The Coronavirus Dashboard: the case of Nigeria
This Coronavirus dashboard: the case of Nigeria provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Nigeria. This dashboard is built with R using the R Makrdown framework and was adapted by Job Nmadu from this dashboard by Rami Krispin.
Code
The code behind this dashboard is available on GitHub.
Data
The input data for this dashboard is the dataset available from the {coronavirus} R package. Make sure to download the development version of the package to have the latest data:
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.
Update
The data is as of Sunday July 26, 2020 and the dashboard has been updated on Sunday August 02, 2020.
---
title: "Coronavirus in Nigeria"
author: "Job Nmadu"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: ["facebook", "twitter", "linkedin"]
source_code: embed
vertical_layout: fill
---
```{r setup, include = FALSE}
#------------------ Packages ------------------
library(flexdashboard)
library(readxl)
coronavirus <- read_excel("E:/.covid19/data/coronavirus_dataset.xlsx")
library(coronavirus)
`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "#1f77b4"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
df <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Nigeria") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
# dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(-confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
df_daily <- coronavirus %>%
dplyr::filter(Country.Region == "Nigeria") %>%
dplyr::group_by(date, type) %>%
dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
dplyr::arrange(date) %>%
dplyr::ungroup() %>%
#dplyr::mutate(active = confirmed - death - recovered) %>%
dplyr::mutate(active = confirmed - death) %>%
dplyr::mutate(
confirmed_cum = cumsum(confirmed),
death_cum = cumsum(death),
# recovered_cum = cumsum(recovered),
active_cum = cumsum(active)
)
df1 <- coronavirus %>% dplyr::filter(date == max(date))
```
Summary
=======================================================================
Row {data-width=400}
-----------------------------------------------------------------------
### confirmed {.value-box}
```{r}
valueBox(
value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
caption = "Total confirmed cases",
icon = "fas fa-user-md",
color = confirmed_color
)
```
### death {.value-box}
```{r}
valueBox(
value = paste(format(sum(df$death, na.rm = TRUE), big.mark = ","), " (",
round(100 * sum(df$death, na.rm = TRUE) / sum(df$confirmed), 1),
"%)",
sep = ""
),
caption = "Death cases (death rate)",
icon = "fas fa-heart-broken",
color = death_color
)
```
Row
-----------------------------------------------------------------------
### **Daily cumulative cases by type** (Nigeria only)
```{r}
plotly::plot_ly(data = df_daily) %>%
plotly::add_trace(
x = ~date,
# y = ~active_cum,
y = ~confirmed_cum,
type = "scatter",
mode = "lines+markers",
# name = "Active",
name = "Confirmed",
line = list(color = active_color),
marker = list(color = active_color)
) %>%
plotly::add_trace(
x = ~date,
y = ~death_cum,
type = "scatter",
mode = "lines+markers",
name = "Death",
line = list(color = death_color),
marker = list(color = death_color)
) %>%
plotly::add_annotations(
x = as.Date("2020-02-04"),
y = 1,
text = paste("First case"),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -10,
ay = -90
) %>%
plotly::add_annotations(
x = as.Date("2020-03-11"),
y = 3,
text = paste("First death"),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -90,
ay = -90
) %>%
plotly::add_annotations(
x = as.Date("2020-03-18"),
y = 14,
text = paste(
"Lockdown"
),
xref = "x",
yref = "y",
arrowhead = 5,
arrowhead = 3,
arrowsize = 1,
showarrow = TRUE,
ax = -10,
ay = -90
) %>%
plotly::layout(
title = "",
yaxis = list(title = "Cumulative number of cases"),
xaxis = list(title = "Date"),
legend = list(x = 0.1, y = 0.9),
hovermode = "compare"
)
```
Comparison
=======================================================================
Column {data-width=400}
-------------------------------------
### **Daily new confirmed cases**
```{r}
daily_confirmed <- coronavirus %>%
dplyr::filter(type == "confirmed") %>%
dplyr::filter(date >= "2020-02-29") %>%
dplyr::mutate(country = Country.Region) %>%
dplyr::group_by(date, country) %>%
dplyr::summarise(total = sum(cases)) %>%
dplyr::ungroup() %>%
tidyr::pivot_wider(names_from = country, values_from = total)
#----------------------------------------
# Plotting the data
daily_confirmed %>%
plotly::plot_ly() %>%
plotly::add_trace(
x = ~date,
y = ~Nigeria,
type = "scatter",
mode = "lines+markers",
name = "Nigeria"
) %>%
# plotly::add_trace(
# x = ~date,
# y = ~France,
# type = "scatter",
# mode = "lines+markers",
# name = "France"
# ) %>%
plotly::add_trace(
x = ~date,
y = ~US,
type = "scatter",
mode = "lines+markers",
name = "US"
) %>%
plotly::add_trace(
x = ~date,
y = ~Brazil,
type = "scatter",
mode = "lines+markers",
name = "Brazil"
) %>%
plotly::layout(
title = "",
legend = list(x = 0.1, y = 0.9),
yaxis = list(title = "Number of new confirmed cases"),
xaxis = list(title = "Date"),
# paper_bgcolor = "black",
# plot_bgcolor = "black",
# font = list(color = 'white'),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
### **Cases distribution by type**
```{r daily_summary}
df_EU <- coronavirus %>%
# dplyr::filter(date == max(date)) %>%
dplyr::filter(Country.Region == "Nigeria" |
Country.Region == "Ghana" |
Country.Region == "South Africa" |
Country.Region == "Brazil" |
Country.Region == "Italy" |
Country.Region == "US") %>%
dplyr::group_by(Country.Region, type) %>%
dplyr::summarise(total = sum(cases)) %>%
tidyr::pivot_wider(
names_from = type,
values_from = total
) %>%
# dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
dplyr::arrange(confirmed) %>%
dplyr::ungroup() %>%
dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
dplyr::mutate(country = trimws(country)) %>%
dplyr::mutate(country = factor(country, levels = country))
plotly::plot_ly(
data = df_EU,
x = ~country,
# y = ~unrecovered,
y = ~ confirmed,
# text = ~ confirmed,
# textposition = 'auto',
type = "bar",
name = "Confirmed",
marker = list(color = active_color)
) %>%
plotly::add_trace(
y = ~death,
# text = ~ death,
# textposition = 'auto',
name = "Death",
marker = list(color = death_color)
) %>%
plotly::layout(
barmode = "stack",
yaxis = list(title = "Total cases"),
xaxis = list(title = ""),
hovermode = "compare",
margin = list(
# l = 60,
# r = 40,
b = 10,
t = 10,
pad = 2
)
)
```
Map
=======================================================================
### **World map of cases** (*use + and - icons to zoom in/out*)
```{r}
# map tab added by Art Steinmetz
library(leaflet)
library(leafpop)
library(purrr)
cv_data_for_plot <- coronavirus %>%
# dplyr::filter(Country.Region == "Nigeria") %>%
dplyr::filter(cases > 0) %>%
dplyr::group_by(Country.Region, Province.State, Lat, Long, type) %>%
dplyr::summarise(cases = sum(cases)) %>%
dplyr::mutate(log_cases = 2 * log(cases)) %>%
dplyr::ungroup()
cv_data_for_plot.split <- cv_data_for_plot %>% split(cv_data_for_plot$type)
pal <- colorFactor(c("orange", "red", "green"), domain = c("confirmed", "death", "recovered"))
map_object <- leaflet() %>% addProviderTiles(providers$Stamen.Toner)
names(cv_data_for_plot.split) %>%
purrr::walk(function(df) {
map_object <<- map_object %>%
addCircleMarkers(
data = cv_data_for_plot.split[[df]],
lng = ~Long, lat = ~Lat,
# label=~as.character(cases),
color = ~ pal(type),
stroke = FALSE,
fillOpacity = 0.8,
radius = ~log_cases,
popup = leafpop::popupTable(cv_data_for_plot.split[[df]],
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("type", "cases", "Country.Region", "Province.State")
),
group = df,
# clusterOptions = markerClusterOptions(removeOutsideVisibleBounds = F),
labelOptions = labelOptions(
noHide = F,
direction = "auto"
)
)
})
map_object %>%
addLayersControl(
overlayGroups = names(cv_data_for_plot.split),
options = layersControlOptions(collapsed = FALSE)
)
```
About
=======================================================================
**The Coronavirus Dashboard: the case of Nigeria**
This [Coronavirus dashboard: the case of Nigeria](https://www.jobnmadu.blogspot.com/files/coronavirus-dashboard.html) provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Nigeria. This dashboard is built with R using the R Makrdown framework and was adapted by **Job Nmadu** from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.
**Code**
The code behind this dashboard is available on [GitHub](https://github.com/AntoineSoetewey/coronavirus_dashboard){target="_blank"}.
**Data**
The input data for this dashboard is the dataset available from the [`{coronavirus}`](https://github.com/RamiKrispin/coronavirus){target="_blank"} R package. Make sure to download the development version of the package to have the latest data:
```
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
```
The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.
**Update**
The data is as of `r format(max(coronavirus$date), "%A %B %d, %Y")` and the dashboard has been updated on `r format(Sys.time(), "%A %B %d, %Y")`.