Brief analysis of Covid 19 cases and deaths in Brazil, data collected on may 7, 2020.
Data available from: https://covid.saude.gov.br/
Loading tidyverse
library(tidyverse)
## -- Attaching packages ---------------------------------------------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.0 v purrr 0.3.4
## v tibble 3.0.1 v dplyr 0.8.5
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts ------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Session Information
sessionInfo()
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18362)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.1252
## [2] LC_CTYPE=English_United Kingdom.1252
## [3] LC_MONETARY=English_United Kingdom.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] forcats_0.5.0 stringr_1.4.0 dplyr_0.8.5 purrr_0.3.4
## [5] readr_1.3.1 tidyr_1.0.2 tibble_3.0.1 ggplot2_3.3.0
## [9] tidyverse_1.3.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.0.0 xfun_0.13 haven_2.2.0 lattice_0.20-41
## [5] colorspace_1.4-1 vctrs_0.2.4 generics_0.0.2 htmltools_0.4.0
## [9] yaml_2.2.1 rlang_0.4.5 pillar_1.4.4 glue_1.4.0
## [13] withr_2.2.0 DBI_1.1.0 dbplyr_1.4.3 modelr_0.1.7
## [17] readxl_1.3.1 lifecycle_0.2.0 munsell_0.5.0 gtable_0.3.0
## [21] cellranger_1.1.0 rvest_0.3.5 evaluate_0.14 knitr_1.28
## [25] fansi_0.4.1 broom_0.5.6 Rcpp_1.0.4.6 scales_1.1.0
## [29] backports_1.1.6 jsonlite_1.6.1 fs_1.4.1 hms_0.5.3
## [33] digest_0.6.25 stringi_1.4.6 grid_4.0.0 cli_2.0.2
## [37] tools_4.0.0 magrittr_1.5 crayon_1.3.4 pkgconfig_2.0.3
## [41] ellipsis_0.3.0 xml2_1.3.2 reprex_0.3.0 lubridate_1.7.8
## [45] assertthat_0.2.1 rmarkdown_2.1 httr_1.4.1 rstudioapi_0.11
## [49] R6_2.4.1 nlme_3.1-147 compiler_4.0.0
Loading data
df <- read_csv2("arquivo_geral.csv")
## Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.
## Parsed with column specification:
## cols(
## regiao = col_character(),
## estado = col_character(),
## data = col_date(format = ""),
## casosNovos = col_double(),
## casosAcumulados = col_double(),
## obitosNovos = col_double(),
## obitosAcumulados = col_double()
## )
Plots
summary(df)
## regiao estado data casosNovos
## Length:2646 Length:2646 Min. :2020-01-30 Min. : 0.00
## Class :character Class :character 1st Qu.:2020-02-23 1st Qu.: 0.00
## Mode :character Mode :character Median :2020-03-18 Median : 0.00
## Mean :2020-03-18 Mean : 47.32
## 3rd Qu.:2020-04-12 3rd Qu.: 24.00
## Max. :2020-05-06 Max. :3800.00
## casosAcumulados obitosNovos obitosAcumulados
## Min. : 0.0 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 4.0 Median : 0.000 Median : 0.00
## Mean : 646.9 Mean : 3.226 Mean : 41.89
## 3rd Qu.: 274.0 3rd Qu.: 1.000 3rd Qu.: 9.00
## Max. :37853.0 Max. :224.000 Max. :3045.00
df %>% ggplot(aes(x = data, y = casosNovos, col = estado)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% ggplot(aes(x = data, y = casosNovos, col = regiao)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% ggplot(aes(x = data, y = obitosNovos, col = estado)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% ggplot(aes(x = data, y = obitosNovos, col = regiao)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% ggplot(aes(x = data, y = obitosAcumulados, col = estado)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% ggplot(aes(x = data, y = obitosAcumulados, col = regiao)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% filter(estado == "SP") %>% ggplot(aes(x = data, y = obitosAcumulados)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
df %>% filter(estado == "SP") %>% ggplot(aes(x = data, y = obitosNovos)) + geom_point() + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'