library(ISLR)
library(tidyverse)
names(Smarket)
summary(Smarket)
cor(Smarket[,-9])
Logisitc Regression
glm.fit<- glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family="binomial")
summary(glm.fit)
coef(glm.fit)
summary(glm.fit)$coef[,4]
glm.probs<- predict(glm.fit,type="response")
glm.probs[1:10]
contrasts(Smarket$Direction)
glm.pred<- rep("Down",1250)
glm.pred[glm.probs>0.5]="Up"
table(glm.pred,Smarket$Direction)
Linear Discriminant Analysis
train<- Smarket%>%filter(Year<2005)
test<- Smarket%>%filter(Year==2005)
library(MASS)
lda.fit<- lda(Direction~Lag1+Lag2,data=train)
lda.pred<- predict(lda.fit,newdata=test)
names(lda.pred)
lda.class<- lda.pred$class
lda.class
table(lda.class,test$Direction)
predict(lda.fit,newdata =data.frame(Lag1=c(1.2,1.5),Lag2=c(1.1,-0.8)),type="response")
Quadratic Discriminant Analysis
qda.fit<- qda(Direction~Lag1+Lag2,data=train)
qda.fit
qda.class<- predict(qda.fit,test)$class
table(qda.class,test$Direction)
mean(qda.class==test$Direction)
K-nearest Neighbors
library(dplyr)
library(class)
train<- Smarket%>%filter(Year<2005)
test<- Smarket%>%filter(Year==2005)
train.X <-train%>% dplyr::select(Lag1, Lag2)
test.X <-test%>% dplyr::select(Lag1,Lag2)
train.Direction<- train$Direction
set.seed(1)
knn.pred<- knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,test$Direction)
knn.pred Down Up
Down 43 58
Up 68 83
mean(knn.pred==test$Direction)
[1] 0.5
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkoSVNMUikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KDQpuYW1lcyhTbWFya2V0KQ0Kc3VtbWFyeShTbWFya2V0KQ0KY29yKFNtYXJrZXRbLC05XSkNCmBgYA0KDQojIExvZ2lzaXRjIFJlZ3Jlc3Npb24NCg0KYGBge3J9DQpnbG0uZml0PC0gZ2xtKERpcmVjdGlvbn5MYWcxK0xhZzIrTGFnMytMYWc0K0xhZzUrVm9sdW1lLGRhdGE9U21hcmtldCxmYW1pbHk9ImJpbm9taWFsIikNCg0Kc3VtbWFyeShnbG0uZml0KQ0KDQpjb2VmKGdsbS5maXQpDQoNCnN1bW1hcnkoZ2xtLmZpdCkkY29lZlssNF0NCg0KZ2xtLnByb2JzPC0gcHJlZGljdChnbG0uZml0LHR5cGU9InJlc3BvbnNlIikNCmdsbS5wcm9ic1sxOjEwXQ0KDQpjb250cmFzdHMoU21hcmtldCREaXJlY3Rpb24pDQoNCmdsbS5wcmVkPC0gcmVwKCJEb3duIiwxMjUwKQ0KDQpnbG0ucHJlZFtnbG0ucHJvYnM+MC41XT0iVXAiDQoNCnRhYmxlKGdsbS5wcmVkLFNtYXJrZXQkRGlyZWN0aW9uKQ0KDQpgYGANCg0KIyBMaW5lYXIgRGlzY3JpbWluYW50IEFuYWx5c2lzDQoNCmBgYHtyfQ0KDQp0cmFpbjwtIFNtYXJrZXQlPiVmaWx0ZXIoWWVhcjwyMDA1KQ0KdGVzdDwtICBTbWFya2V0JT4lZmlsdGVyKFllYXI9PTIwMDUpDQoNCmxpYnJhcnkoTUFTUykNCmxkYS5maXQ8LSBsZGEoRGlyZWN0aW9ufkxhZzErTGFnMixkYXRhPXRyYWluKQ0KbGRhLnByZWQ8LSBwcmVkaWN0KGxkYS5maXQsbmV3ZGF0YT10ZXN0KQ0KbmFtZXMobGRhLnByZWQpDQoNCmxkYS5jbGFzczwtIGxkYS5wcmVkJGNsYXNzDQoNCmxkYS5jbGFzcw0KDQp0YWJsZShsZGEuY2xhc3MsdGVzdCREaXJlY3Rpb24pDQoNCnByZWRpY3QobGRhLmZpdCxuZXdkYXRhID1kYXRhLmZyYW1lKExhZzE9YygxLjIsMS41KSxMYWcyPWMoMS4xLC0wLjgpKSx0eXBlPSJyZXNwb25zZSIpDQoNCg0KYGBgDQoNCg0KIyBRdWFkcmF0aWMgRGlzY3JpbWluYW50IEFuYWx5c2lzDQoNCmBgYHtyfQ0KDQpxZGEuZml0PC0gcWRhKERpcmVjdGlvbn5MYWcxK0xhZzIsZGF0YT10cmFpbikNCg0KcWRhLmZpdA0KDQpxZGEuY2xhc3M8LSBwcmVkaWN0KHFkYS5maXQsdGVzdCkkY2xhc3MNCg0KdGFibGUocWRhLmNsYXNzLHRlc3QkRGlyZWN0aW9uKQ0KDQptZWFuKHFkYS5jbGFzcz09dGVzdCREaXJlY3Rpb24pDQpgYGANCg0KDQojIEstbmVhcmVzdCBOZWlnaGJvcnMNCg0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShjbGFzcykNCg0KdHJhaW48LSBTbWFya2V0JT4lZmlsdGVyKFllYXI8MjAwNSkNCnRlc3Q8LSAgU21hcmtldCU+JWZpbHRlcihZZWFyPT0yMDA1KQ0KDQp0cmFpbi5YIDwtdHJhaW4lPiUgZHBseXI6OnNlbGVjdChMYWcxLCBMYWcyKQ0KdGVzdC5YIDwtdGVzdCU+JSBkcGx5cjo6c2VsZWN0KExhZzEsTGFnMikNCg0KdHJhaW4uRGlyZWN0aW9uPC0gdHJhaW4kRGlyZWN0aW9uDQoNCnNldC5zZWVkKDEpDQoNCmtubi5wcmVkPC0ga25uKHRyYWluLlgsdGVzdC5YLHRyYWluLkRpcmVjdGlvbixrPTEpDQoNCg0KdGFibGUoa25uLnByZWQsdGVzdCREaXJlY3Rpb24pDQoNCm1lYW4oa25uLnByZWQ9PXRlc3QkRGlyZWN0aW9uKQ0KYGBgDQo=