library(readxl)
ant <- read_excel("stat data .xlsx", sheet = "Sheet2")
str(ant)
## Classes 'tbl_df', 'tbl' and 'data.frame': 48 obs. of 3 variables:
## $ Location : num 1 1 1 1 1 1 2 2 2 2 ...
## $ Abundance: num 2 4 2 4 1 3 1 5 3 4 ...
## $ Density : chr "LOW" "HIGH" "LOW" "HIGH" ...
density <- as.factor(ant$Density)
species <- ant$Abundance
location <- ant$Location
boxplot(species ~ density)
ant.aov <- aov(species ~ density, data = ant)
summary(ant.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## density 1 60.75 60.75 56.74 1.46e-09 ***
## Residuals 46 49.25 1.07
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(ant.aov)
library(emmeans)
comp <- emmeans(ant.aov, "density")
plot(comp)
pairs(comp)
## contrast estimate SE df t.ratio p.value
## HIGH - LOW 2.25 0.299 46 7.533 <.0001
This shows that the number of species is significantly different in areas of low and high plant density, with a very low p-value of < .0001.
TukeyHSD(ant.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = species ~ density, data = ant)
##
## $density
## diff lwr upr p adj
## LOW-HIGH -2.25 -2.85125 -1.64875 0
plot(TukeyHSD(ant.aov))
## Two-Way ANOVA
twoway.aov <- aov(species ~ density + location, data = ant)
summary(twoway.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## density 1 60.75 60.75 56.159 1.9e-09 ***
## location 1 0.57 0.57 0.528 0.471
## Residuals 45 48.68 1.08
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(twoway.aov)
mod.aov <- aov(density ~ species, data = ant)
## Warning in model.response(mf, "numeric"): using type = "numeric" with a
## factor response will be ignored
## Warning in Ops.factor(y, z$residuals): '-' not meaningful for factors