Summary

In this study, we attempt to find an Instrument Variable (IV) to study the relationship between price informativeness and US interest rates. The ratio of US publicly owned debt to GDP is used as an IV.

As an initial step, we regress Annual US Treasury rates (treasury_yield) on Bond supply (Debt/GDP). We then run the diagnostics for the regression and fit the appropriate transformations to the data.

We then look at the significance of adding a linear time trend. The trend variable ends up being significant without affecting the significance of our IV, log(Debt/GDP)

In order to capture the autocorrelation of the residuals from our initial (transformed) regression we evaluate two different techniques:

In both cases, we find log(Debt/GDP) to be significant

Variables

All variables are stored in the table \(bond.data\):

Methodology

Regression Analysis

1. a) Regressing treasury_yield on Debt/GDP

## 
## Call:
## lm(formula = treasury_yield ~ bond_supply, data = bond.data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.365 -1.387 -0.544  0.883  6.827 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    7.548      0.594  12.707  < 2e-16 ***
## bond_supply   -5.756      1.270  -4.531 1.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.3 on 92 degrees of freedom
## Multiple R-squared:  0.1824, Adjusted R-squared:  0.1735 
## F-statistic: 20.53 on 1 and 92 DF,  p-value: 1.761e-05

Regression analysis yields a significant coefficient of -5.756 on Debt/GDP implying that an increase in the ratio of Debt/GDP by 1 leads to a decrease in the interest rate by 5.76 percentage points. This interpretation is not very intuitive, therefore, it would make more sense to take logs of the variables

1. b) Regression Diagnostics for treasury_yield ~ Debt/GDP

Linearity

Non-linearity is present. This suggests that a non-linear transformation of the independent variable is more appropriate

Homoskedasticity

Variance increases for larger values of Y implying that a log-transformation of the dependent variable is needed, which we will perform next

Normality of Residuals

Residuals seem to be non-normally distributed

2. a) Regressing treasury_yield on log(Debt/GDP)

## 
## Call:
## lm(formula = treasury_yield ~ log_bond_supply, data = bond.data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9413 -1.3596 -0.6160  0.8711  6.8283 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.9293     0.6132   4.777 6.69e-06 ***
## log_bond_supply  -2.3124     0.6048  -3.824 0.000239 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.363 on 92 degrees of freedom
## Multiple R-squared:  0.1371, Adjusted R-squared:  0.1277 
## F-statistic: 14.62 on 1 and 92 DF,  p-value: 0.0002391

Regression reveals a coefficient of -2.312 for log(bond supply) that is significant at a 5% level signifying that a 1% change in Debt/GDP leads to a decrease in the interest rate by aproximately 0.02 percentage points. R- squared = 0.137 (slightly better than above)

2. b) Regression diagnostics for treasury_yield ~ log(Debt/GDP)

Homoskedasticity

Variance seems to increase at larger values of log(bond supply) still suggesting a log-transformation of treasury yield

Normality of Residuals

Residuals do not seem to be normally distributed

3 . a) Regressing Log(treasury_yield) ~ Log(Debt/GDP)

## 
## Call:
## lm(formula = log_treasury_yield ~ log_bond_supply, data = bond.data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81145 -0.29314 -0.02922  0.24238  0.89214 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.0256     0.1091   9.403 4.11e-15 ***
## log_bond_supply  -0.5248     0.1076  -4.879 4.46e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4203 on 92 degrees of freedom
## Multiple R-squared:  0.2055, Adjusted R-squared:  0.1969 
## F-statistic:  23.8 on 1 and 92 DF,  p-value: 4.461e-06

Coefficient on log(bond supply) is -0.525 and significant. A 1% change in Debt/GDP leads to a 0.53% decrease in interest rates. R-squared is 0.201, which is 46.72% improvement on the previous model.

3. b) Regression diagnostics for Log(treasury_yield) ~ Log(Debt/GDP)

Homoskedasticity

Not sure if Homoskedacity seems to improve

Normality of Residuals

Normality of residuals looks better

PACF suggests largelly significant lag 1 after controlling for other lags

Time series plot of residuals

Fitting Time Trend

Graph suggests there is long-term linear trend perhaps even a quadratic one

Fit linear time trend

## 
## Call:
## lm(formula = bond.data$log_treasury_yield ~ bond.data$trend)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.03016 -0.30879 -0.01081  0.29615  0.89239 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.054188   0.081053  13.006  < 2e-16 ***
## bond.data$trend 0.009678   0.001482   6.532 3.52e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3898 on 92 degrees of freedom
## Multiple R-squared:  0.3168, Adjusted R-squared:  0.3094 
## F-statistic: 42.67 on 1 and 92 DF,  p-value: 3.524e-09

Model suggests the presence of a linear time trend . R-squared = 0.309

Fit quadratic time trend

## 
## Call:
## lm(formula = bond.data$log_treasury_yield ~ bond.data$trend + 
##     bond.data$trend_sqrd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9223 -0.2954  0.0001  0.2802  0.8549 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           9.392e-01  1.229e-01   7.644 2.07e-11 ***
## bond.data$trend       1.687e-02  5.969e-03   2.825   0.0058 ** 
## bond.data$trend_sqrd -7.567e-05  6.088e-05  -1.243   0.2171    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3886 on 91 degrees of freedom
## Multiple R-squared:  0.3282, Adjusted R-squared:  0.3135 
## F-statistic: 22.23 on 2 and 91 DF,  p-value: 1.375e-08

Model suggests no presence of a qudratic time trend

Adding back log(Debt/GDP) to the regression: log(treasury_yield) ~ Trend

## 
## Call:
## lm(formula = bond.data$log_treasury_yield ~ bond.data$trend + 
##     bond.data$log_bond_supply)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.70786 -0.18194 -0.04292  0.18898  0.67506 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                0.413584   0.100698   4.107 8.74e-05 ***
## bond.data$trend            0.010934   0.001147   9.533 2.42e-15 ***
## bond.data$log_bond_supply -0.624457   0.077221  -8.087 2.53e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.299 on 91 degrees of freedom
## Multiple R-squared:  0.6025, Adjusted R-squared:  0.5938 
## F-statistic: 68.96 on 2 and 91 DF,  p-value: < 2.2e-16

Coefficient of log(bond supply) is still significant after adding linear trend, it seems as if the relationship between log(treasury yield) and log(Debt/GDP) is not spurious. R-squared = 0.594

Linear trend model diagnostics : log(treasury_yield) ~ log(Debt/GDP) + Trend

Homoskedasticity

Homoskedasdicity seems to improve compared to the model without a linear trend.

Normality

Normality still looks somewhat good

Autocorrelation of residuals

PACF suggests largelly significant lag 1 after controlling for other lags

Time series plot of residuals

Accounting for Autocorrelation

1. Feasible Generalized Least Squares (Pairs-Winsten), assuming strict exogeneity of X

Method:
  1. Run OLS on log(treasury_yield) and log(Debt/GDP) and obtain residuals
  2. Run AR(1) on residuals, save coefficient \(\rho\):
  3. Run OLS on the following (provided that the intercept coefficient is divided by \(1 - \rho\)):
    • \(\log(treasury \_ yield_t) - \rho log(treasury\_ yield_{t-1})\)
    • \(\log(bond \_ supply_t) - \rho \log(bond\_ supply_{t-1})\)

## 
## Call:
## lm(formula = FGLS$y.tilde ~ FGLS$x.tilde)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.33429 -0.06396 -0.00546  0.06210  0.23613 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.028475   0.009877   2.883  0.00491 **
## FGLS$x.tilde -0.244530   0.092014  -2.658  0.00930 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09417 on 91 degrees of freedom
## Multiple R-squared:  0.07202,    Adjusted R-squared:  0.06182 
## F-statistic: 7.063 on 1 and 91 DF,  p-value: 0.009297

Using FGLS (Pairs-Winsten), the coefficient on log(Debt/GDP) is -0.245 and signficant, suggesting that a 1% increase in bond supply leads to a 0.25% decrease in interest rates. However, R-squared is very low with a value of = 0.072

2. Diagnostics of FBLS

Normality of residuals improves slightly

Homoskedasticity looks good for larger fitted values.

Autocorrelation has been accounted for

Using OLS and Newey-West Heteroskedastic and Autocorrelation Consistent (HAC) standard errors

Method:

  1. run OLS on Log(treasury_yield) ~ log(Debt/GDP)
  2. compute the correction factor that adjusts for serially correlated errors using the estimated autocorrelation coefficient and a chosen truncation parameter
  3. derive the Newey-West variance estimator using correction factor and use it to compute the HAC standard error for the estimated coefficient of log(Debt/GDP)
## 
## t test of coefficients:
## 
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                1.02563    0.16758  6.1202 2.26e-08 ***
## bond.data$log_bond_supply -0.52482    0.19233 -2.7288 0.007616 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OLS regression with serial correlation-robust standard errors yields a significant coefficient of -0.525 for log(Debt/GDP)

Sources

Regression Model Diagnostics: http://www.sthda.com/english/articles/39-regression-model-diagnostics/161-linear-regression-assumptions-and-diagnostics-in-r-essentials/#linearity-of-the-data

OLS assumptions: https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/

GLS and autocorrelation : https://pdfs.semanticscholar.org/7c1b/5ba81a4fcde9abe7efe49228244a98d5ce11.pdf

FBLS regression: https://www.youtube.com/watch?v=GsLacO_ZJ-s

Newey-West HAC : https://www.econometrics-with-r.org/15-4-hac-standard-errors.html