APEX Calculus, p.496, Ex. 17

Use the Taylor series given in Key Idea 8.8.1 to verify the given identity:

\[cos(-x) = cox(x)\] We are given that:

\[cos(x) = \sum_{n=0}^{\infty} (-1)^{n}\frac{x^{2n}}{(2n)!}\]

and the first few terms are:

\[1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + ...\]

The first few terms of cos(-x) are then:

\[1 - \frac{(-x)^{2}}{2!} + \frac{(-x)^{4}}{4!} - \frac{(-x)^{6}}{6!} + ...\]

\[ = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + ...\]

Which is obviously equal to those of \(cos(x)\).