We exclude the Warning Alert episodes from the analysis.
mod<-gam(elipic ~ s(tempmax,k=7,bs="tp") + s(tempmoy,k=7, bs="tp") +s(lag_tempmax,k=7,bs="tp") + s(lag_tempmoy,k=7, bs="tp")+ s(lag2_tempmax,k=7,bs="tp") + s(lag2_tempmoy,k=7, bs="tp") + s(lag3_tempmax,k=7,bs="tp") + s(lag3_tempmoy,k=7, bs="tp") + Jours + mois + jours_fériés + Vacances + annee + s(lag_O3,k=6) + s(lag2_O3,k=6) + s(lag3_O3,k=6) + s(lag_PM10,k=6) + s(lag2_PM10,k=6) + s(lag3_PM10,k=6), family="binomial", data=data)
data$SP<-NA
data$SP[4:nrow(data)]<-mod$fitted
data<-data[-c(1:3),]
data$nrow<-c(1:nrow(data))
##
## Family: binomial
## Link function: logit
##
## Formula:
## elipic ~ s(tempmax, k = 7, bs = "tp") + s(tempmoy, k = 7, bs = "tp") +
## s(lag_tempmax, k = 7, bs = "tp") + s(lag_tempmoy, k = 7,
## bs = "tp") + s(lag2_tempmax, k = 7, bs = "tp") + s(lag2_tempmoy,
## k = 7, bs = "tp") + s(lag3_tempmax, k = 7, bs = "tp") + s(lag3_tempmoy,
## k = 7, bs = "tp") + Jours + mois + jours_fériés + Vacances +
## annee + s(lag_O3, k = 6) + s(lag2_O3, k = 6) + s(lag3_O3,
## k = 6) + s(lag_PM10, k = 6) + s(lag2_PM10, k = 6) + s(lag3_PM10,
## k = 6)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.139e+01 2.084e+00 -5.468 4.56e-08 ***
## Joursjeudi 1.738e+00 5.921e-01 2.935 0.003330 **
## Jourslundi 1.761e+00 6.593e-01 2.670 0.007577 **
## Joursmardi 1.270e+00 6.372e-01 1.993 0.046283 *
## Joursmercredi 2.233e+00 6.153e-01 3.629 0.000284 ***
## Jourssamedi 8.749e-01 5.942e-01 1.472 0.140923
## Joursvendredi 1.420e+00 6.087e-01 2.333 0.019638 *
## mois10 -1.098e+00 9.776e-01 -1.123 0.261599
## mois11 9.982e-01 6.341e-01 1.574 0.115434
## mois12 -1.364e-01 6.455e-01 -0.211 0.832678
## mois2 -8.384e-01 5.544e-01 -1.512 0.130459
## mois3 -6.603e-01 7.217e-01 -0.915 0.360213
## mois4 -1.072e+00 9.312e-01 -1.151 0.249650
## mois5 -1.664e+00 1.251e+00 -1.329 0.183729
## mois6 -4.404e+01 3.105e+06 0.000 0.999989
## mois7 -4.497e+01 3.056e+06 0.000 0.999988
## mois8 -4.480e+01 3.056e+06 0.000 0.999988
## mois9 -1.745e+00 1.242e+00 -1.405 0.159955
## jours_fériés -1.593e+00 1.253e+00 -1.271 0.203640
## Vacances 1.051e+00 3.737e-01 2.813 0.004914 **
## annee2001 -4.318e+01 3.543e+06 0.000 0.999990
## annee2002 1.561e+00 1.702e+00 0.917 0.359128
## annee2003 -4.535e+01 3.543e+06 0.000 0.999990
## annee2004 -4.354e+01 3.538e+06 0.000 0.999990
## annee2005 -4.307e+01 3.543e+06 0.000 0.999990
## annee2006 6.208e-02 1.718e+00 0.036 0.971180
## annee2007 1.196e+00 1.631e+00 0.733 0.463529
## annee2008 -4.457e+01 3.538e+06 0.000 0.999990
## annee2009 9.162e-01 1.603e+00 0.572 0.567621
## annee2010 4.836e-02 1.667e+00 0.029 0.976862
## annee2011 2.079e+00 1.589e+00 1.308 0.190777
## annee2012 4.484e+00 1.588e+00 2.824 0.004747 **
## annee2013 3.906e+00 1.601e+00 2.440 0.014699 *
## annee2014 3.468e+00 1.620e+00 2.140 0.032333 *
## annee2015 2.607e+00 1.597e+00 1.633 0.102420
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(tempmax) 1.007 1.011 22.110 2.78e-06 ***
## s(tempmoy) 2.427 3.059 35.352 1.23e-07 ***
## s(lag_tempmax) 1.000 1.000 0.067 0.7961
## s(lag_tempmoy) 1.000 1.000 3.141 0.0763 .
## s(lag2_tempmax) 1.000 1.000 0.186 0.6661
## s(lag2_tempmoy) 1.000 1.000 0.156 0.6925
## s(lag3_tempmax) 1.000 1.000 0.582 0.4455
## s(lag3_tempmoy) 1.000 1.000 0.163 0.6865
## s(lag_O3) 3.812 4.256 8.803 0.0835 .
## s(lag2_O3) 1.664 2.104 1.943 0.3976
## s(lag3_O3) 1.000 1.000 0.382 0.5366
## s(lag_PM10) 4.463 4.754 75.225 1.43e-14 ***
## s(lag2_PM10) 1.601 2.020 3.494 0.1903
## s(lag3_PM10) 1.000 1.000 0.296 0.5864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.476 Deviance explained = 65%
## UBRE = -0.91113 Scale est. = 1 n = 5821
AIC du modèle:
## [1] 517.3299
Summary Statistics for the propensity score (PS):
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.0000000 0.0000001 0.0200996 0.0004032 0.9925082
Summary Statistics for the variable eligibility to intervention (polluted days):
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.0201 0.0000 1.0000
Test moyenne Score de Propension Test de Student pour difference moyenne entre variable Score de Propension (x) et variable pic de pollution (y):
##
## Welch Two Sample t-test
##
## data: data$SP and data$elipic
## t = 1.9496e-13, df = 10394, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.004395189 0.004395189
## sample estimates:
## mean of x mean of y
## 0.02009964 0.02009964
La moyenne du score de propension predit par le modèle est statistiquement pas differente de la moyenne de la variable éligibilité.
Comparaison de la moyenne du score de propension entre jours éligibles et pas éligibles avec test de Student.
##
## Welch Two Sample t-test
##
## data: SP by elipic
## t = -17.368, df = 116.17, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5383023 -0.4280944
## sample estimates:
## mean in group 0 mean in group 1
## 0.01038753 0.49358586
Les jours éligibles ont une moyenne du SP statistiquement différente de la moyenne du SP des jours non éligibles.
Standard Deviation de la variable SP et Eligibilité:
## data$elipic: 0
## [1] 0.05681762
## ------------------------------------------------------------
## data$elipic: 1
## [1] 0.3008298
La Standard deviation de la variable SP est assez différente de celle de la variable éligibilité.
Several types of matching were compared. Differents matches were determined by following parameters:
The matching minimazing the standardized mean difference for numerical variables included in the SP predictions was retained. The selected matching include M=3, no caliper requirement and it handles ties deterministically, that means that ties are randomly broken.
var.match<-cbind(data$SP,data$period)
App<-Match(Tr = data$elipic,X=var.match, M=3, ties=FALSE)
summary(App)
##
## Estimate... 0
## SE......... 0
## T-stat..... NaN
## p.val...... NA
##
## Original number of observations.............. 5821
## Original number of treated obs............... 117
## Matched number of observations............... 117
## Matched number of observations (unweighted). 351
control=data.frame(App$index.control)
treated=data.frame(App$index.treated)
colnames(control) <- c("nrow")
colnames(treated) <- c("nrow")
cas<-unique(treated)
cas$PAIR<-c(1:nrow(cas))
treated<-merge(treated,cas,by="nrow")
control$PAIR <- treated$PAIR
casm<-merge(cas,data,by="nrow")
controlm<- merge(control,data, by ="nrow")
datam<-rbind(casm,controlm)
datam<-datam[order(datam[,"PAIR"]),]
Comparing SP for eligible days and not eligible days before and after matching:
Comparing PS average for eligible days and not eligible days after matching through Student test:
##
## Welch Two Sample t-test
##
## data: SP by elipic
## t = -0.06671, df = 199.62, p-value = 0.9469
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.06553790 0.06124869
## sample estimates:
## mean in group 0 mean in group 1
## 0.4914413 0.4935859
Mean PS values for eligible days and not eligible days after matching are not statistically different.
Standardized mean differences for continuos variables after matching:
| temp max | LAG temp max | LAG2 temp max | LAG3 temp max | temp moy | LAG temp moy | LAG2 temp moy | LAG3 temp moy | lag_O3 | lag2_O3 | lag3_O3 | lag_PM10 | lag2_PM10 | lag3_PM10 | tot_SMD | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Before Matching | 0.15550 | 0.15698 | 0.16795 | 0.17938 | 0.24011 | 0.23926 | 0.24659 | 0.25465 | 0.17406 | 0.14968 | 0.14453 | 0.45596 | 0.36767 | 0.29251 | 3.22482 |
| After Matching | 0.03318 | 0.03330 | 0.03976 | 0.02557 | 0.04073 | 0.02885 | 0.03340 | 0.03497 | 0.04221 | 0.02486 | 0.03760 | 0.03245 | 0.02457 | 0.03632 | 0.46776 |
Stars indicates variables with mean differences that have been standardized
| Non-Polluted days | Polluted days | Non-Polluted days | Polluted days | |
|---|---|---|---|---|
| Non acc Deaths | 120.2778 | 117.0000 | 113.2540 | 114.3786 |
| Cardio Deaths | 33.11111 | 31.42857 | 26.67302 | 26.37864 |
| Respi Deaths | 8.166667 | 7.928571 | 8.679365 | 7.912621 |
| Minimum Temperature | 2.486111 | 2.007143 | 3.493968 | 3.038835 |
| Maximum Temperature | 10.49167 | 9.80000 | 10.81048 | 10.42816 |
| Mean Temperature | 6.372685 | 5.546429 | 7.143836 | 6.734102 |
### Model to study effect on PM10 concentration
fixPM10<-plm(moyPM10 ~ Period + elipic + Period*elipic, data=datam, model="within")
### Model to study effect on mortality
## Linear Version
# Non accidental mortality
nocc<-plm(nocc_tot ~ Period + elipic + Period*elipic, data=datam, model="within")
# Cardiovascual causes mortality
cardio<-plm(cv_tot ~ Period + elipic + Period*elipic, data=datam, model="within")
# Respiratory causes mortality
respi<-plm(respi_tot ~ Period + elipic + Period*elipic, data=datam, model="within")
## Poisson Version
# Non accidental mortality
noccP<-pglm(nocc_tot ~ Period + elipic + Period*elipic, data=datam, family=poisson(link = "log"), model="within")
# Cardiovascual causes mortality
cardioP<-pglm(cv_tot ~ Period + elipic + Period*elipic, data=datam, family=poisson(link = "log"), model="within")
# Respiratory causes mortality
respiP<-pglm(respi_tot ~ Period + elipic + Period*elipic, data=datam, family=poisson(link = "log"), model="within")
Effet sur le niveau de concentration de PM10 de la période post-mésures par rapport à la période avant l’entrée de la réglementation des PM10:
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = moyPM10 ~ Period + elipic + Period * elipic, data = datam,
## model = "within")
##
## Balanced Panel: n = 117, T = 4, N = 468
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -27.25452 -6.01524 -0.17353 5.21009 33.46841
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Period2 -5.9702 3.8230 -1.5617 0.119276
## elipic 31.6553 3.1207 10.1436 < 2.2e-16 ***
## Period2:elipic -10.3647 3.3207 -3.1212 0.001952 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 80065
## Residual Sum of Squares: 33648
## R-Squared: 0.57974
## Adj. R-Squared: 0.43602
## F-statistic: 160.017 on 3 and 348 DF, p-value: < 2.22e-16
Effet sur la mortalité de la période post-mésures par rapport à la période avant l’entrée de la réglementation des PM10:
Modèle Linéaire:
Non accidental mortality
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = nocc_tot ~ Period + elipic + Period * elipic, data = datam,
## model = "within")
##
## Balanced Panel: n = 117, T = 4, N = 468
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -33.71211 -8.17036 0.80393 7.56250 33.55393
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Period2 -6.3292 5.5684 -1.1366 0.2565
## elipic -3.8484 4.5455 -0.8466 0.3978
## Period2:elipic 5.0642 4.8368 1.0470 0.2958
##
## Total Sum of Squares: 71832
## Residual Sum of Squares: 71387
## R-Squared: 0.0061946
## Adj. R-Squared: -0.33364
## F-statistic: 0.723058 on 3 and 348 DF, p-value: 0.53877
Cardiovascular causes mortality
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = cv_tot ~ Period + elipic + Period * elipic, data = datam,
## model = "within")
##
## Balanced Panel: n = 117, T = 4, N = 468
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -12.564535 -3.314535 0.095894 2.935465 18.693606
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Period2 -6.6172 2.1693 -3.0504 0.002461 **
## elipic -1.9747 1.7708 -1.1151 0.265559
## Period2:elipic 1.7166 1.8843 0.9110 0.362935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 11136
## Residual Sum of Squares: 10834
## R-Squared: 0.027122
## Adj. R-Squared: -0.30556
## F-statistic: 3.23392 on 3 and 348 DF, p-value: 0.022468
Respiratory causes mortality
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = respi_tot ~ Period + elipic + Period * elipic,
## data = datam, model = "within")
##
## Balanced Panel: n = 117, T = 4, N = 468
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -7.79300 -2.56001 -0.49599 2.30102 15.20700
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Period2 -0.52800 1.53896 -0.3431 0.7317
## elipic -0.17200 1.25626 -0.1369 0.8912
## Period2:elipic -0.62393 1.33677 -0.4667 0.6410
##
## Total Sum of Squares: 5504
## Residual Sum of Squares: 5452.7
## R-Squared: 0.0093129
## Adj. R-Squared: -0.32946
## F-statistic: 1.09045 on 3 and 348 DF, p-value: 0.35315
Modèle de Poisson:
Non accidental mortality
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -1388.075
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## Period2 -0.05171 0.03511 -1.473 0.141
## elipic -0.03239 0.02924 -1.108 0.268
## Period2:elipic 0.04310 0.03118 1.382 0.167
## --------------------------------------------
Cardiovascular causes mortality
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -1013.191
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## Period2 -0.20351 0.06881 -2.958 0.0031 **
## elipic -0.06073 0.05626 -1.080 0.2803
## Period2:elipic 0.05107 0.06058 0.843 0.3992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --------------------------------------------
Respiratory causes mortality
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 3 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -900.6758
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## Period2 -0.06650 0.13834 -0.481 0.631
## elipic -0.02123 0.11232 -0.189 0.850
## Period2:elipic -0.07457 0.11942 -0.624 0.532
## --------------------------------------------
Après création de 2 dataframes par type d’appariement et par période 1 ou 2, analyse diff in diff via regression linéaire pour évaluer l’effet des mesures sur le niveau de PM10 et via regression de Poisson pour évaluer effet sur mortalité non accidentelle:
# Periode 1:
## Create panel data dataframe
#datam_p1<-pdata.frame(datam_p1,index="PAIR")
#datam_p2<-pdata.frame(datam_p2,index="PAIR")
### Model to study effect on PM10 concentration
fixPM10_P1<-plm(moyPM10 ~ period + elipic + period*elipic, data=datam_p1, model="within")
fixPM10_P2<-plm(moyPM10 ~ period + elipic + period*elipic, data=datam_p2, model="within")
### Model to study effect on mortality
## Non accidental causes
# Gaussian Version
nocc_P1<-plm(nocc_tot ~ period + elipic + period*elipic, data=datam_p1, model="within")
nocc_P2<-plm(nocc_tot ~ period + elipic + period*elipic, data=datam_p2, model="within")
# Poisson Version
noccP_P1<-pglm(nocc_tot ~ period + elipic + period*elipic, data=datam_p1, family=poisson(link = "log"), model="within")
noccP_P2<-pglm(nocc_tot ~ period + elipic + period*elipic, data=datam_p2, family=poisson(link = "log"), model="within")
## Cardiovascular causes
# Gaussian Version
cv_P1<-plm(cv_tot ~ period + elipic + period*elipic, data=datam_p1, model="within")
cv_P2<-plm(cv_tot ~ period + elipic + period*elipic, data=datam_p2, model="within")
# Poisson Version
cvP_P1<-pglm(cv_tot ~ period + elipic + period*elipic, data=datam_p1, family=poisson(link = "log"), model="within")
cvP_P2<-pglm(cv_tot ~ period + elipic + period*elipic, data=datam_p2, family=poisson(link = "log"), model="within")
## Respiratory causes
# Gaussian Version
respi_P1<-plm(respi_tot ~ period + elipic + period*elipic, data=datam_p1, model="within")
respi_P2<-plm(respi_tot ~ period + elipic + period*elipic, data=datam_p2, model="within")
# Poisson Version
respiP_P1<-pglm(respi_tot ~ period + elipic + period*elipic, data=datam_p1, family=poisson(link = "log"), model="within")
respiP_P2<-pglm(respi_tot ~ period + elipic + period*elipic, data=datam_p2, family=poisson(link = "log"), model="within")
Première Période:
PM10 Concentration
Effet sur niveau de concentration de PM10 période 1 vs. Période 2 :
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = moyPM10 ~ period + elipic + period * elipic, data = datam_p1,
## model = "within")
##
## Unbalanced Panel: n = 38, T = 1-4, N = 128
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -26.6665 -7.1961 -1.6413 6.8866 27.6099
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period2 -3.5384 5.6630 -0.6248 0.5337
## elipic 31.6818 4.4623 7.0999 3.208e-10 ***
## period2:elipic -4.8993 5.9049 -0.8297 0.4090
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 37830
## Residual Sum of Squares: 17145
## R-Squared: 0.54678
## Adj. R-Squared: 0.3384
## F-statistic: 34.9867 on 3 and 87 DF, p-value: 6.2764e-15
Non accidental mortality
Effet sur mortalité non accidentelle période 1 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = nocc_tot ~ period + elipic + period * elipic, data = datam_p1,
## model = "within")
##
## Unbalanced Panel: n = 38, T = 1-4, N = 128
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -33.7026 -9.5902 -1.1279 9.2567 33.9467
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period2 -6.6041 6.8198 -0.9684 0.3355
## elipic -3.8103 5.3738 -0.7091 0.4802
## period2:elipic 6.5972 7.1110 0.9277 0.3561
##
## Total Sum of Squares: 25290
## Residual Sum of Squares: 24865
## R-Squared: 0.016794
## Adj. R-Squared: -0.43525
## F-statistic: 0.495343 on 3 and 87 DF, p-value: 0.68645
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -381.4521
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period2 -0.05432 0.03655 -1.486 0.137
## elipic -0.03211 0.02929 -1.096 0.273
## period2:elipic 0.05687 0.03908 1.455 0.146
## --------------------------------------------
Cardiovascular causes mortality
Effet sur mortalité par causes cardiovasculaires période 1 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = cv_tot ~ period + elipic + period * elipic, data = datam_p1,
## model = "within")
##
## Unbalanced Panel: n = 38, T = 1-4, N = 128
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -13.80914 -3.67853 -0.32667 2.42623 17.59543
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period2 -6.8729 2.8513 -2.4105 0.01804 *
## elipic -2.0016 2.2467 -0.8909 0.37544
## period2:elipic 5.3834 2.9731 1.8107 0.07364 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 4771
## Residual Sum of Squares: 4346.4
## R-Squared: 0.088994
## Adj. R-Squared: -0.32986
## F-statistic: 2.83294 on 3 and 87 DF, p-value: 0.042916
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -282.6061
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period2 -0.21478 0.07202 -2.982 0.00286 **
## elipic -0.06201 0.05635 -1.100 0.27118
## period2:elipic 0.18275 0.07629 2.396 0.01659 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --------------------------------------------
Respiratory causes mortality
Effet sur mortalité par causes respiratoires période 1 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = respi_tot ~ period + elipic + period * elipic,
## data = datam_p1, model = "within")
##
## Unbalanced Panel: n = 38, T = 1-4, N = 128
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -7.77065 -1.77207 -0.23398 0.93022 15.22935
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period2 -1.19653 1.51606 -0.7892 0.4321
## elipic -0.08259 1.19461 -0.0691 0.9450
## period2:elipic 0.14666 1.58080 0.0928 0.9263
##
## Total Sum of Squares: 1237.8
## Residual Sum of Squares: 1228.8
## R-Squared: 0.0072462
## Adj. R-Squared: -0.44919
## F-statistic: 0.211672 on 3 and 87 DF, p-value: 0.88807
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 3 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -217.6639
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period2 -0.159146 0.148575 -1.071 0.284
## elipic -0.008954 0.112500 -0.080 0.937
## period2:elipic 0.019088 0.151636 0.126 0.900
## --------------------------------------------
Deuxième Période:
PM10 Concentration
Effet sur niveau de concentration de PM10 période 2 vs. Période 3 :
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = moyPM10 ~ period + elipic + period * elipic, data = datam_p2,
## model = "within")
##
## Unbalanced Panel: n = 110, T = 1-4, N = 418
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -21.766631 -4.867384 -0.043927 4.732145 25.967375
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period3 -10.3530 3.0424 -3.4029 0.0007557 ***
## elipic 25.7560 2.3299 11.0545 < 2.2e-16 ***
## period3:elipic -6.3046 2.5977 -2.4270 0.0158030 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 60673
## Residual Sum of Squares: 23671
## R-Squared: 0.60985
## Adj. R-Squared: 0.46659
## F-statistic: 158.919 on 3 and 305 DF, p-value: < 2.22e-16
Non accidental mortality
Effet sur mortalité non accidentelle période 2 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = nocc_tot ~ period + elipic + period * elipic, data = datam_p2,
## model = "within")
##
## Unbalanced Panel: n = 110, T = 1-4, N = 418
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -30.68063 -7.68063 0.30563 7.23626 33.50462
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period3 0.78535 4.86263 0.1615 0.8718
## elipic 1.01849 3.72391 0.2735 0.7847
## period3:elipic 0.25900 4.15186 0.0624 0.9503
##
## Total Sum of Squares: 60586
## Residual Sum of Squares: 60470
## R-Squared: 0.0019135
## Adj. R-Squared: -0.3646
## F-statistic: 0.194916 on 3 and 305 DF, p-value: 0.89982
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -1209.748
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period3 0.006922 0.032136 0.215 0.829
## elipic 0.009030 0.024871 0.363 0.717
## period3:elipic 0.002193 0.027703 0.079 0.937
## --------------------------------------------
Cardiovascular causes mortality
Effet sur mortalité par causes cardiovasculaires période 2 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = cv_tot ~ period + elipic + period * elipic, data = datam_p2,
## model = "within")
##
## Unbalanced Panel: n = 110, T = 1-4, N = 418
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -11.80331 -3.29901 0.11419 2.70099 17.53747
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period3 -0.18157 1.88700 -0.0962 0.923410
## elipic 3.14988 1.44510 2.1797 0.030045 *
## period3:elipic -4.34592 1.61117 -2.6974 0.007378 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 9360.8
## Residual Sum of Squares: 9106.3
## R-Squared: 0.027192
## Adj. R-Squared: -0.33004
## F-statistic: 2.84184 on 3 and 305 DF, p-value: 0.038045
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 2 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -882.0198
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period3 -0.003836 0.064832 -0.059 0.95282
## elipic 0.111815 0.049387 2.264 0.02357 *
## period3:elipic -0.157860 0.055681 -2.835 0.00458 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --------------------------------------------
Respiratory causes mortality
Effet sur mortalité par causes respiratoires période 2 vs. Période 3 :
Linear Normal Regression
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = respi_tot ~ period + elipic + period * elipic,
## data = datam_p2, model = "within")
##
## Unbalanced Panel: n = 110, T = 1-4, N = 418
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -6.95383 -2.63852 -0.45383 2.27990 9.23109
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## period3 3.059845 1.361054 2.2481 0.02528 *
## elipic -0.075654 1.042324 -0.0726 0.94219
## period3:elipic -0.739653 1.162108 -0.6365 0.52494
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 4867.2
## Residual Sum of Squares: 4737.5
## R-Squared: 0.026658
## Adj. R-Squared: -0.33077
## F-statistic: 2.78446 on 3 and 305 DF, p-value: 0.041035
Poisson Regression
## --------------------------------------------
## Maximum Likelihood estimation
## Newton-Raphson maximisation, 3 iterations
## Return code 1: gradient close to zero
## Log-Likelihood: -789.4229
## 3 free parameters
## Estimates:
## Estimate Std. error t value Pr(> t)
## period3 0.390786 0.125761 3.107 0.00189 **
## elipic -0.008585 0.097696 -0.088 0.92998
## period3:elipic -0.086745 0.107598 -0.806 0.42013
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --------------------------------------------