Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,090 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2016-01-04 103. 105. 102 105. 67649400 98.2
## 2 AAPL 2016-01-05 106. 106. 102. 103. 55791000 95.8
## 3 AAPL 2016-01-06 101. 102. 99.9 101. 68457400 93.9
## 4 AAPL 2016-01-07 98.7 100. 96.4 96.4 81094400 89.9
## 5 AAPL 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.4
## 6 AAPL 2016-01-11 99.0 99.1 97.3 98.5 49739400 91.9
## 7 AAPL 2016-01-12 101. 101. 98.8 100. 49154200 93.2
## 8 AAPL 2016-01-13 100. 101. 97.3 97.4 62439600 90.8
## 9 AAPL 2016-01-14 98.0 100. 95.7 99.5 63170100 92.8
## 10 AAPL 2016-01-15 96.2 97.7 95.4 97.1 79833900 90.6
## # … with 1,080 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
stocks <- tq_get("MSFT", get = "stock.prices", from = "2018-01-01")
stocks
## # A tibble: 587 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MSFT 2018-01-02 86.1 86.3 85.5 85.9 22483800 83.0
## 2 MSFT 2018-01-03 86.1 86.5 86.0 86.3 26061400 83.4
## 3 MSFT 2018-01-04 86.6 87.7 86.6 87.1 21912000 84.2
## 4 MSFT 2018-01-05 87.7 88.4 87.4 88.2 23407100 85.2
## 5 MSFT 2018-01-08 88.2 88.6 87.6 88.3 22113000 85.3
## 6 MSFT 2018-01-09 88.7 88.7 87.9 88.2 19484300 85.2
## 7 MSFT 2018-01-10 87.9 88.2 87.4 87.8 18652200 84.8
## 8 MSFT 2018-01-11 88.1 88.1 87.2 88.1 17808900 85.1
## 9 MSFT 2018-01-12 88.7 89.8 88.4 89.6 24271500 86.6
## 10 MSFT 2018-01-16 90.1 90.8 88.0 88.3 36599700 85.3
## # … with 577 more rows
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
Logical data takes either true or false. For example, it could be false, false, true, true. Character data is any characters such as favorite sports, address and survey taker names.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps adjusted to the y-axis, instead of close.
stocks %>%
ggplot(aes(x = date, y = `adjusted`)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Since the beginning of 2019, the Microsoft stock has steadily been going up, reaching its peak height a few months into 2020.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage. Do this by using the tq_get() function once, not twice.
mult_stocks <- tq_get(c("MSFT", "AMZN"),
get = "stock.prices",
from = "2016-01-01",
to = "2017-01-01")
mult_stocks
## # A tibble: 504 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MSFT 2016-01-04 54.3 54.8 53.4 54.8 53778000 50.4
## 2 MSFT 2016-01-05 54.9 55.4 54.5 55.0 34079700 50.6
## 3 MSFT 2016-01-06 54.3 54.4 53.6 54.0 39518900 49.7
## 4 MSFT 2016-01-07 52.7 53.5 52.1 52.2 56564900 48.0
## 5 MSFT 2016-01-08 52.4 53.3 52.2 52.3 48754000 48.1
## 6 MSFT 2016-01-11 52.5 52.8 51.5 52.3 36943800 48.1
## 7 MSFT 2016-01-12 52.8 53.1 52.1 52.8 36095500 48.5
## 8 MSFT 2016-01-13 53.8 54.1 51.3 51.6 66883600 47.5
## 9 MSFT 2016-01-14 52 53.4 51.6 53.1 52381900 48.8
## 10 MSFT 2016-01-15 51.3 52.0 50.3 51.0 71820700 46.9
## # … with 494 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.