1 Q5a: Robustness of Networks

1.1 network_removal_vertex_or_edge_by_random_only

1.1.1 Random Vertex Removal

     method         option max.component.orig max.component.removed
  1: random Vertex removal                192                192.00
  2: random Vertex removal                192                191.00
  3: random Vertex removal                192                190.00
  4: random Vertex removal                192                189.00
  5: random Vertex removal                192                188.00
 ---                                                               
189: random Vertex removal                192                  1.45
190: random Vertex removal                192                  1.30
191: random Vertex removal                192                  1.05
192: random Vertex removal                192                  1.00
193: random Vertex removal                192                192.00
     component.proportion removed.proportion
  1:          1.000000000        0.000000000
  2:          0.994791667        0.005208333
  3:          0.989583333        0.010416667
  4:          0.984375000        0.015625000
  5:          0.979166667        0.020833333
 ---                                        
189:          0.007552083        0.979166667
190:          0.006770833        0.984375000
191:          0.005468750        0.989583333
192:          0.005208333        0.994791667
193:          0.000000000        1.000000000

1.1.2 Random Edge Removal

      method       option max.component.orig max.component.removed
   1: random Edge removal                192                 192.0
   2: random Edge removal                192                 192.0
   3: random Edge removal                192                 192.0
   4: random Edge removal                192                 192.0
   5: random Edge removal                192                 192.0
  ---                                                             
1428: random Edge removal                192                   2.1
1429: random Edge removal                192                   2.0
1430: random Edge removal                192                   2.0
1431: random Edge removal                192                   2.0
1432: random Edge removal                192                 192.0
      component.proportion removed.proportion
   1:           1.00000000        0.000000000
   2:           1.00000000        0.000698812
   3:           1.00000000        0.001397624
   4:           1.00000000        0.002096436
   5:           1.00000000        0.002795248
  ---                                        
1428:           0.01093750        0.997204752
1429:           0.01041667        0.997903564
1430:           0.01041667        0.998602376
1431:           0.01041667        0.999301188
1432:           0.00000000        1.000000000

1.2 network_removal_vertex_or_edge_by_degree_only

1.2.1 Degree Vertex Removal

     method         option max.component.orig max.component.removed
  1: degree Vertex Removal                192                   192
  2: degree Vertex Removal                192                   191
  3: degree Vertex Removal                192                   190
  4: degree Vertex Removal                192                   189
  5: degree Vertex Removal                192                   188
 ---                                                               
189: degree Vertex Removal                192                     1
190: degree Vertex Removal                192                     1
191: degree Vertex Removal                192                     1
192: degree Vertex Removal                192                     1
193: degree Vertex Removal                192                   192
     component.proportion removed.proportion
  1:          1.000000000        0.000000000
  2:          0.994791667        0.005208333
  3:          0.989583333        0.010416667
  4:          0.984375000        0.015625000
  5:          0.979166667        0.020833333
 ---                                        
189:          0.005208333        0.979166667
190:          0.005208333        0.984375000
191:          0.005208333        0.989583333
192:          0.005208333        0.994791667
193:          0.000000000        1.000000000

2 5b. Random graphs as null models for networks

2.1 Q5b1

2.1.1 Basic statistics of igraph net

The “macaque” dataset entails a network of established functional connections between brain areas understood to be involved with the tactile function of the visual cortex in macaque monkeys that published by Négyessy et al. (2006)

IGRAPH f7130f3 DN-- 45 463 -- 
+ attr: Citation (g/c), Author (g/c), shape (v/c), name (v/c)
+ edges from f7130f3 (vertex names):
 [1] V1 ->V2     V1 ->V3     V1 ->V3A    V1 ->V4     V1 ->V4t    V1 ->MT    
 [7] V1 ->PO     V1 ->PIP    V2 ->V1     V2 ->V3     V2 ->V3A    V2 ->V4    
[13] V2 ->V4t    V2 ->VOT    V2 ->VP     V2 ->MT     V2 ->MSTd/p V2 ->MSTl  
[19] V2 ->PO     V2 ->PIP    V2 ->VIP    V2 ->FST    V2 ->FEF    V3 ->V1    
[25] V3 ->V2     V3 ->V3A    V3 ->V4     V3 ->V4t    V3 ->MT     V3 ->MSTd/p
[31] V3 ->PO     V3 ->LIP    V3 ->PIP    V3 ->VIP    V3 ->FST    V3 ->TF    
[37] V3 ->FEF    V3A->V1     V3A->V2     V3A->V3     V3A->V4     V3A->VP    
[43] V3A->MT     V3A->MSTd/p V3A->MSTl   V3A->PO     V3A->LIP    V3A->DP    
+ ... omitted several edges
[1] 463
[1] 45
    V1     V2     V3    V3A     V4    V4t    VOT     VP     MT MSTd/p   MSTl 
    16     28     28     25     40     17     10     27     32     33     19 
    PO    LIP    PIP    VIP     DP     7a    FST   PITd   PITv   CITd   CITv 
    28     38     16     40     20     24     35     13     20      9     16 
  AITd   AITv   STPp   STPa     TF     TH    FEF     46     3a     3b      1 
    14     12     20      9     29     21     38     36     12      8     15 
     2      5     Ri    SII     7b      4      6    SMA     Ig     Id     35 
    20     20      8     23     22     17     20     16     11      7      6 
    36 
     8 
[1] 20.57778
 [1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
 [7] 0.02222222 0.02222222 0.06666667 0.04444444 0.02222222 0.02222222
[13] 0.04444444 0.02222222 0.02222222 0.02222222 0.08888889 0.04444444
[19] 0.00000000 0.02222222 0.13333333 0.02222222 0.02222222 0.02222222
[25] 0.02222222 0.02222222 0.00000000 0.02222222 0.06666667 0.02222222
[31] 0.00000000 0.00000000 0.02222222 0.02222222 0.00000000 0.02222222
[37] 0.02222222 0.00000000 0.04444444 0.00000000 0.04444444

2.1.3 Maximum Modularity wit heuristic Louvain algorithm

  • The following computation is based on the paper of Blondel et al. (2008)
Community sizes
 1  2  3 
16 14 15 

2.1.5 Create a Random Graph with Erdős-Rényi Model

+ 45/45 vertices, from cd82c73:
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
+ 463/463 edges from cd82c73:
  [1]  1-> 2  1-> 6  1->15  1->17  1->19  1->22  1->31  1->32  1->39  1->43
 [11]  2-> 1  2-> 5  2-> 6  2-> 7  2-> 9  2->13  2->20  2->37  2->38  2->39
 [21]  3-> 2  3-> 4  3-> 6  3->20  3->21  3->23  3->29  3->37  3->43  4-> 7
 [31]  4-> 8  4->10  4->16  4->20  4->24  4->28  4->42  5-> 2  5-> 4  5->11
 [41]  5->13  5->16  5->24  5->26  5->31  5->34  5->39  5->41  5->44  6-> 3
 [51]  6-> 7  6->21  6->29  6->31  6->38  7-> 1  7-> 2  7-> 3  7-> 6  7->11
 [61]  7->13  7->15  7->16  7->20  7->24  7->25  7->31  7->34  7->35  7->41
 [71]  8-> 4  8-> 5  8->14  8->16  8->25  8->30  8->33  8->34  8->35  8->38
 [81]  9-> 4  9->11  9->12  9->19  9->27  9->28  9->35  9->38  9->43  9->44
 [91] 10-> 3 10-> 4 10->45 10->13 10->15 10->17 10->18 10->21 10->22 10->23
+ ... omitted several edges

2.1.7 BoxPlot of the simulation

2.1.8 Conclusion:

                vertex                   edge            mean_degree 
               0.00000                0.00000                0.00000 
               density        avg_path_length           transitivity 
               0.00000               14.69083               20.68250 
cluster_coeff_directed       louvain_max_size     louvain_modularity 
              57.51690              -44.00000               67.13985 
  • The simulation runs of Random Erdős-Rényi Graph are 500
  • The above boxplot is to show the summary statistics of real_net_macaque against sim_net_Erdős_Rényi model
  • Since the sim_net_Erdős_Rényi model are generated with fixed vertex and fixed edge , therefore the sim_net_Erdős_Rényi model of mean averages of vertex , edge , mean_degree and graph_density are same as the real_net_macaque. These four statistics(vertex , edge , mean_degree and graph_density) perserves the same degree of distribution of both real_net_macaque and sim_net_Erdős_Rényi model.
  • The avg_path_length and transitivity in sim_net_Erdős_Rényi model have very little different from real_net_macaque.
  • However, the main differences between the real_net and sim_net are indicated in cluster_coeff, louvain_max_size and louvain_modularity.

2.2 Q5b2

2.2.2 BoxPlot of the simulation

2.2.3 Conclusion

            vertex               edge        mean_degree            density 
           0.00000            0.00000            0.00000            0.00000 
   avg_path_length       transitivity      cluster_coeff   louvain_max_size 
          14.40997           18.45235           57.06069          -66.66667 
louvain_modularity 
          69.16865 
  • The simulation runs of sim_degseq_net are 500
  • The above boxplot is to show the summary statistics of real_net_macaque against sim_degseq_net model
  • Since the sim_degseq_net are generated with fixed vertex and fixed edge , therefore the sim_degseq_net model of mean averages of vertex , edge , mean_degree and graph_density are same as the real_net_macaque. These four statistics(vertex , edge , mean_degree and graph_density) perserves the same degree of distribution of both real_net_macaque and sim_degseq_net model.
  • The avg_path_length and transitivity in sim_degseq_net model have very little different from real_net_macaque.
  • However, the main differences between the real_net and sim_net are indicated in cluster_coeff, louvain_max_size and louvain_modularity.

Reference

Blondel, Vincent D, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. “Fast Unfolding of Communities in Large Networks.” Journal of Statistical Mechanics: Theory and Experiment 2008 (10): P10008.

Fagiolo, Giorgio. 2007. “Clustering in Complex Directed Networks.” PRE 76 (2): 026107. https://link.aps.org/doi/10.1103/PhysRevE.76.026107.

Négyessy, László, Tamás Nepusz, László Kocsis, and Fülöp Bazsó. 2006. “Prediction of the Main Cortical Areas and Connections Involved in the Tactile Function of the Visual Cortex by Network Analysis.” European Journal of Neuroscience 23 (7): 1919–30.