Overview The project aim is to analyze the ToothGrowth data in the R datasets package.
Load the necessary packages
library(ggplot2)
library(tinytex)
library(datasets)
data(ToothGrowth)
str(ToothGrowth)
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
head(ToothGrowth, 4)
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
tail(ToothGrowth, 4)
## len supp dose
## 57 26.4 OJ 2
## 58 27.3 OJ 2
## 59 29.4 OJ 2
## 60 23.0 OJ 2
Summary of the data
summary(ToothGrowth)
## len supp dose
## Min. : 4.20 OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25 Median :1.000
## Mean :18.81 Mean :1.167
## 3rd Qu.:25.27 3rd Qu.:2.000
## Max. :33.90 Max. :2.000
2.Basic summary of the data
# Calculatiing the mean of len based on the supplement methods
Supplement_mean = split(ToothGrowth$len, ToothGrowth$supp)
sapply(Supplement_mean, mean)
## OJ VC
## 20.66333 16.96333
Graph
ggplot(aes(x=supp, y=len), data=ToothGrowth) + geom_boxplot(aes(fill=supp))+
xlab("Supplement Type") +ylab("Tooth length")
3. Using confidence intervals to compare growth of tooth by supplement dose
unique(ToothGrowth$dose)
## [1] 0.5 1.0 2.0
There are 3 dose groups: 0.5, 1, and 2 Graph shows relationship between Tooth length to Dose
g <- ggplot(aes(x = factor(dose), y = len), data = ToothGrowth) +
geom_boxplot(aes(fill = factor(dose)))
g <- g + labs(title="Tooth Lenght relationship to Dosage")
print(g)
T-test for dose 0.5 mg:
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == .5, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
## 13.23 7.98
T-test for dose 1 mg:
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == 1, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 4.0328, df = 15.358, p-value = 0.001038
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.802148 9.057852
## sample estimates:
## mean in group OJ mean in group VC
## 22.70 16.77
T-test for dose 2 mg:
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == 2, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = -0.046136, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean in group OJ mean in group VC
## 26.06 26.14
Conclusion:
For all three dosages, the p-value of this test is is less than 0.5, a evidence that we can reject the null hypothesis. We can infer that supplement type has no effect on tooth growth, and increasing the dose level leads to increased tooth growth.