Grupo 10. Marcos Flórez Fernández, Julio González Escudero, Marina Martínez González, Lucía Ojer Guerra, Roberto Panero Hoz, Sergi Sos Lluch.
Apartado a): Modelar el número acumulado de personas infectadas mediante un ajuste lineal.
Los datos introducidos a través de un fichero han sido modificados hasta el día 03/05/2020.
days<-read.table("AcummulativeDaysUK")
days<-c(days$V1)
NewCasesUK<-read.table("NewCasesUK",sep=".")
NewCasesUK<-c(NewCasesUK$V1);NewCasesUK
[1] 2 0 0 0 0 1 0 0 1 4 0 0 1 0 0
[16] 0 0 0 0 0 0 0 0 4 0 0 0 6 4 12
[31] 5 11 34 29 46 46 65 50 52 83 134 207 264 330 152
[46] 407 676 643 714 1040 665 967 1430 1450 2130 2890 2560 2500 2670 3250
[61] 4570 4520 4670 4000 6200 4140 3890 5870 4680 5710 5230 5290 4340 5250 4600
[76] 4620 5600 5530 5850 4680 4300 4450 4580 5390 4910 4460 4310 4000 4080 6030
[91] 6200 4810 4340
AllCasesUK<-cumsum(NewCasesUK)
AllCasesUK
[1] 2 2 2 2 2 3 3 3 4 8
[11] 8 8 9 9 9 9 9 9 9 9
[21] 9 9 9 13 13 13 13 19 23 35
[31] 40 51 85 114 160 206 271 321 373 456
[41] 590 797 1061 1391 1543 1950 2626 3269 3983 5023
[51] 5688 6655 8085 9535 11665 14555 17115 19615 22285 25535
[61] 30105 34625 39295 43295 49495 53635 57525 63395 68075 73785
[71] 79015 84305 88645 93895 98495 103115 108715 114245 120095 124775
[81] 129075 133525 138105 143495 148405 152865 157175 161175 165255 171285
[91] 177485 182295 186635
RECTA DE REGRESIÓN O AJUSTE LINEAL.\( \ \ \ \ \ \ \ \ y=a+bx\rightarrow y=-46280+1840x \)
LinealModel<-lm(AllCasesUK~days)
summary(LinealModel)
Call:
lm(formula = AllCasesUK ~ days)
Residuals:
Min 1Q Median 3Q Max
-43570 -28214 -1559 26043 61752
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -46280 6387 -7.246 1.35e-10 ***
days 1840 118 15.598 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 30550 on 91 degrees of freedom
Multiple R-squared: 0.7278, Adjusted R-squared: 0.7248
F-statistic: 243.3 on 1 and 91 DF, p-value: < 2.2e-16
Apartado b): Modelar el número acumulado de personas infectadas mediante un ajuste no lineal de los presentados en las transparencias teóricas de la asignatura.
\[ \begin{align*} y&=\alpha e^{\beta x}\\ \\ log(y)&=log(\alpha)+\beta x\\ \\ Z&=A+Bx \end{align*} \]
\[ Z=log(y);\ A=log(\alpha);\ B=\beta \]
Z<-log(AllCasesUK)
\[ Cambio\ de\ variable\ para\ los\ valores\ de\ "AllCasesUK". \]
cor(Z,days)
[1] 0.9788588
ExpModel<-lm(Z~days)
summary(ExpModel)
Call:
lm(formula = Z ~ days)
Residuals:
Min 1Q Median 3Q Max
-1.81048 -0.67971 0.06022 0.70234 1.18595
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.034520 0.177367 0.195 0.846
days 0.149601 0.003277 45.653 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8483 on 91 degrees of freedom
Multiple R-squared: 0.9582, Adjusted R-squared: 0.9577
F-statistic: 2084 on 1 and 91 DF, p-value: < 2.2e-16
A<-ExpModel$coefficients[1]
b<-ExpModel$coefficients[2]
\[ \alpha=e^A;\ \beta=B \]
a<-exp(A)
a
(Intercept)
1.035123
b
days
0.1496007
Ecuación del modelo exponencial:
\[ y=1.035123 e^{0.1496007x} \]
Apartado c): Mejorar dicho ajuste mediante técnicas de mínimos cuadrados no lineales.
\[ A=\alpha = 1.035123; B=\beta = 0.1496007 \]
NLS<-nls(AllCasesUK~A*exp(B*days),start=list(A=a,B=b))
summary(NLS)
Formula: AllCasesUK ~ A * exp(B * days)
Parameters:
Estimate Std. Error t value Pr(>|t|)
A 1.381e+03 2.150e+02 6.426 5.9e-09 ***
B 5.429e-02 1.835e-03 29.580 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11320 on 91 degrees of freedom
Number of iterations to convergence: 24
Achieved convergence tolerance: 8.401e-06
A<-summary(NLS)$coefficients[1]
B<-summary(NLS)$coefficients[2]
\[ y=1381.294 e^{0.05429373x} \]
Apartado d): Modelar el número acumulado de personas infectadas mediante un ajuste no lineal de tipo asintótico más realista que los anteriores.

Modelo sigmoide de Gompertz:
\[ Y = Ke^{-e^{a-bx}} \]
Relación con Ec. Lineal:
\[ loglog\dfrac{k}{y}=a-bx \]
Punto de inflexión:
\[ \left. x=\dfrac{a}{b} \atop y=\dfrac{k}{e} \right\} \left. 93 \approx\dfrac{a}{b} \atop 186635 \approx\dfrac{k}{e} \right\} \left. \begin{array}{rcl} a = 9.3\\ b = 0.1\\ k = 186635e \end{array} \right\} \]
Mínimos cuadrados no lineales para este modelo:
Gompertz<-nls(AllCasesUK~k*exp(-exp(a-b*days)),
star=list(a=9.3,b=0.1,k=507326.5291),
control=nls.control(minFactor=2^-24, maxiter=200))
summary(Gompertz)
Formula: AllCasesUK ~ k * exp(-exp(a - b * days))
Parameters:
Estimate Std. Error t value Pr(>|t|)
a 4.177e+00 4.098e-02 101.95 <2e-16 ***
b 5.606e-02 7.123e-04 78.70 <2e-16 ***
k 2.609e+05 2.905e+03 89.79 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1022 on 90 degrees of freedom
Number of iterations to convergence: 159
Achieved convergence tolerance: 2.967e-06
a<-summary(Gompertz)$coefficients[1];a
[1] 4.177245
b<-summary(Gompertz)$coefficients[2];b
[1] 0.05605733
k<-summary(Gompertz)$coefficients[3];k
[1] 260853.8
\[ \]
Ecuación final del modelo de Gompertz:
\[ \] \[ Y = 260853.9e^{-e^{4.177245-0.05605732x}} \]