data(EuStockMarkets)
mode(EuStockMarkets)
## [1] "numeric"
class(EuStockMarkets)
## [1] "mts" "ts" "matrix"
plot(EuStockMarkets)

pdf("EuStocks.pdf", width = 6, height = 5)
plot(EuStockMarkets)

graphics.off()
Problem 1 Write a brief description of the time series plots of the four indices.
logR = diff(log(EuStockMarkets))
plot(logR)

Ploblem 2 Write brief decsription of the time series plots of the four series of log returns.
plot(as.data.frame(logR))

par(mfrow = c(2,2))
for(i in colnames(logR))
{
qqnorm(logR[ ,i], datax = T, main = i)
qqline(logR[ ,i], datax = T)
print(shapiro.test(logR[ ,i]))
}

##
## Shapiro-Wilk normality test
##
## data: logR[, i]
## W = 0.95384, p-value < 2.2e-16

##
## Shapiro-Wilk normality test
##
## data: logR[, i]
## W = 0.95537, p-value < 2.2e-16

##
## Shapiro-Wilk normality test
##
## data: logR[, i]
## W = 0.98203, p-value = 1.574e-14

##
## Shapiro-Wilk normality test
##
## data: logR[, i]
## W = 0.97994, p-value = 1.754e-15
Problem 3 Briefly describe the shape of each of the four normal plots
n=dim(logR)[1]
q_grid = (1:n) / (n + 1)
df_grid = c(1, 4, 6, 10, 20, 30)
index.names = dimnames(logR)[[2]]
for(i in 1:4)
{
# dev.new()
par(mfrow = c(3, 2))
for(df in df_grid)
{
qqplot(logR[,i], qt(q_grid,df),
main = paste(index.names[i], ", df = ", df) )
abline(lm(qt(c(0.25, 0.75), df = df) ~
quantile(logR[,i], c(0.25, 0.75))))
}
}



