Split the ChickWeight{datasets} data by individual chicks to extract separate slope estimates of regressing weight onto Time for each chick.

library(datasets)
dta <- datasets::ChickWeight
head(dta)
##   weight Time Chick Diet
## 1     42    0     1    1
## 2     51    2     1    1
## 3     59    4     1    1
## 4     64    6     1    1
## 5     76    8     1    1
## 6     93   10     1    1
m0 <- lapply(split(dta[, 1:2], 
                   list(dta$Chick)), 
                   function(x) lm(weight~Time, data=x))
sapply(m0, coef)
##             18        16       15        13         9        20        10
## (Intercept) 39 43.392857 46.83333 43.384359 52.094086 37.667826 38.695054
## Time        -2  1.053571  1.89881  2.239601  2.663137  3.732718  4.066102
##                     8        17       19        4         6        11        3
## (Intercept) 43.727273 43.030706 31.21222 32.86568 44.123431 47.921948 23.17955
## Time         4.827273  4.531538  5.08743  6.08864  6.378006  7.510967  8.48737
##                     1        12         2        5       14         7        24
## (Intercept) 24.465436 21.939797 24.724853 16.89563 20.52488  5.842535 53.067766
## Time         7.987899  8.440629  8.719861 10.05536 11.98245 13.205264  1.207533
##                    30        22        23        27        28       26       25
## (Intercept) 39.109666 40.082590 38.428074 29.858569 23.984874 20.70715 19.65119
## Time         5.898351  5.877931  6.685978  7.379368  9.703676 10.10316 11.30676
##                    29       21        33        37       36       31       39
## (Intercept)  5.882771 15.56330 45.830283 29.608834 25.85403 19.13099 17.03661
## Time        12.453487 15.47512  5.855241  6.677053  9.99047 10.02617 10.73710
##                   38       32       40        34        35        44        45
## (Intercept) 10.67282 13.69173 10.83830  5.081682  4.757979 44.909091 35.673121
## Time        12.06051 13.18091 13.44229 15.000151 17.258811  6.354545  7.686432
##                    43        41        47        49        46       50       42
## (Intercept) 52.185751 39.337922 36.489790 31.662986 27.771744 23.78218 19.86507
## Time         8.318863  8.159885  8.374981  9.717894  9.738466 11.33293 11.83679
##                    48
## (Intercept)  7.947663
## Time        13.714718