113.09387
 [34,] 111.67281
 [35,] 111.76251
 [36,] 113.48091
 [37,] 113.86456
 [38,] 118.79748
 [39,] 119.94318
 [40,] 124.66802
 [41,] 126.76182
 [42,] 122.36396
 [43,] 120.75158
 [44,] 120.37536
 [45,] 116.69196
 [46,] 118.17884
 [47,] 117.23031
 [48,] 115.21940
 [49,] 117.96167
 [50,] 118.88724
 [51,] 119.81965
 [52,] 118.50062
 [53,] 115.94151
 [54,] 115.71680
 [55,] 115.19419
 [56,] 116.97677
 [57,] 120.20351
 [58,] 121.30979
 [59,] 125.39372
 [60,] 125.58006
 [61,] 122.73358
 [62,] 123.37971
 [63,] 125.88543
 [64,] 128.30894
 [65,] 130.74847
 [66,] 130.50574
 [67,] 133.75711
 [68,] 129.50016
 [69,] 128.29090
 [70,] 128.72886
 [71,] 131.67811
 [72,] 129.90731
 [73,] 129.93822
 [74,] 130.54475
 [75,] 128.52221
 [76,] 128.90325
 [77,] 130.93232
 [78,] 129.53575
 [79,] 129.44351
 [80,] 131.49127
 [81,] 129.80621
 [82,] 129.13792
 [83,] 131.60556
 [84,] 131.81339
 [85,] 128.62381
 [86,] 126.97143
 [87,] 124.64330
 [88,] 120.96342
 [89,] 121.57048
 [90,] 121.84470
 [91,] 122.47573
 [92,] 119.08831
 [93,] 121.56533
 [94,] 124.15594
 [95,] 121.84537
 [96,] 121.79410
 [97,] 120.42035
 [98,] 120.56409
 [99,] 116.88969
[100,] 115.88171
[101,] 118.40706
sim=sapply(1:simnum,function(x)newsim(x))

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.

YUIMA: 'delta' (re)defined.
m2=t(sim)
m2
       [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]      [,8]
  [1,]  100 101.18518 101.01740 100.00626 102.09068 100.42025  97.49887  97.42893
  [2,]  100 101.79164 101.56852 101.91625 102.89643  99.64953 101.31443 103.74913
  [3,]  100 102.27903 100.83225 104.01435 101.40922 104.19604 105.55898 106.25488
  [4,]  100  98.94275  99.39266 101.20928 101.82924 103.62218 104.30849 100.86677
  [5,]  100 101.20447  99.50208  97.27477  96.40061  94.28205  93.71722  92.26480
  [6,]  100 100.09522  96.91053  98.02488  99.78116  99.96834 101.80619 103.72681
  [7,]  100  95.42716  97.86469  99.48474  98.16090 100.68950 102.03226 103.25876
  [8,]  100  97.08198  98.17092  98.73457  98.56117  97.13604  97.80148  95.78353
  [9,]  100  97.88494  99.45885  97.14966  99.85362  98.96915 100.04083  98.18730
            [,9]     [,10]     [,11]     [,12]     [,13]     [,14]     [,15]     [,16]
  [1,]  96.13374  94.88593  93.86602  94.22044  92.16776  90.90956  88.09168  87.98965
  [2,] 102.92854 103.96121 106.34364 108.91433 108.28692 107.89249 106.02505 106.20248
  [3,] 105.23986 107.63184 108.01184 108.88789 112.33791 110.23246 112.86386 112.64341
  [4,]  96.87397  97.51671  98.63526  97.90134  98.45394  97.05837  98.17057 103.17369
  [5,]  91.68878  91.47361  89.78319  91.82614  90.05582  91.18509  92.52184  92.45454
  [6,] 101.98210 104.20271 102.32392 104.13961 104.17284 103.19867 102.74649 104.50907
  [7,] 103.04912 103.97924 102.48069 103.05603 102.38367 102.89473 100.79696 105.71145
  [8,]  96.99624  97.93465  98.64537  99.21477 100.30038  97.58281  96.82598  96.27717
  [9,]  99.53211  96.51336  98.34056  96.43378  95.77150  94.69811  92.68397  93.69433
           [,17]     [,18]     [,19]     [,20]     [,21]     [,22]     [,23]     [,24]
  [1,]  87.71587  87.54880  90.21775  91.73217  90.96146  85.64129  86.23837  82.62968
  [2,] 104.92603 105.29076 105.95691 103.99468 108.74303 105.52038 111.00715 108.70090
  [3,] 112.15293 111.71072 113.08462 114.08212 112.13110 110.39470 109.15638 110.54663
  [4,] 103.08199 102.97058 103.76647 103.82996 103.09043 100.87899  97.83767  95.07999
  [5,]  92.41448  93.25877  96.76708  99.78606  99.69639  98.37958  98.79946 101.18628
  [6,] 106.36821 105.85140 108.62851 110.13732 112.71661 108.68148 102.70255 105.38811
  [7,] 104.20700 107.21274 103.85837  99.42938 100.65778 104.73286 105.69821 103.20512
  [8,]  93.77103  93.31365  92.64741  88.64081  88.37145  88.53658  89.28601  88.83309
  [9,]  92.12598  92.65853  95.49348  96.49286  94.53750  94.29583  93.33238  92.48116
           [,25]     [,26]     [,27]     [,28]     [,29]     [,30]     [,31]     [,32]
  [1,]  80.86905  79.11802  76.42300  77.21622  78.88690  79.33634  79.97334  80.16589
  [2,] 111.17302 112.52817 116.04167 116.52849 115.03073 114.48509 116.86538 117.51740
  [3,] 111.63194 112.45692 113.03887 112.87563 114.34910 116.19536 114.14559 115.96109
  [4,]  97.10991  96.92928  93.22291  96.19572  94.91805  92.55768  95.34292  95.17612
  [5,] 104.54498 102.18234 105.05891 105.10206 107.46042 110.81676 109.12960 111.54662
  [6,] 106.25145 107.57945 106.99444 108.82045 106.30204 105.08236 106.19741 106.35881
  [7,] 102.43459 103.66009 102.29248 104.74016 103.88068 103.57443 106.77347 103.88210
  [8,]  87.86535  84.97344  84.78152  85.10881  87.72917  90.82600  89.76171  89.95942
  [9,]  90.02294  88.95922  86.94611  89.02963  88.38918  89.51134  89.82846  90.19989
           [,33]     [,34]     [,35]     [,36]     [,37]     [,38]     [,39]     [,40]
  [1,]  79.68328  78.96362  77.47333  79.56490  80.29526  77.53085  78.39410  80.87233
  [2,] 117.22061 115.05667 114.02739 120.12604 117.56120 122.12786 125.92693 129.10149
  [3,] 112.91256 111.33058 112.17216 112.86121 114.44146 116.22868 117.36331 118.06420
  [4,]  94.82195  95.04297  94.75987  93.91254  94.42077  93.48605  93.13330  94.53638
  [5,] 117.06410 121.68550 124.51762 125.57626 124.73550 128.60922 126.29179 121.67458
  [6,] 106.65643 107.04308 104.73275 102.55150 101.26121 103.81158 102.91833 101.24518
  [7,] 102.92706 104.51808 103.88327 104.13824 105.34348 105.06900 105.57212 101.77549
  [8,]  88.55845  87.94231  87.96000  85.80866  83.85843  84.00288  82.91146  83.23881
  [9,]  93.93408  92.60186  94.35428  90.61188  90.02926  91.67766  92.32661  94.35029
           [,41]     [,42]     [,43]     [,44]     [,45]     [,46]     [,47]     [,48]
  [1,]  84.00131  85.40679  80.53166  81.64590  79.76962  82.61344  81.90990  84.04507
  [2,] 130.22111 127.83372 125.91396 125.60989 127.01733 125.38759 123.42356 122.05001
  [3,] 120.58374 121.10794 121.09319 120.20835 128.39959 125.65456 126.34814 122.83976
  [4,]  95.64372  98.31938  97.25195 100.40020  98.13732  99.80515 100.88505  95.93896
  [5,] 122.99029 122.29783 125.76466 124.89282 124.30083 126.71639 126.58566 122.56280
  [6,] 100.93598  99.91595  96.88511 100.09787 100.97975 100.75949 101.34632  98.37517
  [7,] 101.04086  99.14493  96.31173  98.23419  98.57118  98.38213  97.55486  95.21529
  [8,]  83.33404  82.02975  83.66097  84.22369  79.66820  79.33571  78.07533  77.95602
  [9,]  94.34700  96.39383  94.50575  94.66385  96.12558  95.34402  93.27418  90.88412
           [,49]     [,50]     [,51]     [,52]     [,53]     [,54]     [,55]     [,56]
  [1,]  82.38154  83.43668  83.16552  81.89154  80.96764  80.43920  80.72408  82.66145
  [2,] 119.64807 117.67786 117.80392 118.53886 118.39049 116.92984 118.09133 116.32236
  [3,] 122.25321 120.62252 121.23976 119.76817 117.56043 116.90650 115.14133 117.66082
  [4,]  95.50511  96.80111  97.46099  99.11210  97.66308  96.27288  95.67262  93.27242
  [5,] 125.33462 126.48994 128.98012 133.00796 133.03765 132.08129 135.75581 134.72516
  [6,] 101.96616  99.68871  99.26167  98.08559 100.59990 100.08266 100.49105 101.20165
  [7,]  94.62024  90.63342  89.74187  93.06646  96.08388  97.42283 100.03356 102.77101
  [8,]  78.30103  76.92115  80.71203  81.54998  81.66691  83.61994  84.02204  84.25724
  [9,]  87.14756  87.10963  89.36855  91.45665  91.20791  89.87492  92.51004  94.32829
           [,57]     [,58]     [,59]     [,60]     [,61]     [,62]     [,63]     [,64]
  [1,]  82.12077  83.67837  84.81809  84.30494  84.36391  84.72429  81.98822  81.81608
  [2,] 111.87459 110.62789 112.08722 112.53609 113.47191 112.56156 113.05134 113.95784
  [3,] 117.91973 119.83590 118.81346 120.73045 119.56476 119.09231 116.60675 113.63403
  [4,]  92.76377  90.37599  90.78838  92.21722  89.72355  86.74002  86.88406  89.43915
  [5,] 135.22989 137.32651 137.03859 138.82579 135.99098 138.69199 133.39330 130.73849
  [6,] 102.08107 102.39923  99.56641 102.56183 103.47466 102.89751 106.69369 109.60487
  [7,] 101.19769  98.67952  97.93395  97.91563  99.92062  98.26021  95.80348  96.46950
  [8,]  83.63939  82.05870  81.70141  79.80633  78.91245  78.33525  76.17332  75.44906
  [9,]  94.11265  91.94127  91.63312  91.05862  92.10544  94.26182  91.15541  89.85279
           [,65]     [,66]     [,67]     [,68]     [,69]     [,70]     [,71]     [,72]
  [1,]  84.33586  81.75353  81.67648  79.68473  79.22878  79.01242  76.99730  77.72888
  [2,] 115.27397 115.99857 117.55905 115.88900 116.71113 117.44107 116.54929 120.07496
  [3,] 117.16753 113.13086 110.56153 113.44642 114.03266 113.04336 119.74437 118.55082
  [4,]  87.20412  89.55599  88.07676  89.07696  89.37147  88.45108  89.49639  86.87992
  [5,] 126.89338 124.25692 130.29274 134.25944 133.34951 134.24563 131.62206 133.01799
  [6,] 110.26430 111.55091 111.56581 109.50475 108.96209 109.32598 113.12000 113.68848
  [7,]  97.95236  97.32589  99.43559 102.07753 105.77990 107.95801 108.07936 110.07331
  [8,]  75.99967  74.88968  75.45625  76.06054  76.72160  73.74859  73.41436  74.22759
  [9,]  90.17319  88.70373  90.62586  88.80590  88.37555  86.29057  86.12667  87.59822
           [,73]     [,74]     [,75]     [,76]     [,77]     [,78]     [,79]     [,80]
  [1,]  76.80002  74.28278  74.43355  72.53441  74.21714  74.64116  73.60695  70.91158
  [2,] 125.35987 125.52400 130.58134 128.63456 122.99145 128.43137 129.77670 129.46597
  [3,] 116.51993 113.96109 109.55904 111.36560 111.07120 108.28248 108.43999 105.60170
  [4,]  86.53363  85.96563  87.68659  87.66982  87.13324  88.99503  86.92195  87.13903
  [5,] 131.03256 130.71045 128.82157 128.31523 131.56021 132.18075 131.14726 134.03302
  [6,] 112.77043 115.12565 114.52101 119.17634 119.77591 123.46916 122.68402 120.46702
  [7,] 111.43026 106.47862 107.78756 105.60856 108.02096 105.95915 106.06018 107.60302
  [8,]  73.46775  72.06090  71.83678  71.91375  73.00912  76.51743  78.09945  77.71747
  [9,]  88.66398  88.39820  88.84248  87.07835  86.22255  84.64580  84.42685  85.57572
           [,81]     [,82]     [,83]     [,84]     [,85]     [,86]     [,87]     [,88]
  [1,]  69.75271  69.83285  69.50332  69.13801  72.76024  73.27411  72.01226  69.91126
  [2,] 129.81745 128.38337 124.79154 125.48919 122.75351 124.34735 125.30241 127.52659
  [3,] 107.29262 107.73074 104.41115 106.92891 110.98966 112.48103 114.04248 115.13259
  [4,]  87.84313  87.80368  90.14486  91.03151  93.37053  90.59564  90.06220  89.29830
  [5,] 133.72609 134.08247 134.76396 133.18726 133.95088 128.39734 129.44021 125.37207
  [6,] 121.10702 117.08480 113.74663 110.40687 112.92205 110.58111 111.64979 112.45637
  [7,] 105.27331 107.63062 109.94097 112.76492 109.49888 109.47652 109.29503 108.30725
  [8,]  78.81293  77.96325  79.62576  78.27693  78.80453  81.22292  82.22821  80.16564
  [9,]  86.72456  88.52851  88.62094  91.51423  91.21652  91.39549  90.61611  92.44170
           [,89]     [,90]     [,91]     [,92]     [,93]     [,94]     [,95]     [,96]
  [1,]  70.93617  72.74206  72.05301  72.82859  72.89377  70.92799  70.26099  68.54992
  [2,] 126.87092 124.63214 126.56333 129.43634 129.67169 126.81656 124.57240 126.29234
  [3,] 117.79594 117.12171 116.14400 118.17053 119.57393 118.64975 123.57737 124.94866
  [4,]  89.88999  89.25424  88.51117  91.27233  89.96276  90.34926  88.26589  90.79435
  [5,] 126.26223 127.36304 127.49978 122.10623 124.01718 126.05856 128.21195 125.52760
  [6,] 115.40980 113.88486 110.17583 113.91078 115.29197 116.08859 118.28677 124.76476
  [7,] 106.31407 108.01879 106.75536 101.65070  98.69019  99.68984 102.71400 101.93185
  [8,]  78.19232  80.19172  77.86292  77.43780  77.92506  78.29078  77.24671  76.61510
  [9,]  90.85599  90.67343  89.07628  86.43119  88.56912  90.02083  88.52346  91.14222
           [,97]     [,98]     [,99]    [,100]    [,101]
  [1,]  68.14642  67.66693  65.68832  64.96944  64.34718
  [2,] 128.42334 127.91077 131.18461 122.27445 124.60646
  [3,] 127.51729 128.75298 127.48548 130.52949 129.45207
  [4,]  92.77267  93.64012  95.48032  94.39380  91.72619
  [5,] 123.99732 124.12082 123.15389 122.57698 119.25667
  [6,] 124.52909 121.64920 124.28928 114.67941 117.20822
  [7,] 106.47141 103.99241 105.31273 105.57035 105.48666
  [8,]  74.44297  75.88571  75.31025  73.94872  73.49585
  [9,]  94.21307  94.92788  93.41056  89.89473  90.12307
 [ reached getOption("max.print") -- omitted 91 rows ]
apply(m2,2,mean)
  [1] 100.00000  99.80552  99.85919 100.23874 100.58012 100.86709 101.28876 101.75329
  [9] 101.93259 101.80620 101.80784 102.06232 101.85442 101.84322 102.17194 102.27718
 [17] 102.41693 102.43512 102.52022 102.75309 102.96643 103.01598 102.80205 103.08381
 [25] 103.04718 103.07741 103.09164 103.55296 103.43602 103.37619 103.50430 103.89953
 [33] 104.22227 104.06543 104.31056 104.42726 104.51560 104.82578 104.98856 105.23395
 [41] 105.33602 105.55647 105.69421 106.10316 105.99078 106.16826 106.05415 105.96438
 [49] 106.03450 106.36139 106.20341 106.43528 106.74391 106.70582 106.98090 107.52136
 [57] 107.76003 108.21637 108.49715 108.20700 108.38414 108.61068 108.62799 108.75060
 [65] 109.16628 109.30056 109.42836 109.78341 109.93273 110.05809 110.54485 110.58351
 [73] 111.09726 111.38695 111.56280 111.74869 111.71078 111.66241 111.92437 111.60229
 [81] 111.66917 111.45854 111.16454 111.32642 111.79965 111.84782 112.19376 112.10945
 [89] 112.20600 112.20717 112.58884 112.64552 113.10220 113.05640 113.08391 113.26891
 [97] 113.83565 113.83061 113.91001 113.71467 113.41924
tile=sapply(1:100,function(x)quantile(m2[,x], dist) )
tile
    [,1]      [,2]      [,3]      [,4]      [,5]      [,6]     [,7]      [,8]      [,9]
31%  100  98.99673  98.74636  98.72704  98.85074  99.07565  99.3419  99.98513  99.95754
52%  100  99.85474 100.04089 100.50650 100.26871 101.12311 101.4541 102.28166 102.34548
60%  100 100.28371 100.43848 101.22317 101.37107 101.77188 102.0551 103.18562 103.04486
70%  100 100.80526 101.09232 102.13361 102.54195 102.73820 103.0292 104.02751 104.51765
95%  100 103.14850 103.96020 104.46127 105.69184 106.39651 107.6843 108.28933 109.71761
       [,10]     [,11]     [,12]     [,13]     [,14]     [,15]     [,16]    [,17]
31%  99.5379  99.23588  99.28597  99.59219  98.63421  98.92668  98.91951  98.3498
52% 102.4262 101.98294 102.34137 102.08433 102.34780 102.51612 101.96949 103.0058
60% 103.4922 102.94531 103.23186 103.18372 103.55971 103.11338 103.54649 103.9515
70% 104.2121 105.12443 104.87608 104.93474 104.93510 105.32227 106.12132 106.3082
95% 110.2481 111.63925 112.52884 112.22625 113.78326 114.24616 113.47761 113.7814
        [,18]    [,19]     [,20]     [,21]     [,22]     [,23]     [,24]     [,25]
31%  98.12382  98.2706  98.29303  97.54254  97.42907  97.46337  97.98474  97.71178
52% 102.31756 102.7178 103.08808 102.76256 102.41511 102.81371 102.51275 102.75315
60% 104.13703 104.3424 103.86069 104.43518 104.89765 104.16129 104.82088 105.42032
70% 106.16086 105.7390 105.25751 106.76681 106.98264 106.18725 106.67308 107.96580
95% 113.74492 115.4237 117.94778 120.00633 120.39006 119.07846 118.50242 118.90954
        [,26]     [,27]     [,28]     [,29]     [,30]     [,31]     [,32]     [,33]
31%  96.73035  96.66091  97.16712  96.94656  96.13563  96.31956  96.79762  97.29064
52% 103.07187 103.88861 104.62334 103.89583 103.93202 104.10511 103.11711 104.18791
60% 105.99786 106.53404 106.93371 107.53978 107.60647 107.58486 106.42533 107.60957
70% 109.26486 109.20922 109.14067 109.71281 110.43939 110.16994 111.14815 112.56212
95% 120.00813 121.40782 121.97870 121.10883 121.29943 121.00432 122.25278 123.38989
        [,34]     [,35]     [,36]     [,37]    [,38]     [,39]     [,40]     [,41]
31%  96.35997  95.59557  96.32017  96.54817  96.5442  95.89276  96.36273  97.19844
52% 104.34923 105.06877 104.21524 105.22656 106.7563 106.23732 105.84264 104.90867
60% 107.21451 107.67009 108.41471 107.92688 108.3539 108.61054 109.40692 109.12363
70% 110.71150 111.49017 111.76062 111.68966 111.8326 111.88276 112.15029 111.79010
95% 124.70529 125.01808 125.61432 124.94037 127.5558 128.50076 130.98688 131.03350
        [,42]     [,43]     [,44]     [,45]    [,46]     [,47]     [,48]     [,49]
31%  98.34004  97.13823  98.17252  98.47929  99.3103  98.85825  97.65287  96.52426
52% 105.68685 104.93697 106.09422 105.43938 104.4835 105.23687 106.06270 104.85968
60% 108.43472 108.68759 108.76560 108.39756 109.2144 109.76262 109.32604 109.07555
70% 111.26743 112.81870 112.76692 113.28812 113.2218 112.09203 112.61376 112.86195
95% 130.95486 130.55046 130.99516 130.46893 128.0444 128.86900 129.93635 132.09056
        [,50]     [,51]     [,52]     [,53]     [,54]     [,55]    [,56]     [,57]
31%  97.17117  96.88472  97.50245  97.54276  97.54069  99.18602 100.0202  98.13187
52% 105.72288 104.38699 103.82652 104.40721 105.46884 105.60206 106.2461 106.27073
60% 107.24389 107.22227 107.88611 108.85063 108.36705 108.29080 107.9935 109.20103
70% 113.07533 113.86990 113.10393 114.28017 113.64119 112.93052 114.5878 113.13434
95% 134.81547 135.63538 135.75579 136.80685 134.23760 135.02899 134.9627 133.86049
        [,58]    [,59]     [,60]     [,61]     [,62]     [,63]     [,64]    [,65]    [,66]
31%  99.34221 100.3937  98.92933  99.06021  98.95314  99.46912  99.48747 100.3613 100.4786
52% 107.49230 107.4687 106.18375 107.25078 107.16131 106.81264 108.20067 108.5328 108.9625
60% 110.44058 110.1791 109.57066 109.77740 110.50219 109.77962 110.32095 111.4066 111.1358
70% 114.42867 114.4202 115.71404 113.99504 115.68819 115.58023 115.31263 115.8420 116.6111
95% 137.07576 138.0620 137.02328 136.96121 137.27444 138.11767 138.30217 140.8062 139.7156
        [,67]    [,68]     [,69]     [,70]     [,71]    [,72]    [,73]    [,74]    [,75]
31%  99.71205 100.1377  99.73075  99.28164  99.90634 100.3721 100.8084 101.7464 100.1480
52% 108.38356 108.8998 107.93520 108.39572 109.32228 111.4504 112.0614 111.9760 112.0489
60% 113.45704 113.8198 114.84702 115.34146 114.99878 115.2251 115.2233 116.1485 116.6311
70% 118.41943 119.0384 118.75436 118.12041 119.52286 120.0941 120.8456 122.6610 121.1654
95% 137.24391 138.8241 141.66989 142.24964 139.47579 136.6359 137.4837 138.7181 136.7132
       [,76]    [,77]    [,78]    [,79]    [,80]    [,81]    [,82]    [,83]    [,84]
31% 101.6936 100.5634 100.7272 101.8074 101.6448 100.4757 100.5536 100.3384 100.5341
52% 111.1466 111.2652 111.9814 112.8038 113.7169 113.5450 113.1684 112.4759 111.7671
60% 117.0908 119.1298 118.2874 117.8290 116.9933 116.7438 117.5530 116.5994 116.7624
70% 122.3774 122.4759 123.3194 123.1594 122.0148 121.3681 121.3980 121.7900 122.9229
95% 140.4041 140.7956 139.7178 139.9140 138.1337 139.6609 138.0458 138.3475 140.1224
       [,85]    [,86]    [,87]    [,88]    [,89]    [,90]    [,91]    [,92]    [,93]
31% 100.1791 100.4125 101.3379 101.7925 102.9354 101.8745 101.7453 101.2008 101.4298
52% 111.7795 111.4196 112.1865 112.4036 112.8674 112.3069 111.7972 113.8525 113.1339
60% 116.2596 115.6021 118.6767 118.3062 117.1908 117.3566 116.4925 117.6598 118.4068
70% 123.3044 122.3407 123.8944 124.5977 124.4845 125.0502 125.5289 123.6484 124.1547
95% 143.3990 144.5335 140.8974 138.7456 141.8494 141.6551 144.3496 145.3608 148.5418
       [,94]    [,95]    [,96]    [,97]    [,98]    [,99]   [,100]
31% 101.0671 102.9134 101.6505 102.1901 103.8117 102.9959 101.8777
52% 112.5806 113.2749 113.8768 113.6231 113.3654 114.3569 114.5950
60% 118.7495 120.4766 120.6747 120.7567 118.3861 118.9517 118.3056
70% 124.1514 124.2212 124.8199 125.2985 125.4502 124.9098 124.9882
95% 148.3806 148.1281 148.0997 147.0227 149.2329 146.9591 148.8924
# Vasicek Model
m1 = setModel(drift = "theta*(mu-x)", diffusion = "sigma", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.5)
X = simulate(m1, true.param = list(mu = 0.5, sigma = 0.2, 
    theta = 2))

YUIMA: 'delta' (re)defined.
plot(X)

# CIR Model
m1 = setModel(drift = "theta*(mu-x)", diffusion = "sigma*(x^0.5)", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.5)
X = simulate(m1, true.param = list(mu = 0.5, sigma = 0.2, 
    theta = 2))

YUIMA: 'delta' (re)defined.
plot(X)

# CKLS MOdel
grid=setSampling(Terminal=1, n=1000)

YUIMA: 'delta' (re)defined.
m1 = setModel(drift = "alpha1+(alpha2*x)", diffusion = "alpha3*(x^alpha4)", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.5)
X = simulate(m1, true.param = list(alpha1 = 0.1, alpha2 = 0.2, alpha3 = 0.3,
    alpha4 = 0.4), sampling=grid)
plot(X)

# Hyperbolic Processes
m1 = setModel(drift = "-theta*x/((1+x^2)^0.5)", diffusion = "1", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.5)
X = simulate(m1, true.param = list(theta = 1))

YUIMA: 'delta' (re)defined.
plot(X)

# Fitting SDE to given data
library(Ecdat)
package 㤼㸱Ecdat㤼㸲 was built under R version 3.6.3Loading required package: Ecfun
package 㤼㸱Ecfun㤼㸲 was built under R version 3.6.3
Attaching package: 㤼㸱Ecfun㤼㸲

The following object is masked from 㤼㸱package:base㤼㸲:

    sign


Attaching package: 㤼㸱Ecdat㤼㸲

The following object is masked from 㤼㸱package:datasets㤼㸲:

    Orange
data (Irates)
rates <-Irates[,'r1']
plot(rates)

X<-window(rates, start=1964.471, end=1989.333)
m1 = setModel(drift = "theta*(mu-x)", diffusion = "sigma", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.5)
X = simulate(m1, true.param = list(mu=0.1, sigma=0.2, theta=2))

YUIMA: 'delta' (re)defined.
initialise=list(mu=0.05, sigma=0.5, theta=1)
lowbound=list(mu=0, sigma=0, theta=0)
upbound=list(mu=0.2, sigma=2, theta=3)
mle=qmle(X, start=initialise, lower=lowbound, upper=upbound)
bounds can only be used with method L-BFGS-B (or Brent)
summary(mle)
Quasi-Maximum likelihood estimation

Call:
qmle(yuima = X, start = initialise, lower = lowbound, upper = upbound)

Coefficients:
       Estimate Std. Error
sigma 0.2050689 0.01463308
theta 3.0000000 2.15053932
mu    0.1997730 0.10319003

-2 log L: -494.9961 
# Incorporating Jumps into the SDE
library(yuima)
grid=setSampling(Terminal=1, n=1000)

YUIMA: 'delta' (re)defined.
jump=list(intensity="7", df=list("dnorm(z, 0, 0.2)"))
m1 = setModel(drift = "theta*(mu-x)", diffusion = "sigma", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.2, jump.coeff="1", 
    measure=jump, measure.type="CP")
X = simulate(m1, true.param = list(mu=0.1, sigma=0.2, theta=2), sampling=grid)
plot(X)

# Fractional Brownian Motion
grid=setSampling(Terminal=1, n=1000)

YUIMA: 'delta' (re)defined.
m1 = setModel(drift = "theta*(mu-x)", diffusion = "sigma", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.2, hurst= 0.3)
m2 = setModel(drift = "theta*(mu-x)", diffusion = "sigma", state.var = "x", 
    time.var = "t", solve.var = "x", xinit = 0.2, hurst= 0.7)
X = simulate(m1, true.param = list(mu=0.1, sigma=0.2, theta=2), sampling=grid)
Y = simulate(m2, true.param = list(mu=0.1, sigma=0.2, theta=2), sampling=grid)
par(mfrow=c(2, 1)); plot(X); plot(Y)
# Correlated BMs
solution=c("x1", "x2", "x3")
drift=c("b1*x1", "b2*x2", "b3*x3")
c1=c(2, 1, 3, 1, 4, 2, 3, 2, 5)
cov=matrix(c1, 3, 3)
cov==t(cov); chol=chol(cov); diff=chol; diff
     [,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] TRUE TRUE TRUE
[3,] TRUE TRUE TRUE
         [,1]      [,2]      [,3]
[1,] 1.414214 0.7071068 2.1213203
[2,] 0.000000 1.8708287 0.2672612
[3,] 0.000000 0.0000000 0.6546537
m1 = setModel(drift = drift, diffusion = diff, solve.variable = solution, 
     xinit = c(1, 2, 3)) 
X = simulate(m1, true.param = list(b1=0.5, b2=0.6, b3=0.7))

YUIMA: 'delta' (re)defined.
plot(X)
# Multidimensional BM (Hull-White 2-factor Model)
solution =c("r","u")
drift=c("theta-(alpha*r)+u","-b*u")
c1=c("sigma1","0","0","sigma2")
diff=matrix(c1,2,2)
m1=setModel(drift=drift,diffusion=diff,
solve.variable=solution,xinit=c(0.1,0.2))
X=simulate(m1,true.param=list(theta=1,alpha=1,b=1,sigma1=2,sigma2=2))

YUIMA: 'delta' (re)defined.
plot(X)

# Heston Model
solution =c("s1","s2")
drift=c("mu*s1","k*(theta-s2)")
d2=c("c1*s1*(s2^{0.5})","c2*s1*(s2^(0.5))","0","c3*eta*(s2^(0.5))")
diff=matrix(d2,byrow=T,2)
cov=matrix(c(2,0.7,0.7,5),2,2)
cov;chol(cov); 
     [,1] [,2]
[1,]  2.0  0.7
[2,]  0.7  5.0
         [,1]      [,2]
[1,] 1.414214 0.4949747
[2,] 0.000000 2.1805962
m1=setModel(drift=drift,diffusion=diff,
solve.variable=solution,xinit=c(50,5))
X=simulate(m1,true.param=list(theta=1,eta=1,mu=1,k =2,
c1=chol(cov)[1,1],c2=chol(cov)[1,2],c3=chol(cov)[2,2]))

YUIMA: 'delta' (re)defined.
plot(X)

References: Maria, S I. (2012) The yuima package: an R framework for simulation and inference of stochastic differential equations: Department of Economics, Business and Statistics University of Milan, Milan, Italy

LS0tDQp0aXRsZTogIkludGVyZXN0IFJhdGUgTW9kZWxsaW5nIg0KYXV0aG9yOiBSYW5jeV9DaGVwY2hpcmNoaXINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyfQ0KbGlicmFyeSh5dWltYSkNCiMgQnJvd25pYW4gTW90aW9uDQptMT1zZXRNb2RlbChkcmlmdD0iMCIsZGlmZnVzaW9uPSIxIiwgc3RhdGUudmFyPSJ4Iix0aW1lLnZhcj0idCIsc29sdmUudmFyPSJ4Iix4aW5pdD0xMDApDQpYPXNpbXVsYXRlKG0xKQ0KcGxvdChYKQ0KZDE9WEBkYXRhQG9yaWdpbmFsLmRhdGENCmQxDQpncmlkPXNldFNhbXBsaW5nKFRlcm1pbmFsPTEsbj0xMDAwKQ0KWD1zaW11bGF0ZShtMSxzYW1wbGluZz1ncmlkKQ0KcGxvdChYKQ0KYGBgDQoNCmBgYHtyfQ0KIyBHZW9tZXRyaWMgQk0NCm0xPXNldE1vZGVsKGRyaWZ0PSJtdSpzIixkaWZmdXNpb249InNpZ21hKnMiLCBzdGF0ZS52YXI9InMiLHRpbWUudmFyPSJ0Iixzb2x2ZS52YXI9InMiLHhpbml0PTEwMCkNClg9c2ltdWxhdGUobTEsdHJ1ZS5wYXJhbT1saXN0KG11PTAuMSxzaWdtYT0wLjIpKQ0KcGxvdChYKQ0KIyBQcm9iIGRpc3RyIGFzc29jaWF0ZWQgd2l0aCB0aGUgR0JNDQptMT1zZXRNb2RlbChkcmlmdD0ibXUqcyIsZGlmZnVzaW9uPSJzaWdtYSpzIiwgc3RhdGUudmFyPSJzIix0aW1lLnZhcj0idCIsc29sdmUudmFyPSJzIix4aW5pdD0xMDApDQpzaW1udW09MTAwDQpkaXN0PWMoLjMxLCAuNTIsMC42LDAuNywgLjk1KQ0KbmV3c2ltPWZ1bmN0aW9uKGkpe3NpbXVsYXRlKG0xLHRydWUucGFyYW09bGlzdChtdT0wLjEsc2lnbWE9MC4yKSlAZGF0YUBvcmlnaW5hbC5kYXRhfQ0KbmV3c2ltKDEpDQpzaW09c2FwcGx5KDE6c2ltbnVtLGZ1bmN0aW9uKHgpbmV3c2ltKHgpKQ0KbTI9dChzaW0pDQptMg0KYXBwbHkobTIsMixtZWFuKQ0KdGlsZT1zYXBwbHkoMToxMDAsZnVuY3Rpb24oeClxdWFudGlsZShtMlsseF0sIGRpc3QpICkNCnRpbGUNCmBgYA0KYGBge3J9DQojIFZhc2ljZWsgTW9kZWwNCm0xID0gc2V0TW9kZWwoZHJpZnQgPSAidGhldGEqKG11LXgpIiwgZGlmZnVzaW9uID0gInNpZ21hIiwgc3RhdGUudmFyID0gIngiLCANCiAgICB0aW1lLnZhciA9ICJ0Iiwgc29sdmUudmFyID0gIngiLCB4aW5pdCA9IDAuNSkNClggPSBzaW11bGF0ZShtMSwgdHJ1ZS5wYXJhbSA9IGxpc3QobXUgPSAwLjUsIHNpZ21hID0gMC4yLCANCiAgICB0aGV0YSA9IDIpKQ0KcGxvdChYKQ0KIyBDSVIgTW9kZWwNCm0xID0gc2V0TW9kZWwoZHJpZnQgPSAidGhldGEqKG11LXgpIiwgZGlmZnVzaW9uID0gInNpZ21hKih4XjAuNSkiLCBzdGF0ZS52YXIgPSAieCIsIA0KICAgIHRpbWUudmFyID0gInQiLCBzb2x2ZS52YXIgPSAieCIsIHhpbml0ID0gMC41KQ0KWCA9IHNpbXVsYXRlKG0xLCB0cnVlLnBhcmFtID0gbGlzdChtdSA9IDAuNSwgc2lnbWEgPSAwLjIsIA0KICAgIHRoZXRhID0gMikpDQpwbG90KFgpDQojIENLTFMgTU9kZWwNCmdyaWQ9c2V0U2FtcGxpbmcoVGVybWluYWw9MSwgbj0xMDAwKQ0KbTEgPSBzZXRNb2RlbChkcmlmdCA9ICJhbHBoYTErKGFscGhhMip4KSIsIGRpZmZ1c2lvbiA9ICJhbHBoYTMqKHheYWxwaGE0KSIsIHN0YXRlLnZhciA9ICJ4IiwgDQogICAgdGltZS52YXIgPSAidCIsIHNvbHZlLnZhciA9ICJ4IiwgeGluaXQgPSAwLjUpDQpYID0gc2ltdWxhdGUobTEsIHRydWUucGFyYW0gPSBsaXN0KGFscGhhMSA9IDAuMSwgYWxwaGEyID0gMC4yLCBhbHBoYTMgPSAwLjMsDQogICAgYWxwaGE0ID0gMC40KSwgc2FtcGxpbmc9Z3JpZCkNCnBsb3QoWCkNCiMgSHlwZXJib2xpYyBQcm9jZXNzZXMNCm0xID0gc2V0TW9kZWwoZHJpZnQgPSAiLXRoZXRhKngvKCgxK3heMileMC41KSIsIGRpZmZ1c2lvbiA9ICIxIiwgc3RhdGUudmFyID0gIngiLCANCiAgICB0aW1lLnZhciA9ICJ0Iiwgc29sdmUudmFyID0gIngiLCB4aW5pdCA9IDAuNSkNClggPSBzaW11bGF0ZShtMSwgdHJ1ZS5wYXJhbSA9IGxpc3QodGhldGEgPSAxKSkNCnBsb3QoWCkNCmBgYA0KYGBge3J9DQojIEZpdHRpbmcgU0RFIHRvIGdpdmVuIGRhdGENCmxpYnJhcnkoRWNkYXQpDQpkYXRhIChJcmF0ZXMpDQpyYXRlcyA8LUlyYXRlc1ssJ3IxJ10NCnBsb3QocmF0ZXMpDQpYPC13aW5kb3cocmF0ZXMsIHN0YXJ0PTE5NjQuNDcxLCBlbmQ9MTk4OS4zMzMpDQptMSA9IHNldE1vZGVsKGRyaWZ0ID0gInRoZXRhKihtdS14KSIsIGRpZmZ1c2lvbiA9ICJzaWdtYSIsIHN0YXRlLnZhciA9ICJ4IiwgDQogICAgdGltZS52YXIgPSAidCIsIHNvbHZlLnZhciA9ICJ4IiwgeGluaXQgPSAwLjUpDQpYID0gc2ltdWxhdGUobTEsIHRydWUucGFyYW0gPSBsaXN0KG11PTAuMSwgc2lnbWE9MC4yLCB0aGV0YT0yKSkNCmluaXRpYWxpc2U9bGlzdChtdT0wLjA1LCBzaWdtYT0wLjUsIHRoZXRhPTEpDQpsb3dib3VuZD1saXN0KG11PTAsIHNpZ21hPTAsIHRoZXRhPTApDQp1cGJvdW5kPWxpc3QobXU9MC4yLCBzaWdtYT0yLCB0aGV0YT0zKQ0KbWxlPXFtbGUoWCwgc3RhcnQ9aW5pdGlhbGlzZSwgbG93ZXI9bG93Ym91bmQsIHVwcGVyPXVwYm91bmQpDQpzdW1tYXJ5KG1sZSkNCiMgSW5jb3Jwb3JhdGluZyBKdW1wcyBpbnRvIHRoZSBTREUNCmxpYnJhcnkoeXVpbWEpDQpncmlkPXNldFNhbXBsaW5nKFRlcm1pbmFsPTEsIG49MTAwMCkNCmp1bXA9bGlzdChpbnRlbnNpdHk9IjciLCBkZj1saXN0KCJkbm9ybSh6LCAwLCAwLjIpIikpDQptMSA9IHNldE1vZGVsKGRyaWZ0ID0gInRoZXRhKihtdS14KSIsIGRpZmZ1c2lvbiA9ICJzaWdtYSIsIHN0YXRlLnZhciA9ICJ4IiwgDQogICAgdGltZS52YXIgPSAidCIsIHNvbHZlLnZhciA9ICJ4IiwgeGluaXQgPSAwLjIsIGp1bXAuY29lZmY9IjEiLCANCiAgICBtZWFzdXJlPWp1bXAsIG1lYXN1cmUudHlwZT0iQ1AiKQ0KWCA9IHNpbXVsYXRlKG0xLCB0cnVlLnBhcmFtID0gbGlzdChtdT0wLjEsIHNpZ21hPTAuMiwgdGhldGE9MiksIHNhbXBsaW5nPWdyaWQpDQpwbG90KFgpDQpgYGANCmBgYHtyfQ0KIyBGcmFjdGlvbmFsIEJyb3duaWFuIE1vdGlvbg0KZ3JpZD1zZXRTYW1wbGluZyhUZXJtaW5hbD0xLCBuPTEwMDApDQptMSA9IHNldE1vZGVsKGRyaWZ0ID0gInRoZXRhKihtdS14KSIsIGRpZmZ1c2lvbiA9ICJzaWdtYSIsIHN0YXRlLnZhciA9ICJ4IiwgDQogICAgdGltZS52YXIgPSAidCIsIHNvbHZlLnZhciA9ICJ4IiwgeGluaXQgPSAwLjIsIGh1cnN0PSAwLjMpDQptMiA9IHNldE1vZGVsKGRyaWZ0ID0gInRoZXRhKihtdS14KSIsIGRpZmZ1c2lvbiA9ICJzaWdtYSIsIHN0YXRlLnZhciA9ICJ4IiwgDQogICAgdGltZS52YXIgPSAidCIsIHNvbHZlLnZhciA9ICJ4IiwgeGluaXQgPSAwLjIsIGh1cnN0PSAwLjcpDQpYID0gc2ltdWxhdGUobTEsIHRydWUucGFyYW0gPSBsaXN0KG11PTAuMSwgc2lnbWE9MC4yLCB0aGV0YT0yKSwgc2FtcGxpbmc9Z3JpZCkNClkgPSBzaW11bGF0ZShtMiwgdHJ1ZS5wYXJhbSA9IGxpc3QobXU9MC4xLCBzaWdtYT0wLjIsIHRoZXRhPTIpLCBzYW1wbGluZz1ncmlkKQ0KcGFyKG1mcm93PWMoMiwgMSkpOyBwbG90KFgpOyBwbG90KFkpDQojIENvcnJlbGF0ZWQgQk1zDQpzb2x1dGlvbj1jKCJ4MSIsICJ4MiIsICJ4MyIpDQpkcmlmdD1jKCJiMSp4MSIsICJiMip4MiIsICJiMyp4MyIpDQpjMT1jKDIsIDEsIDMsIDEsIDQsIDIsIDMsIDIsIDUpDQpjb3Y9bWF0cml4KGMxLCAzLCAzKQ0KY292PT10KGNvdik7IGNob2w9Y2hvbChjb3YpOyBkaWZmPWNob2w7IGRpZmYNCm0xID0gc2V0TW9kZWwoZHJpZnQgPSBkcmlmdCwgZGlmZnVzaW9uID0gZGlmZiwgc29sdmUudmFyaWFibGUgPSBzb2x1dGlvbiwgDQogICAgIHhpbml0ID0gYygxLCAyLCAzKSkgDQpYID0gc2ltdWxhdGUobTEsIHRydWUucGFyYW0gPSBsaXN0KGIxPTAuNSwgYjI9MC42LCBiMz0wLjcpKQ0KcGxvdChYKQ0KYGBgDQpgYGB7cn0NCiMgTXVsdGlkaW1lbnNpb25hbCBCTSAoSHVsbC1XaGl0ZSAyLWZhY3RvciBNb2RlbCkNCnNvbHV0aW9uID1jKCJyIiwidSIpDQpkcmlmdD1jKCJ0aGV0YS0oYWxwaGEqcikrdSIsIi1iKnUiKQ0KYzE9Yygic2lnbWExIiwiMCIsIjAiLCJzaWdtYTIiKQ0KZGlmZj1tYXRyaXgoYzEsMiwyKQ0KbTE9c2V0TW9kZWwoZHJpZnQ9ZHJpZnQsZGlmZnVzaW9uPWRpZmYsDQpzb2x2ZS52YXJpYWJsZT1zb2x1dGlvbix4aW5pdD1jKDAuMSwwLjIpKQ0KWD1zaW11bGF0ZShtMSx0cnVlLnBhcmFtPWxpc3QodGhldGE9MSxhbHBoYT0xLGI9MSxzaWdtYTE9MixzaWdtYTI9MikpDQpwbG90KFgpDQojIEhlc3RvbiBNb2RlbA0Kc29sdXRpb24gPWMoInMxIiwiczIiKQ0KZHJpZnQ9YygibXUqczEiLCJrKih0aGV0YS1zMikiKQ0KZDI9YygiYzEqczEqKHMyXnswLjV9KSIsImMyKnMxKihzMl4oMC41KSkiLCIwIiwiYzMqZXRhKihzMl4oMC41KSkiKQ0KZGlmZj1tYXRyaXgoZDIsYnlyb3c9VCwyKQ0KY292PW1hdHJpeChjKDIsMC43LDAuNyw1KSwyLDIpDQpjb3Y7Y2hvbChjb3YpOyANCm0xPXNldE1vZGVsKGRyaWZ0PWRyaWZ0LGRpZmZ1c2lvbj1kaWZmLA0Kc29sdmUudmFyaWFibGU9c29sdXRpb24seGluaXQ9Yyg1MCw1KSkNClg9c2ltdWxhdGUobTEsdHJ1ZS5wYXJhbT1saXN0KHRoZXRhPTEsZXRhPTEsbXU9MSxrID0yLA0KYzE9Y2hvbChjb3YpWzEsMV0sYzI9Y2hvbChjb3YpWzEsMl0sYzM9Y2hvbChjb3YpWzIsMl0pKQ0KcGxvdChYKQ0KYGBgDQpSZWZlcmVuY2VzOg0KTWFyaWEsIFMgSS4gKDIwMTIpIFRoZSB5dWltYSBwYWNrYWdlOiBhbiBSIGZyYW1ld29yayBmb3Igc2ltdWxhdGlvbiBhbmQgaW5mZXJlbmNlIG9mIHN0b2NoYXN0aWMgZGlmZmVyZW50aWFsIGVxdWF0aW9uczogRGVwYXJ0bWVudCBvZiBFY29ub21pY3MsIEJ1c2luZXNzIGFuZCBTdGF0aXN0aWNzIFVuaXZlcnNpdHkgb2YgTWlsYW4sIE1pbGFuLCBJdGFseQ==