\(\int4e^{-7x}dx\)
Solution: Let \(u = -7x\) by defferentiation on both sides we get this: \(\frac{du}{dx}=-7\) \(dx=\frac{-1}{7}du\)
Therefor this can be written in a different way. \(4e^u . \frac{-1}{7}du\) \(\frac{-4}{7}\int e^u du\) \(\frac{-4}{7}(e^u+C)\) By substituting the value of u, we get the following: \(\frac{-4}{7}e^{-7x}+C\)
Solution: \(\frac{dN}{dt}=-\frac{3150}{t^4}-220\) \(N' = -\frac{3150}{t^4}-220\)
Integrate on both sides to get the value of N \(N'dt = \int(-\frac{3150}{t^4}-220)dt\) \(N(t)=(1050t^{-3}-220t+C)\)
After day 1, there were 6530 bacteria per cubic centimeter. So, we subtitute this in the above equation for t=1: \((1050*(1)^{-3}-220*(1)+C) = 6530\) \(C=6530-1050+220\) \(C=5700\)
We substitute this value back in the equation to get the function N(t) to estimate the level of contamination: \(N(t)=(\frac{1050}{t^2}-220t+5700)\)
#Find area in-build function
f3 = function(x) {2*x -9}
#Find the difference between areas under the curve
area3 <- integrate(f3, 4.5, 8.5)$value
area3 <- round(as.numeric(area3))
print(area3)
## [1] 16
#Find area in-build function
f1 = function(x) {x + 2}
f2 = function(x) {x^2 -2*x -2}
#Find the difference between areas under the curve
area1 <- integrate(f1, -1, 4)
area2 <- integrate(f2, -1, 4)
area <- round((area1$value - area2$value),4)
print(area)
## [1] 20.8333
Let \(C\) be cost, \(n\) be the number of orders per year and \(x\) be the number of irons in an order (lot size). \(n*x = 110\) \(x=\frac{110}{n}\) \(C=8.25*n+3.75*\frac{x}{2}\) \(C=8.25*n+3.75*\frac{\frac{110}{n}}{2}\) \(C=8.25*n+\frac{412.5}{2n}\) \(C=8.25*n+\frac{206.25}{n}\) \(C'=8.25-206.25/n^2\)
Finding the value \(n\): \(8.25-206.25/n^2=0\) \(n^2=\frac{206.25}{8.25}\) \(n=\sqrt{25}=5\) \(x = \frac{110}{5} = 22\)
Therefore lot size \(x = 22\) and the number of orders per year \(n = 5\)
\(\ln(9x).x^6dx\)
Let \(u=ln(9x)\) and \(v=\frac{1}{7}x^7\) \(\frac{du}{dx}= \frac{d}{dx}(ln(9x))=\frac{1}{x}\) \(\frac{dv}{dx}= \frac{d}{dx}(\frac{1}{7}x^7)=x^6\)
We can solve this by using integration by parts formula: \(\int udv = uv-\int vdu\) \(u\frac{dv}{dx}dx = uv - \int v\frac{du}{dx}dx\) Now we can substitute the following: \(\int ln(9x). x^6 dx= ln(9x)(\frac{1}{7}x^7)-\int \frac{1}{7}x^7\frac{1}{x}dx\) \(ln(9x)(\frac{1}{7}x^7)-\int \frac{1}{7}x^7\frac{1}{x}dx\) \(\frac{ln(9x)x^7}{7}-\int \frac{x^6}{7}dx\) \(\frac{ln(9x)x^7}{7}-\frac{1}{7} \int x^6 dx\) \(\frac{ln(9x)x^7}{7}-\frac{1}{7}(\frac{1}{7}x^7+C)\) \(\frac{1}{7}x^7ln(9x)-\frac{1}{49}x^7+C\)
\(\int_{1}^{e^6} \frac{1}{6x}dx = \frac{1}{6}ln(x)|_{1}^{e^6}\) \(=\frac{1}{6}ln(e^6) - \frac{1}{6}ln(1)\) \(\frac{1}{6}*6-\frac{1}{6}*0\) \(=1\)
In this case the sum of the definite integral for the function \(f(x)=\frac{1}{6x}\) on the interval \([0,e^6]\) is 1. Therefore, we can say that the function \(f(x)\) is a probability density function.