#install.packages("SASxport")
#install.packages("foreign")
#install.packages('Hmisc')
#library(haven)
#library(Hmisc)
#library(SASxport)
library(foreign)
#download datasets - AddHealth
wave1<-read.dta("/projects/add_health/data/11613344/ICPSR_27021/DS0001/da27021p1.dta")
wave4<-read.dta("/projects/add_health/data/11613344/ICPSR_27021/DS0012/da27021p12.dta")
#wave4birth<-read.dta("/projects/add_health/data/11613344/ICPSR_27021/DS0016/da27021p16.dta")
#addhealth.wghtW1<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0025/da27021p25.dta")
#wave3<-read.dta("/projects/add_health/data/11613344/ICPSR_27021/DS0003/da27021p3.dta")
w4meds <- read.xport("/projects/add_health/data/wave_4/biomarkers/w4meds.xpt")
w4glu <- read.xport("/projects/add_health/data/wave_4/biomarkers/glu_a1c.xpt")
#w4barorecepsensitv<-read.xport("/projects/add_health/data/data12_18/W4SupplementalFiles-Biomarker/Baroreceptor Sensitivity/brs.xpt")
w4crp <- read.xport("/projects/add_health/data/wave_4/biomarkers/crp_ebv.xpt")
w4lipids <- read.xport("/projects/add_health/data/wave_4/biomarkers/lipids.xpt")

weightW4 <- read.dta("/projects/add_health/data/11613344/ICPSR_27021/DS0028/da27021p28.dta")

#w1context <- read.dta("/projects/add_health/data/11613344/ICPSR_27024/DS0001/waveIcontext.dta")

#addhealth<-merge(wave1,wave3,by="aid")
#addhealth1<-merge(wave1,wave3,by="aid")
#addhealth1<-merge(addhealth1,wave4,by="aid")
#merge wave1, wave 4, biomarkers, medication.  
addhealth1<-merge(wave4,wave1,by="aid")
#addhealth1<-merge(addhealth1a,wave3,by="aid")

addhealth2<-merge(w4meds,w4glu,by="AID")
addhealth3<-merge(w4crp,w4lipids,by="AID")
#Change uppercase AID to lowercase aid in order to merge by AID/aid.
addhealth2$aid<-addhealth2$AID
addhealth3$aid<-addhealth3$AID
addhealthBiomerge<-merge(addhealth2,addhealth3,by="aid")

#merge into one dataset 
addhealthmerge1<-merge(addhealth1,addhealthBiomerge,by="aid")
addhealth<-merge(addhealthmerge1,weightW4,by="aid")
#addhealth<-merge(addhealth,wave4birth,by="aid")
library(car)
## Loading required package: carData
#Date of birth variables; Wave 1: H1GI1M (month), H1GI1Y (year); Wave 3: H3OD1M (month), H3OD1Y (year); Wave 4: H4OD1M (month), H4OD1Y (year)
#addhealth$birthmonthw1 <- factor(ifelse(addhealth$H1GI1M=="1",01, 
#                                            ifelse(addhealth$H1GI1M=="2", 02, 
#                                            ifelse(addhealth$H1GI1M=="3", 03,
#                                                   ifelse(addhealth$H1GI1M=="4", 04,
#                                                          ifelse(addhealth$H1GI1M=="5", 05,
#                                                                 ifelse(addhealth$H1GI1M=="6", 06,
#                                                                        ifelse(addhealth$H1GI1M=="7", 07,
#                                                                               ifelse(addhealth$H1GI1M=="8", 08,
#                                                                                      ifelse(addhealth$H1GI1M=="9r", 09,
#                                                                                             ifelse(addhealth$H1GI1M=="10", 10,
#                                                                                                    ifelse(addhealth$H1GI1M=="11", 11,
#                                                                                                           ifelse(addhealth$H1GI1M=="12",12,
#                                                                                                                  ifelse(addhealth$H1GI1M=="96", 6,NA))))))))))))))
#table(addhealth$H1GI1M)
#addhealth$birthyearw1 <- factor(ifelse(addhealth$H1GI1Y=="74",1974,
#                                             ifelse(addhealth$H1GI1Y=="75",1975,
#                                                           ifelse(addhealth$H1GI1Y=="76",1976,
#                                                                         ifelse(addhealth$H1GI1Y=="77",1977,
#                                                                                       ifelse(addhealth$H1GI1Y=="78",1978,
#                                                                                                     ifelse(addhealth$H1GI1Y=="79",1979,
#                                                                                                                   ifelse(addhealth$H1GI1Y=="80",1980,
#                                                                                                                                 ifelse(addhealth$H1GI1Y=="81",1981,
#                                                                                                                                               ifelse(addhealth$H1GI1Y=="82",1982,
#                                                                                                                                                             #ifelse(addhealth$H1GI1Y=="83",1983,1979)))))))))))
#            
#table(addhealth$birthyearw1)
library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
#addhealth$birthdatew1 <- as.yearmon(paste(addhealth$birthyearw1, addhealth$birthmonthw1), "%Y %m")
#table(addhealth$birthdatew1)
#interview date w1
#addhealth$iyearfix <- Recode(addhealth$iyear,recodes="'95'='1995'") 
#addhealth$interviewdatew1 <- as.yearmon(paste(addhealth$iyearfix, addhealth$imonth), "%Y %m")
#table(addhealth$iyearfix)
#age - derived from date of birth subtracted from wave interview date 
#addhealth$agew1<-(as.numeric(round(addhealth$interviewdatew1 - addhealth$birthdatew1)))
#table(addhealth$agew1)
#birth month wave 4
addhealth$birthmonthw4<-Recode(addhealth$H4OD1M,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")
#birth year wave 4
addhealth$birthyearw4<-addhealth$H4OD1Y
addhealth$birthyearw4 <- Recode(addhealth$H4OD1Y,recodes="1974=1974;1975=1975;1976=1976;1977=1977;1978=1978;1979=1979;1980=1980;1981=1981;1982=1982;1983=1983")
#combine year and month for birth date wave 4
addhealth$birthdatew4 <- as.yearmon(paste(addhealth$birthyearw4, addhealth$birthmonthw4), "%Y %m")
#interview date w4
addhealth$interviewmonthw4 <- Recode(addhealth$IMONTH4,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")
addhealth$interviewyearw4 <- Recode(addhealth$IYEAR4,recodes="2007=2007;2008=2008;2009=2009")
addhealth$interviewdatew4<-as.yearmon(paste(addhealth$interviewyearw4,addhealth$interviewmonthw4),"%Y %m")
#age - derived from date of birth subtracted from wave interview date 
addhealth$agew4<-(as.numeric(round(addhealth$interviewdatew4 - addhealth$birthdatew4)))
table(addhealth$agew4)
## 
##   24   25   26   27   28   29   30   31   32   33   34 
##    1   84  972 1217 1903 1940 2170 1740  601   59   24
#sexual orientation from wave 3.  Reference group is straight people
#addhealth$sexorient <- factor(ifelse(addhealth$H3SE13=="(1) 100% heterosexual (straight)",1,
#                                      ifelse(addhealth$H3SE13=="(2) Mostly #heterosexual.somewhat attracted to people of own",2, 
#                                           ifelse(addhealth$H3SE13=="(3) Bisexual-attracted #to men and women equally",3,
#                                                   ifelse(addhealth$H3SE13=="(4) Mostly #homosexual.somewhat attracted to opposite sex",4,
#                                                          ifelse(addhealth$H3SE13=="(5) 100% #homosexual (gay)",5,NA))))))

#addhealth$sexorient<-Recode(addhealth$H3SE13, recodes="1:2='a_straight'; 3='b_bisexual';4:5='c_LGB';else=NA",as.factor=T)

addhealth$sexorient<-Recode(addhealth$H4SE31,recodes="1:2='a_straight';3='b_bisexual';4:5='c_LGB';else=NA",as.factor=T)
#addhealth$sexorient<-Recode(addhealth$H4SE31,recodes="1:2='a_straight';3='b_bisexual';4:5='c_LGB';else=NA")
#table(addhealth$sexorienta)
table(addhealth$sexorient)
## 
## a_straight b_bisexual      c_LGB 
##      10060        221        285
#sex
addhealth$sex <- ifelse(addhealth$BIO_SEX4==2,'b_female','a_male')
#addhealth$sex_bio<-Recode(addhealth$sex, recodes="1='male'; 0='female'",as.factor=T)
#table(addhealth$sex_bio)
table(addhealth$sex)
## 
##   a_male b_female 
##     3201     7510
#Education.  Less then high school is reference group
addhealth$W4_educ<-Recode(addhealth$H4ED2,recodes="1:2='a_less_highschool';3:6='b_HS_grad';7:13='d_college_bach.plus';else=NA")
table(addhealth$W4_educ)
## 
##   a_less_highschool           b_HS_grad d_college_bach.plus 
##                 711                6271                3727
#biomarkers
#systolic bp
addhealth$H4SBP<-Recode(addhealth$H4SBP,recodes="999=NA;997=NA;996=NA")
addhealth$systolicbp<-ifelse(addhealth$H4SBP>=140,1,0)
table(addhealth$systolicbp)
## 
##    0    1 
## 9190 1210
#diastolic bp
addhealth$H4DBP<-Recode(addhealth$H4DBP,recodes="999=NA;997=NA;996=NA")
addhealth$diastolicbp<-ifelse(addhealth$H4DBP>=90,1,0)
table(addhealth$diastolicbp)
## 
##    0    1 
## 8736 1664
#pulse rate
addhealth$H4PR<-Recode(addhealth$H4PR,recodes="999=NA;997=NA;996=NA")
addhealth$pulserate<-ifelse(addhealth$H4PR>=85,1,0)
#pulse pressure
addhealth$pulsepressure<-ifelse(addhealth$H4PP>=60,1,0)
table(addhealth$pulsepressure)
## 
##    0    1 
## 9953  682
#TOTAL CHOLESTEROL
addhealth$TC<-Recode(addhealth$TC,recodes="99=NA")
addhealth$totalchol<-ifelse(addhealth$TC>=8,1,0)
table(addhealth$totalchol)
## 
##    0    1 
## 6665 3131
#HDL, HIGH-DENSITY LIPOPROTEIN CHOLESTEROL
addhealth$HDL<-Recode(addhealth$HDL,recodes="99=NA")
addhealth$hidensity_lip<-ifelse(addhealth$HDL<=2,1,0)
table(addhealth$hidensity_lip)
## 
##    0    1 
## 7885 1779
#TRIGLYCERIDES
addhealth$TG<-Recode(addhealth$TG,recodes="99=NA")
addhealth$triglyceride<-ifelse(addhealth$TG>=8,1,0)
table(addhealth$triglyceride)
## 
##    0    1 
## 6351 3240
#HEMOGLOBIN
addhealth$HBA1C<-Recode(addhealth$HBA1C,recodes="99=NA")
addhealth$hemoglobin<-ifelse(addhealth$HBA1C>=6.4,1,0)
table(addhealth$hemoglobin)
## 
##    0    1 
## 9171  873
#BMI
addhealth$H4BMI<-Recode(addhealth$H4BMI,recodes="999=NA;888=NA;889=NA;996-NA;997=NA")
addhealth$BMI<-ifelse(addhealth$H4BMI>=30,1,0)
table(addhealth$BMI)
## 
##    0    1 
## 6194 4432
# high-sensitivity C-reactive protein test. 
addhealth$CRPa<-Recode(addhealth$CRP,recodes="999=NA;998=NA")
addhealth$hsCRP<-ifelse(addhealth$CRPa>=3,1,0)
table(addhealth$hsCRP)
## 
##    0    1 
## 4615 5212
#EPSTEIN BARR
#quantile(addhealth$EBVa, c(.80), na.rm = T)
addhealth$EBVa<-Recode(addhealth$EBV,recodes="9999=NA;9998=NA")
addhealth$EpsteinBar<-ifelse(addhealth$EBVa>=243,1,0)
table(addhealth$EpsteinBar)
## 
##    0    1 
## 8021 1852
addhealth$score<-addhealth$EpsteinBar+addhealth$hsCRP+addhealth$BMI+addhealth$triglyceride+addhealth$hemoglobin+addhealth$hidensity_lip+addhealth$totalchol+addhealth$pulserate+addhealth$systolicbp+addhealth$pulsepressure
table(addhealth$score)
## 
##    0    1    2    3    4    5    6    7    8    9 
## 1039 1797 2019 1869 1351  704  261  100   13    8
#addhealth.pc<-prcomp(~EpsteinBar+hsCRP+BMI+waistcirm+hemoglobin+hidensity_lip+totalchol+pulserate+systolicbp+pulsepressure,data=addhealth, retx=T)
#screeplot(addhealth.pc, type = "l", main = "Scree Plot")
#abline(h=1)
#summary(addhealth.pc)
#addhealth.pc$rotation
#hist(addhealth.pc$x[,2])
#race variables
#nhwhite
addhealth$nhwhite <- ifelse(addhealth$H1GI6A==1,1,0)
addhealth$nhwhite<-Recode(addhealth$nhwhite, recodes="1='nhwhite'; 0='nonnhwhite'; 6:8=NA",as.factor=T)
#nhblack
addhealth$nhblack <- ifelse(addhealth$H1GI6B==1,1,0)
addhealth$nhblack<-Recode(addhealth$nhblack, recodes="1='nhblack'; 0='nonnhblack'; 6:8=NA",as.factor=T)
#Hispanic
addhealth$hispanic <- ifelse(addhealth$H1GI4==1,1,0)
addhealth$hispanic<-Recode(addhealth$hispanic, recodes="1='hispanic'; 0='nonhispanic'; 6:8=NA",as.factor=T)
#Asian
addhealth$asian <- ifelse(addhealth$H1GI6D==1,1,0)
addhealth$asian<-Recode(addhealth$asian, recodes="1='asian'; 0='nonasian'; 6:8=NA",as.factor=T)
#Native American
#addhealth$native_american <- ifelse(addhealth$H1GI6C==1,1,0)
#addhealth$native_american<-Recode(addhealth$native_american, recodes="1='native_american'; 0='nonnative_american'; 6:8=NA",as.factor=T)
#other
#addhealth$other <- ifelse(addhealth$H1GI6E==1&addhealth$H1GI6C==1,1,0)
#addhealth$other<-Recode(addhealth$other, recodes="1='other'; 0='nonother'; 6:8=NA",as.factor=T)
#combine race to one variable
addhealth$racethnic <- factor(ifelse(addhealth$nhwhite=="nhwhite","a-nhwhite", 
                                            ifelse(addhealth$nhblack=="nhblack", "b-nhblack", 
                                            ifelse(addhealth$hispanic=="hispanic", "c-hispanic",NA))))
                                                  # ifelse(addhealth$asian=="asian","d-asian",NA)))))
                                                        #  ifelse(addhealth$native_american=="native_american","e-native_american",NA))))))
                                                                 #ifelse(addhealth$other=="other","f-other",NA)))))))
table(addhealth$racethnic)
## 
##  a-nhwhite  b-nhblack c-hispanic 
##       7736       1789        635
#income variable
addhealth$incomeW4<-Recode(addhealth$H4EC1,recodes="1:5='a_<$25,000';6:9='b_$25,000<$75,000';10:11='c_$75,000<$150,000';12='d_>$150,000';else=NA")
#addhealth$treated_lessrespectW4<-Recode(addhealth$H4MH28,recodes="0:1='never/rarely';2:3='sometimes/often';else=NA")
#addhealth$suicideW4think<-Recode(addhealth$H4SE1, recodes="0='no';1='yes';else=NA",as.factor=T)
#addhealth$suicideW4attempt<-Recode(addhealth$H4SE2, recodes="0='no';1='once';2:3='2-4_times';4='5+times';else=NA",as.factor=T)
#Citizenship in Wave 4
addhealth$W4_UScitizenship<-ifelse(addhealth$H4OD4==1,"a_UScitizen_birth",
                                  ifelse(addhealth$H4OD4==0&addhealth$H4OD5==1,"b_UScitizen_naturalized",
                                         ifelse(addhealth$H4OD4==0&addhealth$H4OD5==0,"c_foreignBorn_nonUScitizen",NA)))
#addhealth$US_born<-ifelse(addhealth$H4OD4==1,"a_UScitizen_birth","b_foreign_born_non_UScitizen")
#born in the USA
addhealth$born_US_foreign<-ifelse(addhealth$H4OD4==1,"a_born.USA",
                                  ifelse(addhealth$H4OD4==0,"b_born.foreign",NA))
#number of times married
addhealth$W4.married<-Recode(addhealth$H4TR1,recodes="0='a_never married';1='b_married_once';2:4='c_married_twice+';else=NA")
#Self reported general health
addhealth$health<-Recode(addhealth$H4GH1,recodes="1:3='a_Good.health';4:5='b_Bad.health';else=NA")
table(addhealth$health)
## 
## a_Good.health  b_Bad.health 
##          8741          1970
#allostatic score by group
addhealth$score.grp<-Recode(addhealth$score,recodes="0:1='0';2:3='1';4:10='2';else=NA")
addhealth$score.grp<-as.factor(addhealth$score.grp)
table(addhealth$score.grp)
## 
##    0    1    2 
## 2836 3888 2437
quantile(addhealth$score,na.rm=T)
##   0%  25%  50%  75% 100% 
##    0    1    2    4    9
str(addhealth$score.grp)
##  Factor w/ 3 levels "0","1","2": 1 1 1 NA NA 1 1 2 1 3 ...
addhealth$raceXsexorient<-interaction(addhealth$racethnic,addhealth$sexorient)
addhealth$sexXsexorient<-interaction(addhealth$sex,addhealth$sexorient)
table(addhealth$sexXsexorient)
## 
##   a_male.a_straight b_female.a_straight   a_male.b_bisexual b_female.b_bisexual 
##                2979                7081                  31                 190 
##        a_male.c_LGB      b_female.c_LGB 
##                 142                 143
addhealth$seXorientXrace<-interaction(addhealth$sex,addhealth$sexorient,addhealth$racethnic)
table(addhealth$seXorientXrace)
## 
##    a_male.a_straight.a-nhwhite  b_female.a_straight.a-nhwhite 
##                           2224                           5089 
##    a_male.b_bisexual.a-nhwhite  b_female.b_bisexual.a-nhwhite 
##                             22                            149 
##         a_male.c_LGB.a-nhwhite       b_female.c_LGB.a-nhwhite 
##                             75                             90 
##    a_male.a_straight.b-nhblack  b_female.a_straight.b-nhblack 
##                            446                           1203 
##    a_male.b_bisexual.b-nhblack  b_female.b_bisexual.b-nhblack 
##                              3                             27 
##         a_male.c_LGB.b-nhblack       b_female.c_LGB.b-nhblack 
##                             40                             26 
##   a_male.a_straight.c-hispanic b_female.a_straight.c-hispanic 
##                            164                            424 
##   a_male.b_bisexual.c-hispanic b_female.b_bisexual.c-hispanic 
##                              2                              8 
##        a_male.c_LGB.c-hispanic      b_female.c_LGB.c-hispanic 
##                             14                             17
#sexorient
#find the most common value
#mcv.lgb<-factor(names(which.max(table(addhealth$sexorient))), levels=levels(addhealth$sexorient))
#mcv.lgb
#impute the cases
#addhealth$lgb.imp<-as.factor(ifelse(is.na(addhealth$sexorient)==T,mcv.lgb, addhealth$sexorient))
#levels(addhealth$lgb.imp)<-levels(addhealth$sexorient)

#prop.table(table(addhealth$sexorient))
#prop.table(table(addhealth$lgb.imp))
#table(addhealth$sexorient)
#mom born in USA
addhealth$mom.born.usa<-Recode(addhealth$PA3,recodes="0='b_mom.born.foreign';1='a_mom.born.usa';else=NA")
#mom race
addhealth$mom.latino<-Recode(addhealth$PA4,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.white<-Recode(addhealth$PA6_1,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.black<-Recode(addhealth$PA6_2,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.asian<-Recode(addhealth$PA6_4,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.nativeamer<-Recode(addhealth$PA6_3,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.other<-Recode(addhealth$PA6_5,recodes="0=0;1=1;6=6;else=NA")
addhealth$mom.race<-ifelse(addhealth$mom.latino==1,"c_latino",
                           #ifelse(addhealth$mom.asian==1,"d_asian",
                                  ifelse(addhealth$mom.black==1,"b_black",
                                         ifelse(addhealth$mom.white==1,"a_white",NA)))
table(addhealth$mom.race)
## 
##  a_white  b_black c_latino 
##     6439     1458      926
#mothers education
addhealth$mom_educ<-Recode(addhealth$PA12,recodes="1:2='a_less.HS';3:7='b_HSgrad/voca';8:9='c_col.grad';10='a_less.HS';else=NA")
#mothers employment
addhealth$mom_emp<-ifelse(addhealth$PA13==1,"b_yes.emp",
                                  ifelse(addhealth$PA13==0,"a_no.emp",NA))
#mom disabled
addhealth$mom_disabiled<-Recode(addhealth$PA18,recodes="0='a_no';1='b_yes';else=NA")
#mom public assistance
addhealth$mom_welfare<-Recode(addhealth$PA21,recodes="0='a_no';1='b_yes';else=NA")
#neighborhood according to parent
addhealth$hood.litter<-Recode(addhealth$PA33,recodes="1=0;2:3=1;else=NA")
addhealth$hood.drugs<-Recode(addhealth$PA34,recodes="1=0;2:3=1;else=NA")
addhealth$hood.move<-Recode(addhealth$PA35,recodes="1=0;2:3=1;else=NA")
addhealth$good.neigh<-addhealth$hood.litter+addhealth$hood.drugs+addhealth$hood.move
addhealth$good.neigh<-as.factor(addhealth$good.neigh)
addhealth$good.neighood<-Recode(addhealth$good.neigh,recodes="0='0';1:2='1';3=3")
table(addhealth$good.neigh)
## 
##    0    1    2    3 
## 2678 2719 2086 1590
table(addhealth$good.neighood)
## 
##    0    1    3 
## 2678 4805 1590
#drinking
addhealth$mom.drinking<-Recode(addhealth$PA61,recodes="1='a_non.drinker';2:6='b_drinker';else=NA")
addhealth$mom.smoking<-Recode(addhealth$PA64,recodes="0='a_no';1='b_yes';else=NA")
#respondant smoking drinking
#addhealth$smoke<-Recode(addhealth$H4TO1,recodes="0=0;1=1;else=NA")
#addhealth$have.ever.smoke.regular<-Recode(addhealth$H4TO3,recodes="0=0;1=1;else=NA")
addhealth$smoke<-ifelse(addhealth$H4TO1==0,"a_non.smoker",
                        ifelse(addhealth$H4TO1==1&addhealth$H4TO3==1,"c_smoker",
                               ifelse(addhealth$H4TO1==1&addhealth$H4TO3==0,"b_tried.smoking",NA)))
#addhealth$H4TO5[addhealth$H4TO5==96] <- NA
#addhealth$H4TO5[addhealth$H4TO5==98] <- NA
#addhealth$H4TO6[addhealth$H4TO6==996] <- NA
#addhealth$H4TO6[addhealth$H4TO6==997] <- NA
#addhealth$H4TO6[addhealth$H4TO6==998] <- NA
#addhealth$number.smokes.daily<-addhealth$H4TO6
#addhealth$smoke.past.30days<-Recode(addhealth$H4TO5,recodes="0=0;1:30=1;else=NA")
#addhealth$smoke<-ifelse(addhealth$have.smoke==0&addhealth$smoke.daily.currently==0,"a_non.smoker",
#                        ifelse(addhealth$have.smoke==1&addhealth$smoke.daily.currently==0,"a_non.smoker",
#                                      ifelse(addhealth$have.smoke==1&addhealth$smoke.daily.currently==1,"b_smoker",
#                                             ifelse(addhealth$have.smoke==0&addhealth$smoke.daily.currently==1,"b_smoker",NA))))
#addhealth$smoke<-Recode(addhealth$H4TO5,recodes="0='a_non.smoker';1:30='b_smoker';else=NA")                                          
#addhealth$smoke2<-Recode(addhealth$H4TO5,recodes="0=0;1:30=1;else=NA")

#addhealth$smoke3<-Recode(addhealth$H4TO6,recodes="1:24=0;25:100=1;else=NA")

#addhealth$smoke<-ifelse(addhealth$smoke1==1&addhealth$smoke2==1&addhealth$smoke3==1,"d_heavy.smoker",
#                        ifelse(addhealth$smoke1==1&addhealth$smoke2==1&addhealth$smoke3==0,"c_moderate.smoker",
#                               ifelse(addhealth$smoke1==0&addhealth$smoke2==0,"a_non.smoker",
#                                      ifelse(addhealth$smoke1==1&addhealth$smoke2==0,"b_previous.smoker",NA))))
#addhealth$smoke<-addhealth$have.ever.smoke+addhealth$have.ever.smoke.regular+addhealth$smoke.past.30days
#drinking respondant
addhealth$drink.yes.no<-ifelse(addhealth$H4TO33==0,0,
                           ifelse(addhealth$H4TO33==1,1,NA))
addhealth$drink.yes.12months<-Recode(addhealth$H4TO35,recodes="0:3=1;4:6=2;else=NA")

#addhealth$drink.current<-ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12month==1,1,0)
#addhealth$drink.binge<-Recode(addhealth$H4TO36,recodes="1:4=0;5:18=1;else=NA")

#addhealth$drink<-ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12months==1&addhealth$drink.binge==1,"d_binge.drinker",
#                        ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12months==1&addhealth$drink.binge==0,"c_current.drinker",
#                               ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12months==0,"b_previous.drinker",
#                                      ifelse(addhealth$drink.yes.no==0,"a_non.drinker",NA))))
addhealth$drink<-ifelse(addhealth$drink.yes.no==0,"a_non.drinker",
                        ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12months==1,"b_lite.drinker",
                              ifelse(addhealth$drink.yes.no==1&addhealth$drink.yes.12months==2,"c_drinker",NA)))
table(addhealth$smoke)
## 
##    a_non.smoker b_tried.smoking        c_smoker 
##            3712            2109            4864
table(addhealth$drink)
## 
##  a_non.drinker b_lite.drinker      c_drinker 
##           2196           5699           2761
library(VGAM)
## Loading required package: stats4
## Loading required package: splines
## 
## Attaching package: 'VGAM'
## The following object is masked from 'package:car':
## 
##     logit
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#select variables to use
addhealth.pro<-addhealth%>%
  select(psuscid,GSWGT4_2,score.grp,sex,racethnic,mom_educ,mom_emp,mom_disabiled,mom_welfare,good.neigh,mom.drinking,mom.smoking,born_US_foreign,sexorient,W4_educ,raceXsexorient,agew4,W4.married,incomeW4,W4_UScitizenship,health,mom.race,good.neigh,smoke,drink,sexXsexorient,seXorientXrace)

#filter complete cases
#library(tidyverse)
addhealth.pro<-addhealth.pro%>%
 filter(complete.cases(.))

#Survey design
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:VGAM':
## 
##     calibrate
## The following object is masked from 'package:graphics':
## 
##     dotchart
#addhealth %>% drop_na()
options(survey.lonely.psu = "adjust")

des<-svydesign(ids=~psuscid,
                weights=~GSWGT4_2,
                nest=T,
               data=addhealth.pro[!is.na(addhealth.pro$GSWGT4_2),])
fit<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T))  
summary(fit)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient, family = cumulative(parallel = T, reverse = T), 
##     data = addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -3.865 -0.4924  0.3024 0.6574 2.307
## logitlink(P[Y>=3]) -2.250 -0.6598 -0.2998 0.5747 3.718
## 
## Coefficients: 
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1       -0.73416    0.56310  -1.304  0.19231    
## (Intercept):2       -2.55267    0.56516  -4.517 6.28e-06 ***
## agew4                0.06128    0.01923   3.187  0.00144 ** 
## sexb_female         -0.23151    0.07420  -3.120  0.00181 ** 
## racethnicb-nhblack   0.30565    0.11407   2.679  0.00737 ** 
## racethnicc-hispanic  0.93497    0.23103   4.047 5.19e-05 ***
## sexorientb_bisexual  0.12734    0.23219   0.548  0.58340    
## sexorientc_LGB       0.26262    0.23495   1.118  0.26367    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 6305.159 on 5864 degrees of freedom
## 
## Log-likelihood: -3152.579 on 5864 degrees of freedom
## 
## Number of Fisher scoring iterations: 4 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##               agew4         sexb_female  racethnicb-nhblack racethnicc-hispanic 
##           1.0631977           0.7933364           1.3575049           2.5471281 
## sexorientb_bisexual      sexorientc_LGB 
##           1.1358003           1.3003321
fit2<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit2)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient + W4_educ + born_US_foreign, family = cumulative(parallel = T, 
##     reverse = T), data = addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, 
##     na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -4.026 -0.4194  0.2862 0.6501 2.152
## logitlink(P[Y>=3]) -2.365 -0.6560 -0.2908 0.5589 3.497
## 
## Coefficients: 
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                 -0.62114    0.57177  -1.086  0.27732    
## (Intercept):2                 -2.47326    0.57371  -4.311 1.63e-05 ***
## agew4                          0.06238    0.01931   3.229  0.00124 ** 
## sexb_female                   -0.18042    0.07480  -2.412  0.01586 *  
## racethnicb-nhblack             0.35490    0.11470   3.094  0.00197 ** 
## racethnicc-hispanic            0.90951    0.23344   3.896 9.78e-05 ***
## sexorientb_bisexual            0.18356    0.23384   0.785  0.43245    
## sexorientc_LGB                 0.22625    0.23835   0.949  0.34250    
## W4_educb_HS_grad              -0.03718    0.11478  -0.324  0.74601    
## W4_educd_college_bach.plus    -0.72738    0.13175  -5.521 3.37e-08 ***
## born_US_foreignb_born.foreign  0.75460    0.38405   1.965  0.04943 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 6237.493 on 5861 degrees of freedom
## 
## Log-likelihood: -3118.746 on 5861 degrees of freedom
## 
## Number of Fisher scoring iterations: 4 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##                         agew4                   sexb_female 
##                     1.0643621                     0.8349179 
##            racethnicb-nhblack           racethnicc-hispanic 
##                     1.4260372                     2.4831078 
##           sexorientb_bisexual                sexorientc_LGB 
##                     1.2014906                     1.2538944 
##              W4_educb_HS_grad    W4_educd_college_bach.plus 
##                     0.9635062                     0.4831754 
## born_US_foreignb_born.foreign 
##                     2.1267586
fit3<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign+W4.married+incomeW4,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit3)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient + W4_educ + born_US_foreign + W4.married + incomeW4, 
##     family = cumulative(parallel = T, reverse = T), data = addhealth.pro, 
##     weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -4.132 -0.4058  0.2885 0.6389 2.028
## logitlink(P[Y>=3]) -2.362 -0.6501 -0.2821 0.5809 3.520
## 
## Coefficients: 
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                 -0.460633   0.583533  -0.789  0.42989    
## (Intercept):2                 -2.333871   0.585245  -3.988 6.67e-05 ***
## agew4                          0.061873   0.019957   3.100  0.00193 ** 
## sexb_female                   -0.215906   0.075562  -2.857  0.00427 ** 
## racethnicb-nhblack             0.279307   0.116286   2.402  0.01631 *  
## racethnicc-hispanic            0.965688   0.234309   4.121 3.77e-05 ***
## sexorientb_bisexual            0.002472   0.236343   0.010  0.99165    
## sexorientc_LGB                 0.276237   0.240745   1.147  0.25121    
## W4_educb_HS_grad               0.127289   0.120538   1.056  0.29096    
## W4_educd_college_bach.plus    -0.430115   0.144611  -2.974  0.00294 ** 
## born_US_foreignb_born.foreign  0.762305   0.383063   1.990  0.04659 *  
## W4.marriedb_married_once      -0.039862   0.076466  -0.521  0.60215    
## W4.marriedc_married_twice+     0.119815   0.142726   0.839  0.40120    
## incomeW4b_$25,000<$75,000     -0.227703   0.091723  -2.483  0.01305 *  
## incomeW4c_$75,000<$150,000    -0.585706   0.118772  -4.931 8.17e-07 ***
## incomeW4d_>$150,000           -1.067039   0.218225  -4.890 1.01e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 6193.869 on 5856 degrees of freedom
## 
## Log-likelihood: -3096.935 on 5856 degrees of freedom
## 
## Number of Fisher scoring iterations: 5 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##                         agew4                   sexb_female 
##                     1.0638275                     0.8058111 
##            racethnicb-nhblack           racethnicc-hispanic 
##                     1.3222133                     2.6265952 
##           sexorientb_bisexual                sexorientc_LGB 
##                     1.0024752                     1.3181598 
##              W4_educb_HS_grad    W4_educd_college_bach.plus 
##                     1.1357452                     0.6504345 
## born_US_foreignb_born.foreign      W4.marriedb_married_once 
##                     2.1432117                     0.9609216 
##    W4.marriedc_married_twice+     incomeW4b_$25,000<$75,000 
##                     1.1272888                     0.7963606 
##    incomeW4c_$75,000<$150,000           incomeW4d_>$150,000 
##                     0.5567124                     0.3440257
fit4<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit4)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient + W4_educ + born_US_foreign + W4.married + incomeW4 + 
##     drink + smoke + health, family = cumulative(parallel = T, 
##     reverse = T), data = addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, 
##     na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -4.805 -0.3989  0.2638 0.5876 2.362
## logitlink(P[Y>=3]) -2.595 -0.6350 -0.2684 0.5999 4.065
## 
## Coefficients: 
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                 -0.50330    0.59545  -0.845 0.397973    
## (Intercept):2                 -2.45910    0.59735  -4.117 3.84e-05 ***
## agew4                          0.06899    0.02020   3.415 0.000639 ***
## sexb_female                   -0.27441    0.07763  -3.535 0.000408 ***
## racethnicb-nhblack            -0.02439    0.12061  -0.202 0.839727    
## racethnicc-hispanic            0.84955    0.23914   3.553 0.000382 ***
## sexorientb_bisexual           -0.13363    0.24099  -0.555 0.579226    
## sexorientc_LGB                 0.32213    0.24317   1.325 0.185271    
## W4_educb_HS_grad               0.20118    0.12402   1.622 0.104762    
## W4_educd_college_bach.plus    -0.37471    0.14999  -2.498 0.012481 *  
## born_US_foreignb_born.foreign  0.70860    0.39069   1.814 0.069721 .  
## W4.marriedb_married_once      -0.09871    0.07812  -1.263 0.206412    
## W4.marriedc_married_twice+    -0.01485    0.14539  -0.102 0.918639    
## incomeW4b_$25,000<$75,000     -0.09147    0.09419  -0.971 0.331514    
## incomeW4c_$75,000<$150,000    -0.34927    0.12275  -2.845 0.004436 ** 
## incomeW4d_>$150,000           -0.94538    0.22620  -4.179 2.92e-05 ***
## drinkb_lite.drinker            0.07930    0.09655   0.821 0.411436    
## drinkc_drinker                -0.24646    0.11748  -2.098 0.035910 *  
## smokeb_tried.smoking          -0.18696    0.11640  -1.606 0.108231    
## smokec_smoker                 -0.58947    0.08882  -6.637 3.20e-11 ***
## healthb_Bad.health             0.87808    0.09103   9.646  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 6030.878 on 5851 degrees of freedom
## 
## Log-likelihood: -3015.439 on 5851 degrees of freedom
## 
## Number of Fisher scoring iterations: 5 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##                         agew4                   sexb_female 
##                     1.0714219                     0.7600213 
##            racethnicb-nhblack           racethnicc-hispanic 
##                     0.9759025                     2.3385911 
##           sexorientb_bisexual                sexorientc_LGB 
##                     0.8749114                     1.3800634 
##              W4_educb_HS_grad    W4_educd_college_bach.plus 
##                     1.2228444                     0.6874897 
## born_US_foreignb_born.foreign      W4.marriedb_married_once 
##                     2.0311411                     0.9060069 
##    W4.marriedc_married_twice+     incomeW4b_$25,000<$75,000 
##                     0.9852587                     0.9125900 
##    incomeW4c_$75,000<$150,000           incomeW4d_>$150,000 
##                     0.7052028                     0.3885331 
##           drinkb_lite.drinker                drinkc_drinker 
##                     1.0825314                     0.7815590 
##          smokeb_tried.smoking                 smokec_smoker 
##                     0.8294732                     0.5546192 
##            healthb_Bad.health 
##                     2.4062748
fit5<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit5)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient + W4_educ + born_US_foreign + W4.married + incomeW4 + 
##     drink + smoke + health + mom.race + mom_educ + mom_emp + 
##     good.neigh, family = cumulative(parallel = T, reverse = T), 
##     data = addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -6.073 -0.3967  0.2646 0.5824 2.310
## logitlink(P[Y>=3]) -2.305 -0.6420 -0.2660 0.5634 3.989
## 
## Coefficients: 
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                 -0.666111   0.609316  -1.093 0.274302    
## (Intercept):2                 -2.633491   0.611363  -4.308 1.65e-05 ***
## agew4                          0.073687   0.020383   3.615 0.000300 ***
## sexb_female                   -0.265287   0.078038  -3.399 0.000675 ***
## racethnicb-nhblack            -1.490818   0.521751  -2.857 0.004272 ** 
## racethnicc-hispanic            0.574128   0.280026   2.050 0.040338 *  
## sexorientb_bisexual           -0.106475   0.242943  -0.438 0.661188    
## sexorientc_LGB                 0.376658   0.247101   1.524 0.127432    
## W4_educb_HS_grad               0.201662   0.126265   1.597 0.110237    
## W4_educd_college_bach.plus    -0.354121   0.154419  -2.293 0.021834 *  
## born_US_foreignb_born.foreign  0.417074   0.418595   0.996 0.319073    
## W4.marriedb_married_once      -0.108242   0.079233  -1.366 0.171899    
## W4.marriedc_married_twice+    -0.005761   0.148033  -0.039 0.968955    
## incomeW4b_$25,000<$75,000     -0.113494   0.095724  -1.186 0.235767    
## incomeW4c_$75,000<$150,000    -0.346356   0.124588  -2.780 0.005436 ** 
## incomeW4d_>$150,000           -0.974377   0.229762  -4.241 2.23e-05 ***
## drinkb_lite.drinker            0.124044   0.097626   1.271 0.203868    
## drinkc_drinker                -0.175298   0.119931  -1.462 0.143834    
## smokeb_tried.smoking          -0.186026   0.117362  -1.585 0.112954    
## smokec_smoker                 -0.593026   0.089512  -6.625 3.47e-11 ***
## healthb_Bad.health             0.855052   0.091521   9.343  < 2e-16 ***
## mom.raceb_black                1.524265   0.526399   2.896 0.003784 ** 
## mom.racec_latino               0.335513   0.183811   1.825 0.067954 .  
## mom_educb_HSgrad/voca          0.038289   0.104668   0.366 0.714504    
## mom_educc_col.grad            -0.136362   0.141019  -0.967 0.333556    
## mom_empb_yes.emp              -0.106211   0.084155  -1.262 0.206914    
## good.neigh1                   -0.057987   0.099381  -0.583 0.559571    
## good.neigh2                    0.107635   0.104120   1.034 0.301251    
## good.neigh3                    0.187959   0.108973   1.725 0.084559 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 6008.573 on 5843 degrees of freedom
## 
## Log-likelihood: -3004.286 on 5843 degrees of freedom
## 
## Number of Fisher scoring iterations: 5 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##                         agew4                   sexb_female 
##                     1.0764703                     0.7669857 
##            racethnicb-nhblack           racethnicc-hispanic 
##                     0.2251884                     1.7755818 
##           sexorientb_bisexual                sexorientc_LGB 
##                     0.8989972                     1.4574054 
##              W4_educb_HS_grad    W4_educd_college_bach.plus 
##                     1.2234339                     0.7017904 
## born_US_foreignb_born.foreign      W4.marriedb_married_once 
##                     1.5175142                     0.8974103 
##    W4.marriedc_married_twice+     incomeW4b_$25,000<$75,000 
##                     0.9942553                     0.8927094 
##    incomeW4c_$75,000<$150,000           incomeW4d_>$150,000 
##                     0.7072604                     0.3774273 
##           drinkb_lite.drinker                drinkc_drinker 
##                     1.1320660                     0.8392071 
##          smokeb_tried.smoking                 smokec_smoker 
##                     0.8302524                     0.5526524 
##            healthb_Bad.health               mom.raceb_black 
##                     2.3514969                     4.5917675 
##              mom.racec_latino         mom_educb_HSgrad/voca 
##                     1.3986573                     1.0390314 
##            mom_educc_col.grad              mom_empb_yes.emp 
##                     0.8725271                     0.8992345 
##                   good.neigh1                   good.neigh2 
##                     0.9436626                     1.1136408 
##                   good.neigh3 
##                     1.2067843
fit6<-vglm(as.ordered(score.grp)~agew4+sex+raceXsexorient+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit6)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + raceXsexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh, 
##     family = cumulative(parallel = T, reverse = T), data = addhealth.pro, 
##     weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -4.696 -0.3838  0.2642 0.5838 2.289
## logitlink(P[Y>=3]) -2.336 -0.6406 -0.2638 0.5662 3.986
## 
## Coefficients: 
##                                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                        -0.581440   0.610093  -0.953 0.340572    
## (Intercept):2                        -2.553098   0.612041  -4.171 3.03e-05 ***
## agew4                                 0.070399   0.020414   3.449 0.000564 ***
## sexb_female                          -0.262079   0.078099  -3.356 0.000792 ***
## raceXsexorientb-nhblack.a_straight   -0.943216   0.563818  -1.673 0.094345 .  
## raceXsexorientc-hispanic.a_straight   0.595857   0.280294   2.126 0.033518 *  
## raceXsexorienta-nhwhite.b_bisexual   -0.134224   0.250922  -0.535 0.592703    
## raceXsexorientb-nhblack.b_bisexual   -0.876550   1.035103  -0.847 0.397093    
## raceXsexorientc-hispanic.b_bisexual  11.494274 448.093873      NA       NA    
## raceXsexorienta-nhwhite.c_LGB         0.644408   0.263756   2.443 0.014558 *  
## raceXsexorientb-nhblack.c_LGB        -3.072100   1.006043  -3.054 0.002261 ** 
## raceXsexorientc-hispanic.c_LGB       -0.087400   8.174216  -0.011 0.991469    
## W4_educb_HS_grad                      0.208622   0.126278   1.652 0.098517 .  
## W4_educd_college_bach.plus           -0.346128   0.154518  -2.240 0.025087 *  
## born_US_foreignb_born.foreign         0.386893   0.418199   0.925 0.354893    
## W4.marriedb_married_once             -0.096964   0.079334  -1.222 0.221623    
## W4.marriedc_married_twice+            0.004092   0.148061   0.028 0.977949    
## incomeW4b_$25,000<$75,000            -0.131616   0.095933  -1.372 0.170074    
## incomeW4c_$75,000<$150,000           -0.364511   0.124745  -2.922 0.003477 ** 
## incomeW4d_>$150,000                  -0.996977   0.230045  -4.334 1.47e-05 ***
## drinkb_lite.drinker                   0.130624   0.097716   1.337 0.181298    
## drinkc_drinker                       -0.170452   0.120035  -1.420 0.155602    
## smokeb_tried.smoking                 -0.190656   0.117412  -1.624 0.104414    
## smokec_smoker                        -0.584809   0.089588  -6.528 6.68e-11 ***
## healthb_Bad.health                    0.851158   0.091802   9.272  < 2e-16 ***
## mom.raceb_black                       1.018581   0.562151   1.812 0.069996 .  
## mom.racec_latino                      0.325271   0.183877   1.769 0.076901 .  
## mom_educb_HSgrad/voca                 0.041120   0.104772   0.392 0.694708    
## mom_educc_col.grad                   -0.131094   0.141107  -0.929 0.352869    
## mom_empb_yes.emp                     -0.115542   0.084284  -1.371 0.170415    
## good.neigh1                          -0.055951   0.099438  -0.563 0.573657    
## good.neigh2                           0.117100   0.104220   1.124 0.261190    
## good.neigh3                           0.191686   0.108999   1.759 0.078644 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 5997.802 on 5839 degrees of freedom
## 
## Log-likelihood: -2998.901 on 5839 degrees of freedom
## 
## Number of Fisher scoring iterations: 10 
## 
## Warning: Hauck-Donner effect detected in the following estimate(s):
## 'raceXsexorientc-hispanic.b_bisexual'
## 
## 
## Exponentiated coefficients:
##                               agew4                         sexb_female 
##                        1.072936e+00                        7.694503e-01 
##  raceXsexorientb-nhblack.a_straight raceXsexorientc-hispanic.a_straight 
##                        3.893735e-01                        1.814586e+00 
##  raceXsexorienta-nhwhite.b_bisexual  raceXsexorientb-nhblack.b_bisexual 
##                        8.743942e-01                        4.162164e-01 
## raceXsexorientc-hispanic.b_bisexual       raceXsexorienta-nhwhite.c_LGB 
##                        9.815214e+04                        1.904859e+00 
##       raceXsexorientb-nhblack.c_LGB      raceXsexorientc-hispanic.c_LGB 
##                        4.632379e-02                        9.163109e-01 
##                    W4_educb_HS_grad          W4_educd_college_bach.plus 
##                        1.231980e+00                        7.074219e-01 
##       born_US_foreignb_born.foreign            W4.marriedb_married_once 
##                        1.472399e+00                        9.075888e-01 
##          W4.marriedc_married_twice+           incomeW4b_$25,000<$75,000 
##                        1.004101e+00                        8.766772e-01 
##          incomeW4c_$75,000<$150,000                 incomeW4d_>$150,000 
##                        6.945362e-01                        3.689932e-01 
##                 drinkb_lite.drinker                      drinkc_drinker 
##                        1.139539e+00                        8.432834e-01 
##                smokeb_tried.smoking                       smokec_smoker 
##                        8.264166e-01                        5.572125e-01 
##                  healthb_Bad.health                     mom.raceb_black 
##                        2.342357e+00                        2.769261e+00 
##                    mom.racec_latino               mom_educb_HSgrad/voca 
##                        1.384406e+00                        1.041977e+00 
##                  mom_educc_col.grad                    mom_empb_yes.emp 
##                        8.771356e-01                        8.908829e-01 
##                         good.neigh1                         good.neigh2 
##                        9.455854e-01                        1.124232e+00 
##                         good.neigh3 
##                        1.211290e+00
fit7<-vglm(as.ordered(score.grp)~agew4+sexXsexorient+racethnic+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit7)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sexXsexorient + 
##     racethnic + W4_educ + born_US_foreign + W4.married + incomeW4 + 
##     drink + smoke + health + mom.race + mom_educ + mom_emp + 
##     good.neigh, family = cumulative(parallel = T, reverse = T), 
##     data = addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -5.634 -0.3941  0.2605 0.5776 3.416
## logitlink(P[Y>=3]) -2.262 -0.6322 -0.2643 0.5668 4.060
## 
## Coefficients: 
##                                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                    -0.85425    0.61181  -1.396 0.162635    
## (Intercept):2                    -2.83740    0.61410  -4.620 3.83e-06 ***
## agew4                             0.07817    0.02045   3.822 0.000132 ***
## sexXsexorientb_female.a_straight -0.26929    0.07948  -3.388 0.000703 ***
## sexXsexorienta_male.b_bisexual   -2.98048    0.74121  -4.021 5.79e-05 ***
## sexXsexorientb_female.b_bisexual  0.03270    0.26940   0.121 0.903396    
## sexXsexorienta_male.c_LGB         1.29225    0.38851   3.326 0.000881 ***
## sexXsexorientb_female.c_LGB      -0.51412    0.33500  -1.535 0.124858    
## racethnicb-nhblack               -1.33172    0.52401  -2.541 0.011041 *  
## racethnicc-hispanic               0.60921    0.28042   2.172 0.029820 *  
## W4_educb_HS_grad                  0.23618    0.12664   1.865 0.062177 .  
## W4_educd_college_bach.plus       -0.30908    0.15485  -1.996 0.045935 *  
## born_US_foreignb_born.foreign     0.25632    0.42080   0.609 0.542435    
## W4.marriedb_married_once         -0.10783    0.07945  -1.357 0.174724    
## W4.marriedc_married_twice+       -0.02830    0.14833  -0.191 0.848679    
## incomeW4b_$25,000<$75,000        -0.11250    0.09598  -1.172 0.241156    
## incomeW4c_$75,000<$150,000       -0.36306    0.12486  -2.908 0.003640 ** 
## incomeW4d_>$150,000              -1.02635    0.23130  -4.437 9.11e-06 ***
## drinkb_lite.drinker               0.11827    0.09783   1.209 0.226678    
## drinkc_drinker                   -0.19327    0.12028  -1.607 0.108079    
## smokeb_tried.smoking             -0.19969    0.11764  -1.697 0.089612 .  
## smokec_smoker                    -0.58815    0.08968  -6.558 5.44e-11 ***
## healthb_Bad.health                0.89257    0.09204   9.698  < 2e-16 ***
## mom.raceb_black                   1.35718    0.52831   2.569 0.010202 *  
## mom.racec_latino                  0.31714    0.18405   1.723 0.084860 .  
## mom_educb_HSgrad/voca             0.05094    0.10505   0.485 0.627722    
## mom_educc_col.grad               -0.13855    0.14140  -0.980 0.327179    
## mom_empb_yes.emp                 -0.07859    0.08449  -0.930 0.352283    
## good.neigh1                      -0.01767    0.09978  -0.177 0.859472    
## good.neigh2                       0.11979    0.10431   1.148 0.250792    
## good.neigh3                       0.18517    0.10919   1.696 0.089907 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 5977.923 on 5841 degrees of freedom
## 
## Log-likelihood: -2988.962 on 5841 degrees of freedom
## 
## Number of Fisher scoring iterations: 5 
## 
## No Hauck-Donner effect found in any of the estimates
## 
## 
## Exponentiated coefficients:
##                            agew4 sexXsexorientb_female.a_straight 
##                       1.08130712                       0.76392411 
##   sexXsexorienta_male.b_bisexual sexXsexorientb_female.b_bisexual 
##                       0.05076827                       1.03323844 
##        sexXsexorienta_male.c_LGB      sexXsexorientb_female.c_LGB 
##                       3.64097071                       0.59802424 
##               racethnicb-nhblack              racethnicc-hispanic 
##                       0.26402229                       1.83897989 
##                 W4_educb_HS_grad       W4_educd_college_bach.plus 
##                       1.26640855                       0.73412344 
##    born_US_foreignb_born.foreign         W4.marriedb_married_once 
##                       1.29216958                       0.89778105 
##       W4.marriedc_married_twice+        incomeW4b_$25,000<$75,000 
##                       0.97209541                       0.89360003 
##       incomeW4c_$75,000<$150,000              incomeW4d_>$150,000 
##                       0.69554682                       0.35831320 
##              drinkb_lite.drinker                   drinkc_drinker 
##                       1.12554964                       0.82425683 
##             smokeb_tried.smoking                    smokec_smoker 
##                       0.81898152                       0.55535190 
##               healthb_Bad.health                  mom.raceb_black 
##                       2.44138871                       3.88523670 
##                 mom.racec_latino            mom_educb_HSgrad/voca 
##                       1.37319423                       1.05226269 
##               mom_educc_col.grad                 mom_empb_yes.emp 
##                       0.87062331                       0.92442280 
##                      good.neigh1                      good.neigh2 
##                       0.98248912                       1.12726483 
##                      good.neigh3 
##                       1.20342360
fit8<-vglm(as.ordered(score.grp)~agew4+seXorientXrace+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T)) 
summary(fit8)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + seXorientXrace + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh, 
##     family = cumulative(parallel = T, reverse = T), data = addhealth.pro, 
##     weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                       Min      1Q  Median     3Q   Max
## logitlink(P[Y>=2]) -4.557 -0.3736  0.2587 0.5721 3.544
## logitlink(P[Y>=3]) -2.186 -0.6198 -0.2638 0.5624 4.024
## 
## Coefficients: 
##                                               Estimate Std. Error z value
## (Intercept):1                                 -0.88640    0.61481  -1.442
## (Intercept):2                                 -2.87565    0.61714  -4.660
## agew4                                          0.07753    0.02051   3.779
## seXorientXraceb_female.a_straight.a-nhwhite   -0.21801    0.08435  -2.585
## seXorientXracea_male.b_bisexual.a-nhwhite     -2.99925    0.75425  -3.976
## seXorientXraceb_female.b_bisexual.a-nhwhite    0.08675    0.28032   0.309
## seXorientXracea_male.c_LGB.a-nhwhite           1.46023    0.40189   3.633
## seXorientXraceb_female.c_LGB.a-nhwhite        -0.17988    0.36430  -0.494
## seXorientXracea_male.a_straight.b-nhblack     -0.40523    0.60607  -0.669
## seXorientXraceb_female.a_straight.b-nhblack   -1.24349    0.57672  -2.156
## seXorientXraceb_female.b_bisexual.b-nhblack   -1.06735    1.03768  -1.029
## seXorientXracea_male.c_LGB.b-nhblack          -2.21408    1.92294  -1.151
## seXorientXraceb_female.c_LGB.b-nhblack        -3.53934    1.18116      NA
## seXorientXracea_male.a_straight.c-hispanic     0.63069    0.37016   1.704
## seXorientXraceb_female.a_straight.c-hispanic   0.41153    0.37114   1.109
## seXorientXracea_male.b_bisexual.c-hispanic    11.54097  447.96372      NA
## seXorientXraceb_female.c_LGB.c-hispanic       -0.15299    8.18135  -0.019
## W4_educb_HS_grad                               0.25760    0.12716   2.026
## W4_educd_college_bach.plus                    -0.29033    0.15571  -1.865
## born_US_foreignb_born.foreign                  0.24893    0.42230   0.589
## W4.marriedb_married_once                      -0.09352    0.07954  -1.176
## W4.marriedc_married_twice+                    -0.02109    0.14845  -0.142
## incomeW4b_$25,000<$75,000                     -0.14129    0.09639  -1.466
## incomeW4c_$75,000<$150,000                    -0.38758    0.12509  -3.098
## incomeW4d_>$150,000                           -1.05021    0.23216  -4.524
## drinkb_lite.drinker                            0.14384    0.09839   1.462
## drinkc_drinker                                -0.17134    0.12057  -1.421
## smokeb_tried.smoking                          -0.19966    0.11776  -1.695
## smokec_smoker                                 -0.58544    0.08982  -6.518
## healthb_Bad.health                             0.89497    0.09250   9.675
## mom.raceb_black                                0.94755    0.56679   1.672
## mom.racec_latino                               0.31279    0.18418   1.698
## mom_educb_HSgrad/voca                          0.04609    0.10549   0.437
## mom_educc_col.grad                            -0.14832    0.14180  -1.046
## mom_empb_yes.emp                              -0.09564    0.08476  -1.128
## good.neigh1                                   -0.02059    0.09997  -0.206
## good.neigh2                                    0.13456    0.10446   1.288
## good.neigh3                                    0.19791    0.10936   1.810
##                                              Pr(>|z|)    
## (Intercept):1                                0.149373    
## (Intercept):2                                3.17e-06 ***
## agew4                                        0.000157 ***
## seXorientXraceb_female.a_straight.a-nhwhite  0.009752 ** 
## seXorientXracea_male.b_bisexual.a-nhwhite    6.99e-05 ***
## seXorientXraceb_female.b_bisexual.a-nhwhite  0.756961    
## seXorientXracea_male.c_LGB.a-nhwhite         0.000280 ***
## seXorientXraceb_female.c_LGB.a-nhwhite       0.621481    
## seXorientXracea_male.a_straight.b-nhblack    0.503730    
## seXorientXraceb_female.a_straight.b-nhblack  0.031072 *  
## seXorientXraceb_female.b_bisexual.b-nhblack  0.303670    
## seXorientXracea_male.c_LGB.b-nhblack         0.249568    
## seXorientXraceb_female.c_LGB.b-nhblack             NA    
## seXorientXracea_male.a_straight.c-hispanic   0.088411 .  
## seXorientXraceb_female.a_straight.c-hispanic 0.267504    
## seXorientXracea_male.b_bisexual.c-hispanic         NA    
## seXorientXraceb_female.c_LGB.c-hispanic      0.985081    
## W4_educb_HS_grad                             0.042781 *  
## W4_educd_college_bach.plus                   0.062244 .  
## born_US_foreignb_born.foreign                0.555552    
## W4.marriedb_married_once                     0.239705    
## W4.marriedc_married_twice+                   0.887024    
## incomeW4b_$25,000<$75,000                    0.142695    
## incomeW4c_$75,000<$150,000                   0.001945 ** 
## incomeW4d_>$150,000                          6.08e-06 ***
## drinkb_lite.drinker                          0.143755    
## drinkc_drinker                               0.155277    
## smokeb_tried.smoking                         0.090000 .  
## smokec_smoker                                7.12e-11 ***
## healthb_Bad.health                            < 2e-16 ***
## mom.raceb_black                              0.094570 .  
## mom.racec_latino                             0.089466 .  
## mom_educb_HSgrad/voca                        0.662134    
## mom_educc_col.grad                           0.295582    
## mom_empb_yes.emp                             0.259213    
## good.neigh1                                  0.836851    
## good.neigh2                                  0.197687    
## good.neigh3                                  0.070350 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3])
## 
## Residual deviance: 5964.185 on 5834 degrees of freedom
## 
## Log-likelihood: -2982.093 on 5834 degrees of freedom
## 
## Number of Fisher scoring iterations: 10 
## 
## Warning: Hauck-Donner effect detected in the following estimate(s):
## 'seXorientXraceb_female.c_LGB.b-nhblack', 'seXorientXracea_male.b_bisexual.c-hispanic'
## 
## 
## Exponentiated coefficients:
##                                        agew4 
##                                 1.080613e+00 
##  seXorientXraceb_female.a_straight.a-nhwhite 
##                                 8.041210e-01 
##    seXorientXracea_male.b_bisexual.a-nhwhite 
##                                 4.982441e-02 
##  seXorientXraceb_female.b_bisexual.a-nhwhite 
##                                 1.090626e+00 
##         seXorientXracea_male.c_LGB.a-nhwhite 
##                                 4.306958e+00 
##       seXorientXraceb_female.c_LGB.a-nhwhite 
##                                 8.353743e-01 
##    seXorientXracea_male.a_straight.b-nhblack 
##                                 6.668203e-01 
##  seXorientXraceb_female.a_straight.b-nhblack 
##                                 2.883771e-01 
##  seXorientXraceb_female.b_bisexual.b-nhblack 
##                                 3.439170e-01 
##         seXorientXracea_male.c_LGB.b-nhblack 
##                                 1.092544e-01 
##       seXorientXraceb_female.c_LGB.b-nhblack 
##                                 2.903243e-02 
##   seXorientXracea_male.a_straight.c-hispanic 
##                                 1.878909e+00 
## seXorientXraceb_female.a_straight.c-hispanic 
##                                 1.509119e+00 
##   seXorientXracea_male.b_bisexual.c-hispanic 
##                                 1.028446e+05 
##      seXorientXraceb_female.c_LGB.c-hispanic 
##                                 8.581402e-01 
##                             W4_educb_HS_grad 
##                                 1.293818e+00 
##                   W4_educd_college_bach.plus 
##                                 7.480175e-01 
##                born_US_foreignb_born.foreign 
##                                 1.282650e+00 
##                     W4.marriedb_married_once 
##                                 9.107176e-01 
##                   W4.marriedc_married_twice+ 
##                                 9.791300e-01 
##                    incomeW4b_$25,000<$75,000 
##                                 8.682354e-01 
##                   incomeW4c_$75,000<$150,000 
##                                 6.786954e-01 
##                          incomeW4d_>$150,000 
##                                 3.498650e-01 
##                          drinkb_lite.drinker 
##                                 1.154695e+00 
##                               drinkc_drinker 
##                                 8.425311e-01 
##                         smokeb_tried.smoking 
##                                 8.190126e-01 
##                                smokec_smoker 
##                                 5.568609e-01 
##                           healthb_Bad.health 
##                                 2.447265e+00 
##                              mom.raceb_black 
##                                 2.579370e+00 
##                             mom.racec_latino 
##                                 1.367229e+00 
##                        mom_educb_HSgrad/voca 
##                                 1.047173e+00 
##                           mom_educc_col.grad 
##                                 8.621581e-01 
##                             mom_empb_yes.emp 
##                                 9.087951e-01 
##                                  good.neigh1 
##                                 9.796244e-01 
##                                  good.neigh2 
##                                 1.144031e+00 
##                                  good.neigh3 
##                                 1.218849e+00
AIC(fit)
## [1] 6321.159
AIC(fit2)
## [1] 6259.493
AIC(fit3)
## [1] 6225.869
AIC(fit4)
## [1] 6072.878
AIC(fit5)
## [1] 6066.573
#race x sexorient
AIC(fit6)
## [1] 6063.802
#sex X sexorient
AIC(fit7)
## [1] 6039.923
#sex x sexorient x race 
AIC(fit8)
## [1] 6040.185
#fit<-svyolr(score.grp~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,des)
#summary(fit)
#library(VGAM)
#Proportional odds
#fit.vgam<-vglm(as.ordered(score.grp)~sex+racethnic+sexorient+born_US_foreign+W4_educ+incomeW4,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = T, reverse = T))  #<-parallel = T == proportional odds
#summary(fit.vgam)
#continuation Ratio 
#fit.crp<-vglm(as.ordered(score.grp)~sex+racethnic,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cratio( parallel = F, reverse = T))

#Non-proportional odds
#fit.vgam2<-vglm(as.ordered(score.grp)~sex+racethnic+sexorient+W4_UScitizenship+W4_educ+incomeW4,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cumulative(parallel = F, reverse = T))  #<-parallel = F == Nonproportional odds
is.parallel(fit5)
##     (Intercept)           agew4             sex       racethnic       sexorient 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##         W4_educ born_US_foreign      W4.married        incomeW4           drink 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##           smoke          health        mom.race        mom_educ         mom_emp 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##      good.neigh 
##            TRUE
table(addhealth.pro$raceXsexorient)
## 
##  a-nhwhite.a_straight  b-nhblack.a_straight c-hispanic.a_straight 
##                  2311                   379                    95 
##  a-nhwhite.b_bisexual  b-nhblack.b_bisexual c-hispanic.b_bisexual 
##                    61                     7                     2 
##       a-nhwhite.c_LGB       b-nhblack.c_LGB      c-hispanic.c_LGB 
##                    59                    21                     1
table(addhealth.pro$raceXsexorient,addhealth.pro$W4_educ)
##                        
##                         a_less_highschool b_HS_grad d_college_bach.plus
##   a-nhwhite.a_straight                213      1583                 515
##   b-nhblack.a_straight                 24       246                 109
##   c-hispanic.a_straight                10        66                  19
##   a-nhwhite.b_bisexual                 17        26                  18
##   b-nhblack.b_bisexual                  1         6                   0
##   c-hispanic.b_bisexual                 0         2                   0
##   a-nhwhite.c_LGB                       2        46                  11
##   b-nhblack.c_LGB                       0        21                   0
##   c-hispanic.c_LGB                      0         0                   1
table(addhealth.pro$raceXsexorient,addhealth.pro$sex)
##                        
##                         a_male b_female
##   a-nhwhite.a_straight     673     1638
##   b-nhblack.a_straight      79      300
##   c-hispanic.a_straight     35       60
##   a-nhwhite.b_bisexual       8       53
##   b-nhblack.b_bisexual       0        7
##   c-hispanic.b_bisexual      2        0
##   a-nhwhite.c_LGB           28       31
##   b-nhblack.c_LGB            7       14
##   c-hispanic.c_LGB           0        1
#continuation Ratio 
fit.crp<-vglm(as.ordered(score.grp)~agew4+sex+racethnic+sexorient+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cratio( parallel = F, reverse = T))
summary(fit.crp)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + sex + racethnic + 
##     sexorient + W4_educ + born_US_foreign + W4.married + incomeW4 + 
##     drink + smoke + health + mom.race + mom_educ + mom_emp + 
##     good.neigh, family = cratio(parallel = F, reverse = T), data = addhealth.pro, 
##     weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                           Min      1Q     Median     3Q    Max
## logitlink(P[Y<2|Y<=2]) -2.566 -0.6293 -5.567e-06 0.3110 11.403
## logitlink(P[Y<3|Y<=3]) -4.259 -0.5655  3.334e-01 0.6332  2.731
## 
## Coefficients: 
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1                    2.36142    0.84729   2.787 0.005320 ** 
## (Intercept):2                    1.52146    0.73033   2.083 0.037230 *  
## agew4:1                         -0.13488    0.02846  -4.740 2.14e-06 ***
## agew4:2                         -0.02026    0.02434  -0.832 0.405132    
## sexb_female:1                    0.55492    0.11009   5.040 4.64e-07 ***
## sexb_female:2                    0.06067    0.09362   0.648 0.516918    
## racethnicb-nhblack:1             1.09624    0.73403   1.493 0.135319    
## racethnicb-nhblack:2             1.13192    0.64504   1.755 0.079294 .  
## racethnicc-hispanic:1            1.15273    0.46868   2.460 0.013912 *  
## racethnicc-hispanic:2           -1.31530    0.32548  -4.041 5.32e-05 ***
## sexorientb_bisexual:1            0.03306    0.32880   0.101 0.919919    
## sexorientb_bisexual:2            0.21339    0.28931   0.738 0.460764    
## sexorientc_LGB:1                 0.04686    0.37567   0.125 0.900742    
## sexorientc_LGB:2                -0.60620    0.28022  -2.163 0.030516 *  
## W4_educb_HS_grad:1               0.51319    0.18510   2.772 0.005563 ** 
## W4_educb_HS_grad:2              -0.58486    0.15447  -3.786 0.000153 ***
## W4_educd_college_bach.plus:1     1.16432    0.21897   5.317 1.05e-07 ***
## W4_educd_college_bach.plus:2    -0.21791    0.19242  -1.132 0.257453    
## born_US_foreignb_born.foreign:1  0.14213    0.83498   0.170 0.864836    
## born_US_foreignb_born.foreign:2 -0.98829    0.47340  -2.088 0.036830 *  
## W4.marriedb_married_once:1       0.41723    0.10886   3.833 0.000127 ***
## W4.marriedb_married_once:2      -0.06232    0.09662  -0.645 0.518936    
## W4.marriedc_married_twice+:1    -0.10375    0.21189  -0.490 0.624394    
## W4.marriedc_married_twice+:2     0.05575    0.17575   0.317 0.751108    
## incomeW4b_$25,000<$75,000:1     -0.38004    0.13775  -2.759 0.005798 ** 
## incomeW4b_$25,000<$75,000:2      0.32399    0.11135   2.910 0.003619 ** 
## incomeW4c_$75,000<$150,000:1    -0.13233    0.17038  -0.777 0.437333    
## incomeW4c_$75,000<$150,000:2     0.45650    0.15218   3.000 0.002702 ** 
## incomeW4d_>$150,000:1            0.52623    0.29573   1.779 0.075169 .  
## incomeW4d_>$150,000:2            1.00804    0.31858   3.164 0.001555 ** 
## drinkb_lite.drinker:1           -0.17441    0.13961  -1.249 0.211588    
## drinkb_lite.drinker:2           -0.08208    0.11432  -0.718 0.472764    
## drinkc_drinker:1                 0.17250    0.16401   1.052 0.292925    
## drinkc_drinker:2                 0.19493    0.14786   1.318 0.187392    
## smokeb_tried.smoking:1          -0.40362    0.16848  -2.396 0.016592 *  
## smokeb_tried.smoking:2           0.43186    0.14284   3.023 0.002499 ** 
## smokec_smoker:1                  0.43725    0.12691   3.445 0.000570 ***
## smokec_smoker:2                  0.56634    0.10489   5.399 6.69e-08 ***
## healthb_Bad.health:1            -0.48904    0.14229  -3.437 0.000588 ***
## healthb_Bad.health:2            -0.90054    0.10199  -8.830  < 2e-16 ***
## mom.raceb_black:1               -1.42401    0.74638  -1.908 0.056405 .  
## mom.raceb_black:2               -0.97088    0.64561  -1.504 0.132629    
## mom.racec_latino:1              -1.57165    0.30109  -5.220 1.79e-07 ***
## mom.racec_latino:2               0.42864    0.24766   1.731 0.083492 .  
## mom_educb_HSgrad/voca:1          0.34824    0.15616   2.230 0.025746 *  
## mom_educb_HSgrad/voca:2         -0.18103    0.12331  -1.468 0.142072    
## mom_educc_col.grad:1             0.44092    0.19784   2.229 0.025837 *  
## mom_educc_col.grad:2             0.05195    0.17512   0.297 0.766745    
## mom_empb_yes.emp:1              -0.11089    0.12001  -0.924 0.355481    
## mom_empb_yes.emp:2               0.18246    0.09869   1.849 0.064476 .  
## good.neigh1:1                    0.12816    0.13326   0.962 0.336215    
## good.neigh1:2                   -0.01936    0.12310  -0.157 0.875028    
## good.neigh2:1                   -0.10266    0.14015  -0.733 0.463857    
## good.neigh2:2                   -0.14300    0.12777  -1.119 0.263030    
## good.neigh3:1                   -0.42496    0.15100  -2.814 0.004888 ** 
## good.neigh3:2                   -0.11330    0.13257  -0.855 0.392764    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y<2|Y<=2]), logitlink(P[Y<3|Y<=3])
## 
## Residual deviance: 5861.449 on 5816 degrees of freedom
## 
## Log-likelihood: -2930.725 on 5816 degrees of freedom
## 
## Number of Fisher scoring iterations: 8 
## 
## No Hauck-Donner effect found in any of the estimates
#intersection
fit.crp2<-vglm(as.ordered(score.grp)~agew4+seXorientXrace+W4_educ+born_US_foreign+W4.married+incomeW4+drink+smoke+health+mom.race+mom_educ+mom_emp+good.neigh,addhealth.pro, weights = GSWGT4_2/mean(GSWGT4_2, na.rm=T), family=cratio( parallel = F, reverse = T))
summary(fit.crp2)
## 
## Call:
## vglm(formula = as.ordered(score.grp) ~ agew4 + seXorientXrace + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh, 
##     family = cratio(parallel = F, reverse = T), data = addhealth.pro, 
##     weights = GSWGT4_2/mean(GSWGT4_2, na.rm = T))
## 
## Pearson residuals:
##                           Min      1Q     Median     3Q    Max
## logitlink(P[Y<2|Y<=2]) -3.020 -0.6400 -2.399e-07 0.3051 10.451
## logitlink(P[Y<3|Y<=3]) -4.332 -0.5613  3.328e-01 0.6285  2.467
## 
## Coefficients: 
##                                                  Estimate Std. Error z value
## (Intercept):1                                   2.318e+00  8.567e-01   2.706
## (Intercept):2                                   1.925e+00  7.413e-01   2.597
## agew4:1                                        -1.343e-01  2.871e-02  -4.676
## agew4:2                                        -2.796e-02  2.460e-02  -1.136
## seXorientXraceb_female.a_straight.a-nhwhite:1   6.121e-01  1.172e-01   5.225
## seXorientXraceb_female.a_straight.a-nhwhite:2  -4.776e-02  1.032e-01  -0.463
## seXorientXracea_male.b_bisexual.a-nhwhite:1     2.115e+00  7.667e-01   2.759
## seXorientXracea_male.b_bisexual.a-nhwhite:2     1.621e+01  6.503e+02      NA
## seXorientXraceb_female.b_bisexual.a-nhwhite:1   2.071e-01  4.157e-01   0.498
## seXorientXraceb_female.b_bisexual.a-nhwhite:2  -2.904e-01  3.192e-01  -0.910
## seXorientXracea_male.c_LGB.a-nhwhite:1          6.284e-01  7.029e-01   0.894
## seXorientXracea_male.c_LGB.a-nhwhite:2         -1.967e+00  4.259e-01  -4.619
## seXorientXraceb_female.c_LGB.a-nhwhite:1        2.276e-02  5.022e-01   0.045
## seXorientXraceb_female.c_LGB.a-nhwhite:2        2.434e-01  4.601e-01   0.529
## seXorientXracea_male.a_straight.b-nhblack:1     9.420e-01  9.276e-01   1.016
## seXorientXracea_male.a_straight.b-nhblack:2    -8.736e-02  7.572e-01  -0.115
## seXorientXraceb_female.a_straight.b-nhblack:1   1.551e+00  8.686e-01   1.785
## seXorientXraceb_female.a_straight.b-nhblack:2   7.925e-01  7.378e-01   1.074
## seXorientXraceb_female.b_bisexual.b-nhblack:1  -1.512e+01  1.672e+03      NA
## seXorientXraceb_female.b_bisexual.b-nhblack:2   1.613e+01  9.965e+02      NA
## seXorientXracea_male.c_LGB.b-nhblack:1          1.692e+00  2.144e+00   0.789
## seXorientXracea_male.c_LGB.b-nhblack:2          1.612e+01  2.019e+03      NA
## seXorientXraceb_female.c_LGB.b-nhblack:1        3.081e+00  1.277e+00   2.412
## seXorientXraceb_female.c_LGB.b-nhblack:2        1.598e+01  8.402e+02      NA
## seXorientXracea_male.a_straight.c-hispanic:1    6.119e-01  6.897e-01   0.887
## seXorientXracea_male.a_straight.c-hispanic:2   -1.426e+00  4.164e-01  -3.423
## seXorientXraceb_female.a_straight.c-hispanic:1  2.140e+00  6.042e-01   3.541
## seXorientXraceb_female.a_straight.c-hispanic:2 -1.417e+00  4.224e-01  -3.355
## seXorientXracea_male.b_bisexual.c-hispanic:1    2.403e+00  1.485e+04   0.000
## seXorientXracea_male.b_bisexual.c-hispanic:2   -1.811e+01  7.425e+03      NA
## seXorientXraceb_female.c_LGB.c-hispanic:1      -1.553e+01  1.479e+04      NA
## seXorientXraceb_female.c_LGB.c-hispanic:2       1.531e+01  9.496e+03      NA
## W4_educb_HS_grad:1                              4.808e-01  1.872e-01   2.568
## W4_educb_HS_grad:2                             -6.522e-01  1.563e-01  -4.173
## W4_educd_college_bach.plus:1                    1.124e+00  2.215e-01   5.076
## W4_educd_college_bach.plus:2                   -2.778e-01  1.954e-01  -1.422
## born_US_foreignb_born.foreign:1                 1.446e-01  8.351e-01   0.173
## born_US_foreignb_born.foreign:2                -7.415e-01  4.859e-01  -1.526
## W4.marriedb_married_once:1                      4.338e-01  1.097e-01   3.954
## W4.marriedb_married_once:2                     -9.264e-02  9.753e-02  -0.950
## W4.marriedc_married_twice+:1                   -5.247e-02  2.128e-01  -0.247
## W4.marriedc_married_twice+:2                    6.790e-02  1.771e-01   0.383
## incomeW4b_$25,000<$75,000:1                    -3.483e-01  1.401e-01  -2.486
## incomeW4b_$25,000<$75,000:2                     3.556e-01  1.125e-01   3.161
## incomeW4c_$75,000<$150,000:1                   -1.095e-01  1.722e-01  -0.636
## incomeW4c_$75,000<$150,000:2                    5.067e-01  1.536e-01   3.299
## incomeW4d_>$150,000:1                           5.182e-01  2.997e-01   1.729
## incomeW4d_>$150,000:2                           1.129e+00  3.271e-01   3.451
## drinkb_lite.drinker:1                          -2.047e-01  1.413e-01  -1.449
## drinkb_lite.drinker:2                          -1.049e-01  1.156e-01  -0.908
## drinkc_drinker:1                                1.666e-01  1.651e-01   1.009
## drinkc_drinker:2                                2.098e-01  1.498e-01   1.400
## smokeb_tried.smoking:1                         -3.945e-01  1.689e-01  -2.336
## smokeb_tried.smoking:2                          4.601e-01  1.445e-01   3.183
## smokec_smoker:1                                 4.233e-01  1.279e-01   3.310
## smokec_smoker:2                                 5.644e-01  1.057e-01   5.338
## healthb_Bad.health:1                           -5.637e-01  1.460e-01  -3.860
## healthb_Bad.health:2                           -9.335e-01  1.033e-01  -9.039
## mom.raceb_black:1                              -1.268e+00  8.590e-01  -1.477
## mom.raceb_black:2                              -5.094e-01  7.238e-01  -0.704
## mom.racec_latino:1                             -1.546e+00  3.010e-01  -5.137
## mom.racec_latino:2                              4.694e-01  2.505e-01   1.874
## mom_educb_HSgrad/voca:1                         3.654e-01  1.579e-01   2.314
## mom_educb_HSgrad/voca:2                        -2.025e-01  1.249e-01  -1.621
## mom_educc_col.grad:1                            4.415e-01  1.993e-01   2.215
## mom_educc_col.grad:2                            5.848e-02  1.768e-01   0.331
## mom_empb_yes.emp:1                             -9.496e-02  1.212e-01  -0.783
## mom_empb_yes.emp:2                              1.685e-01  9.975e-02   1.689
## good.neigh1:1                                   1.126e-01  1.344e-01   0.838
## good.neigh1:2                                  -4.778e-02  1.247e-01  -0.383
## good.neigh2:1                                  -1.084e-01  1.407e-01  -0.770
## good.neigh2:2                                  -1.692e-01  1.285e-01  -1.316
## good.neigh3:1                                  -4.228e-01  1.517e-01  -2.787
## good.neigh3:2                                  -1.242e-01  1.335e-01  -0.930
##                                                Pr(>|z|)    
## (Intercept):1                                  0.006809 ** 
## (Intercept):2                                  0.009403 ** 
## agew4:1                                        2.92e-06 ***
## agew4:2                                        0.255804    
## seXorientXraceb_female.a_straight.a-nhwhite:1  1.74e-07 ***
## seXorientXraceb_female.a_straight.a-nhwhite:2  0.643654    
## seXorientXracea_male.b_bisexual.a-nhwhite:1    0.005805 ** 
## seXorientXracea_male.b_bisexual.a-nhwhite:2          NA    
## seXorientXraceb_female.b_bisexual.a-nhwhite:1  0.618373    
## seXorientXraceb_female.b_bisexual.a-nhwhite:2  0.362963    
## seXorientXracea_male.c_LGB.a-nhwhite:1         0.371344    
## seXorientXracea_male.c_LGB.a-nhwhite:2         3.86e-06 ***
## seXorientXraceb_female.c_LGB.a-nhwhite:1       0.963857    
## seXorientXraceb_female.c_LGB.a-nhwhite:2       0.596823    
## seXorientXracea_male.a_straight.b-nhblack:1    0.309830    
## seXorientXracea_male.a_straight.b-nhblack:2    0.908155    
## seXorientXraceb_female.a_straight.b-nhblack:1  0.074228 .  
## seXorientXraceb_female.a_straight.b-nhblack:2  0.282724    
## seXorientXraceb_female.b_bisexual.b-nhblack:1        NA    
## seXorientXraceb_female.b_bisexual.b-nhblack:2        NA    
## seXorientXracea_male.c_LGB.b-nhblack:1         0.429977    
## seXorientXracea_male.c_LGB.b-nhblack:2               NA    
## seXorientXraceb_female.c_LGB.b-nhblack:1       0.015873 *  
## seXorientXraceb_female.c_LGB.b-nhblack:2             NA    
## seXorientXracea_male.a_straight.c-hispanic:1   0.374969    
## seXorientXracea_male.a_straight.c-hispanic:2   0.000619 ***
## seXorientXraceb_female.a_straight.c-hispanic:1 0.000398 ***
## seXorientXraceb_female.a_straight.c-hispanic:2 0.000792 ***
## seXorientXracea_male.b_bisexual.c-hispanic:1   0.999871    
## seXorientXracea_male.b_bisexual.c-hispanic:2         NA    
## seXorientXraceb_female.c_LGB.c-hispanic:1            NA    
## seXorientXraceb_female.c_LGB.c-hispanic:2            NA    
## W4_educb_HS_grad:1                             0.010232 *  
## W4_educb_HS_grad:2                             3.01e-05 ***
## W4_educd_college_bach.plus:1                   3.85e-07 ***
## W4_educd_college_bach.plus:2                   0.154975    
## born_US_foreignb_born.foreign:1                0.862564    
## born_US_foreignb_born.foreign:2                0.126999    
## W4.marriedb_married_once:1                     7.68e-05 ***
## W4.marriedb_married_once:2                     0.342189    
## W4.marriedc_married_twice+:1                   0.805193    
## W4.marriedc_married_twice+:2                   0.701455    
## incomeW4b_$25,000<$75,000:1                    0.012906 *  
## incomeW4b_$25,000<$75,000:2                    0.001571 ** 
## incomeW4c_$75,000<$150,000:1                   0.524711    
## incomeW4c_$75,000<$150,000:2                   0.000969 ***
## incomeW4d_>$150,000:1                          0.083796 .  
## incomeW4d_>$150,000:2                          0.000559 ***
## drinkb_lite.drinker:1                          0.147466    
## drinkb_lite.drinker:2                          0.364085    
## drinkc_drinker:1                               0.312848    
## drinkc_drinker:2                               0.161465    
## smokeb_tried.smoking:1                         0.019491 *  
## smokeb_tried.smoking:2                         0.001457 ** 
## smokec_smoker:1                                0.000933 ***
## smokec_smoker:2                                9.38e-08 ***
## healthb_Bad.health:1                           0.000113 ***
## healthb_Bad.health:2                            < 2e-16 ***
## mom.raceb_black:1                              0.139792    
## mom.raceb_black:2                              0.481566    
## mom.racec_latino:1                             2.80e-07 ***
## mom.racec_latino:2                             0.060992 .  
## mom_educb_HSgrad/voca:1                        0.020664 *  
## mom_educb_HSgrad/voca:2                        0.105007    
## mom_educc_col.grad:1                           0.026754 *  
## mom_educc_col.grad:2                           0.740877    
## mom_empb_yes.emp:1                             0.433339    
## mom_empb_yes.emp:2                             0.091160 .  
## good.neigh1:1                                  0.402209    
## good.neigh1:2                                  0.701523    
## good.neigh2:1                                  0.441172    
## good.neigh2:2                                  0.188101    
## good.neigh3:1                                  0.005324 ** 
## good.neigh3:2                                  0.352358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Names of linear predictors: logitlink(P[Y<2|Y<=2]), logitlink(P[Y<3|Y<=3])
## 
## Residual deviance: 5795.419 on 5798 degrees of freedom
## 
## Log-likelihood: -2897.709 on 5798 degrees of freedom
## 
## Number of Fisher scoring iterations: 15 
## 
## Warning: Hauck-Donner effect detected in the following estimate(s):
## 'seXorientXracea_male.b_bisexual.a-nhwhite:2', 'seXorientXraceb_female.b_bisexual.b-nhblack:1', 'seXorientXraceb_female.b_bisexual.b-nhblack:2', 'seXorientXracea_male.c_LGB.b-nhblack:2', 'seXorientXraceb_female.c_LGB.b-nhblack:2', 'seXorientXracea_male.b_bisexual.c-hispanic:2', 'seXorientXraceb_female.c_LGB.c-hispanic:1', 'seXorientXraceb_female.c_LGB.c-hispanic:2'
AIC(fit.crp)
## [1] 5973.449
AIC(fit.crp2)
## [1] 5943.419
colSums(depvar(fit.crp))
##    0    1    2 
##  799 1232  905
lrtest(fit.crp, fit.crp2)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh
## Model 2: as.ordered(score.grp) ~ agew4 + seXorientXrace + W4_educ + born_US_foreign + 
##     W4.married + incomeW4 + drink + smoke + health + mom.race + 
##     mom_educ + mom_emp + good.neigh
##    #Df  LogLik  Df  Chisq Pr(>Chisq)    
## 1 5816 -2930.7                          
## 2 5798 -2897.7 -18 66.031  2.096e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lrtest(fit, fit5)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient
## Model 2: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh
##    #Df  LogLik  Df  Chisq Pr(>Chisq)    
## 1 5864 -3152.6                          
## 2 5843 -3004.3 -21 296.59  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lrtest(fit,fit6)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient
## Model 2: as.ordered(score.grp) ~ agew4 + sex + raceXsexorient + W4_educ + 
##     born_US_foreign + W4.married + incomeW4 + drink + smoke + 
##     health + mom.race + mom_educ + mom_emp + good.neigh
##    #Df  LogLik  Df  Chisq Pr(>Chisq)    
## 1 5864 -3152.6                          
## 2 5839 -2998.9 -25 307.36  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lrtest(fit,fit7)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient
## Model 2: as.ordered(score.grp) ~ agew4 + sexXsexorient + racethnic + W4_educ + 
##     born_US_foreign + W4.married + incomeW4 + drink + smoke + 
##     health + mom.race + mom_educ + mom_emp + good.neigh
##    #Df  LogLik  Df  Chisq Pr(>Chisq)    
## 1 5864 -3152.6                          
## 2 5841 -2989.0 -23 327.24  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lrtest(fit,fit8)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient
## Model 2: as.ordered(score.grp) ~ agew4 + seXorientXrace + W4_educ + born_US_foreign + 
##     W4.married + incomeW4 + drink + smoke + health + mom.race + 
##     mom_educ + mom_emp + good.neigh
##    #Df  LogLik  Df  Chisq Pr(>Chisq)    
## 1 5864 -3152.6                          
## 2 5834 -2982.1 -30 340.97  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lrtest(fit,fit2,fit3,fit4,fit5,fit5,fit7,fit8)
## Likelihood ratio test
## 
## Model 1: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient
## Model 2: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign
## Model 3: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4
## Model 4: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health
## Model 5: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh
## Model 6: as.ordered(score.grp) ~ agew4 + sex + racethnic + sexorient + 
##     W4_educ + born_US_foreign + W4.married + incomeW4 + drink + 
##     smoke + health + mom.race + mom_educ + mom_emp + good.neigh
## Model 7: as.ordered(score.grp) ~ agew4 + sexXsexorient + racethnic + W4_educ + 
##     born_US_foreign + W4.married + incomeW4 + drink + smoke + 
##     health + mom.race + mom_educ + mom_emp + good.neigh
## Model 8: as.ordered(score.grp) ~ agew4 + seXorientXrace + W4_educ + born_US_foreign + 
##     W4.married + incomeW4 + drink + smoke + health + mom.race + 
##     mom_educ + mom_emp + good.neigh
##    #Df  LogLik Df   Chisq Pr(>Chisq)    
## 1 5864 -3152.6                          
## 2 5861 -3118.8 -3  67.666  1.349e-14 ***
## 3 5856 -3096.9 -5  43.623  2.762e-08 ***
## 4 5851 -3015.4 -5 162.992  < 2.2e-16 ***
## 5 5843 -3004.3 -8  22.305   0.004381 ** 
## 6 5843 -3004.3  0   0.000   1.000000    
## 7 5841 -2989.0 -2  30.649  2.211e-07 ***
## 8 5834 -2982.1 -7  13.738   0.056038 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
is.parallel(fit)
## (Intercept)       agew4         sex   racethnic   sexorient 
##       FALSE        TRUE        TRUE        TRUE        TRUE
is.parallel(fit2)
##     (Intercept)           agew4             sex       racethnic       sexorient 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##         W4_educ born_US_foreign 
##            TRUE            TRUE
is.parallel(fit3)
##     (Intercept)           agew4             sex       racethnic       sexorient 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##         W4_educ born_US_foreign      W4.married        incomeW4 
##            TRUE            TRUE            TRUE            TRUE
is.parallel(fit4)
##     (Intercept)           agew4             sex       racethnic       sexorient 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##         W4_educ born_US_foreign      W4.married        incomeW4           drink 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##           smoke          health 
##            TRUE            TRUE
is.parallel(fit5)
##     (Intercept)           agew4             sex       racethnic       sexorient 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##         W4_educ born_US_foreign      W4.married        incomeW4           drink 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##           smoke          health        mom.race        mom_educ         mom_emp 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##      good.neigh 
##            TRUE
is.parallel(fit6)
##     (Intercept)           agew4             sex  raceXsexorient         W4_educ 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
## born_US_foreign      W4.married        incomeW4           drink           smoke 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##          health        mom.race        mom_educ         mom_emp      good.neigh 
##            TRUE            TRUE            TRUE            TRUE            TRUE
is.parallel(fit7)
##     (Intercept)           agew4   sexXsexorient       racethnic         W4_educ 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
## born_US_foreign      W4.married        incomeW4           drink           smoke 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##          health        mom.race        mom_educ         mom_emp      good.neigh 
##            TRUE            TRUE            TRUE            TRUE            TRUE
is.parallel(fit8)
##     (Intercept)           agew4  seXorientXrace         W4_educ born_US_foreign 
##           FALSE            TRUE            TRUE            TRUE            TRUE 
##      W4.married        incomeW4           drink           smoke          health 
##            TRUE            TRUE            TRUE            TRUE            TRUE 
##        mom.race        mom_educ         mom_emp      good.neigh 
##            TRUE            TRUE            TRUE            TRUE
sumOrd   <- summary(fit8)
(coefOrd <- coef(sumOrd))
##                                                 Estimate   Std. Error
## (Intercept):1                                -0.88639774   0.61480761
## (Intercept):2                                -2.87565400   0.61713865
## agew4                                         0.07752854   0.02051444
## seXorientXraceb_female.a_straight.a-nhwhite  -0.21800558   0.08435085
## seXorientXracea_male.b_bisexual.a-nhwhite    -2.99925027   0.75424639
## seXorientXraceb_female.b_bisexual.a-nhwhite   0.08675178   0.28032037
## seXorientXracea_male.c_LGB.a-nhwhite          1.46023185   0.40188538
## seXorientXraceb_female.c_LGB.a-nhwhite       -0.17987537   0.36430257
## seXorientXracea_male.a_straight.b-nhblack    -0.40523469   0.60606546
## seXorientXraceb_female.a_straight.b-nhblack  -1.24348638   0.57671597
## seXorientXraceb_female.b_bisexual.b-nhblack  -1.06735487   1.03768288
## seXorientXracea_male.c_LGB.b-nhblack         -2.21407641   1.92294222
## seXorientXraceb_female.c_LGB.b-nhblack       -3.53934182   1.18116131
## seXorientXracea_male.a_straight.c-hispanic    0.63069121   0.37015896
## seXorientXraceb_female.a_straight.c-hispanic  0.41152606   0.37113604
## seXorientXracea_male.b_bisexual.c-hispanic   11.54097473 447.96372431
## seXorientXraceb_female.c_LGB.c-hispanic      -0.15298777   8.18135437
## W4_educb_HS_grad                              0.25759792   0.12715588
## W4_educd_college_bach.plus                   -0.29032893   0.15570946
## born_US_foreignb_born.foreign                 0.24892858   0.42229877
## W4.marriedb_married_once                     -0.09352238   0.07954451
## W4.marriedc_married_twice+                   -0.02109082   0.14845254
## incomeW4b_$25,000<$75,000                    -0.14129245   0.09639082
## incomeW4c_$75,000<$150,000                   -0.38758279   0.12508862
## incomeW4d_>$150,000                          -1.05020778   0.23216093
## drinkb_lite.drinker                           0.14383626   0.09838654
## drinkc_drinker                               -0.17134473   0.12056875
## smokeb_tried.smoking                         -0.19965579   0.11776354
## smokec_smoker                                -0.58543986   0.08981617
## healthb_Bad.health                            0.89497107   0.09250001
## mom.raceb_black                               0.94754506   0.56679205
## mom.racec_latino                              0.31278579   0.18418453
## mom_educb_HSgrad/voca                         0.04609403   0.10548589
## mom_educc_col.grad                           -0.14831665   0.14180015
## mom_empb_yes.emp                             -0.09563567   0.08476438
## good.neigh1                                  -0.02058607   0.09996961
## good.neigh2                                   0.13455783   0.10445666
## good.neigh3                                   0.19790696   0.10936178
##                                                  z value     Pr(>|z|)
## (Intercept):1                                -1.44174817 1.493734e-01
## (Intercept):2                                -4.65965631 3.167378e-06
## agew4                                         3.77921795 1.573217e-04
## seXorientXraceb_female.a_straight.a-nhwhite  -2.58450966 9.751757e-03
## seXorientXracea_male.b_bisexual.a-nhwhite    -3.97648607 6.994109e-05
## seXorientXraceb_female.b_bisexual.a-nhwhite   0.30947368 7.569612e-01
## seXorientXracea_male.c_LGB.a-nhwhite          3.63345355 2.796528e-04
## seXorientXraceb_female.c_LGB.a-nhwhite       -0.49375268 6.214809e-01
## seXorientXracea_male.a_straight.b-nhblack    -0.66863189 5.037303e-01
## seXorientXraceb_female.a_straight.b-nhblack  -2.15615040 3.107192e-02
## seXorientXraceb_female.b_bisexual.b-nhblack  -1.02859447 3.036703e-01
## seXorientXracea_male.c_LGB.b-nhblack         -1.15140039 2.495676e-01
## seXorientXraceb_female.c_LGB.b-nhblack       -2.99649319 2.731043e-03
## seXorientXracea_male.a_straight.c-hispanic    1.70383881 8.841121e-02
## seXorientXraceb_female.a_straight.c-hispanic  1.10882806 2.675044e-01
## seXorientXracea_male.b_bisexual.c-hispanic    0.02576319 9.794462e-01
## seXorientXraceb_female.c_LGB.c-hispanic      -0.01869957 9.850808e-01
## W4_educb_HS_grad                              2.02584356 4.278082e-02
## W4_educd_college_bach.plus                   -1.86455548 6.224374e-02
## born_US_foreignb_born.foreign                 0.58946081 5.555522e-01
## W4.marriedb_married_once                     -1.17572399 2.397052e-01
## W4.marriedc_married_twice+                   -0.14207111 8.870238e-01
## incomeW4b_$25,000<$75,000                    -1.46582890 1.426949e-01
## incomeW4c_$75,000<$150,000                   -3.09846560 1.945256e-03
## incomeW4d_>$150,000                          -4.52361975 6.079090e-06
## drinkb_lite.drinker                           1.46195055 1.437548e-01
## drinkc_drinker                               -1.42113708 1.552769e-01
## smokeb_tried.smoking                         -1.69539555 9.000041e-02
## smokec_smoker                                -6.51820106 7.115557e-11
## healthb_Bad.health                            9.67536178 3.837320e-22
## mom.raceb_black                               1.67176843 9.456999e-02
## mom.racec_latino                              1.69821966 8.946631e-02
## mom_educb_HSgrad/voca                         0.43696872 6.621340e-01
## mom_educc_col.grad                           -1.04595552 2.955816e-01
## mom_empb_yes.emp                             -1.12825304 2.592131e-01
## good.neigh1                                  -0.20592333 8.368508e-01
## good.neigh2                                   1.28816894 1.976872e-01
## good.neigh3                                   1.80965374 7.034950e-02
sumOrd2  <- summary(fit5)
(coefOrd <- coef(sumOrd2))
##                                   Estimate Std. Error     z value     Pr(>|z|)
## (Intercept):1                 -0.666110615 0.60931619 -1.09321010 2.743016e-01
## (Intercept):2                 -2.633490525 0.61136278 -4.30757421 1.650547e-05
## agew4                          0.073687424 0.02038317  3.61511045 3.002196e-04
## sexb_female                   -0.265287146 0.07803793 -3.39946397 6.751807e-04
## racethnicb-nhblack            -1.490817689 0.52175073 -2.85733707 4.272119e-03
## racethnicc-hispanic            0.574128125 0.28002594  2.05026762 4.033832e-02
## sexorientb_bisexual           -0.106475384 0.24294308 -0.43827297 6.611884e-01
## sexorientc_LGB                 0.376657705 0.24710122  1.52430535 1.274325e-01
## W4_educb_HS_grad               0.201661588 0.12626497  1.59713011 1.102367e-01
## W4_educd_college_bach.plus    -0.354120549 0.15441923 -2.29324119 2.183412e-02
## born_US_foreignb_born.foreign  0.417073617 0.41859550  0.99636431 3.190732e-01
## W4.marriedb_married_once      -0.108242095 0.07923278 -1.36612761 1.718989e-01
## W4.marriedc_married_twice+    -0.005761287 0.14803283 -0.03891898 9.689550e-01
## incomeW4b_$25,000<$75,000     -0.113494133 0.09572437 -1.18563464 2.357666e-01
## incomeW4c_$75,000<$150,000    -0.346356425 0.12458813 -2.78001141 5.435699e-03
## incomeW4d_>$150,000           -0.974377200 0.22976166 -4.24081728 2.227074e-05
## drinkb_lite.drinker            0.124044291 0.09762598  1.27060744 2.038683e-01
## drinkc_drinker                -0.175297778 0.11993052 -1.46166114 1.438341e-01
## smokeb_tried.smoking          -0.186025509 0.11736213 -1.58505568 1.129537e-01
## smokec_smoker                 -0.593026060 0.08951204 -6.62509824 3.470173e-11
## healthb_Bad.health             0.855052100 0.09152054  9.34273460 9.387755e-21
## mom.raceb_black                1.524265027 0.52639945  2.89564327 3.783823e-03
## mom.racec_latino               0.335512677 0.18381111  1.82531233 6.795391e-02
## mom_educb_HSgrad/voca          0.038288912 0.10466771  0.36581398 7.145039e-01
## mom_educc_col.grad            -0.136361553 0.14101851 -0.96697630 3.335559e-01
## mom_empb_yes.emp              -0.106211395 0.08415465 -1.26209772 2.069136e-01
## good.neigh1                   -0.057986630 0.09938076 -0.58347946 5.595706e-01
## good.neigh2                    0.107634682 0.10412023  1.03375376 3.012513e-01
## good.neigh3                    0.187959252 0.10897300  1.72482406 8.455918e-02
sumOrd3   <- summary(fit)
(coefOrd <- coef(sumOrd3))
##                        Estimate Std. Error    z value     Pr(>|z|)
## (Intercept):1       -0.73415764 0.56310038 -1.3037776 1.923094e-01
## (Intercept):2       -2.55267409 0.56516132 -4.5167176 6.280558e-06
## agew4                0.06128111 0.01923115  3.1865547 1.439782e-03
## sexb_female         -0.23150793 0.07420239 -3.1199523 1.808803e-03
## racethnicb-nhblack   0.30564837 0.11407145  2.6794468 7.374393e-03
## racethnicc-hispanic  0.93496649 0.23102892  4.0469674 5.188547e-05
## sexorientb_bisexual  0.12733748 0.23218627  0.5484281 5.833980e-01
## sexorientc_LGB       0.26261971 0.23495232  1.1177575 2.636706e-01
table(addhealth$agew4)
## 
##   24   25   26   27   28   29   30   31   32   33   34 
##    1   84  972 1217 1903 1940 2170 1740  601   59   24