u=−7x
du=−7dx
dx=du−7
∫4eudu−7
4−7∫eudu
4−7eu+C
4−7e−7x+C
dNdt=−3150t4−220
dN=(−3150t4−220)dt
N=∫−3150t4−220dt
N=∫−3150t4dt−∫220dt
N=−31503t3−220t+C
N(1)=−31503(1)3−220(1)+C=6530
C=7800
N(t)=−31503(t)3−220(t)+7800
N(0)=−31503(0)3−220(0)+7800=7800
=[x2−9x]|8.54.5
=(8.52−9(8.5))−(4.52−9(4.5))
=16
Area of red rectangles is 16
Graph for equation:
curve(x^2 -2*x-2, lwd = 2, xlim=c(-5, 5))
curve(x+2, lwd = 2, xlim=c(-5, 5), add = TRUE)
Intersection point: x^2 -2x-2 = x+2 x^2 -3x-4 = 0
f <- function(a){ a^2 - 3*a - 4 }
# zeros of f
root <- polyroot(c(-4, -3, 1))
ifelse(Im(root) == 0, Re(root), root)
## [1] -1+0i 4-0i
Area: ∫4−1x+2dx−∫4−1x2−2x−2dx
=−[13x3−32x2−4x]|4−1
=20.8333
ns = 110 s = 110 / n
Assume half of inventory keep in stocks:
c=8.25n+3752n
c=8.25n+206.25n
c′=8.25−206.25n2
c′=0
0=8.25−206.25n2
n=5
Number of order per year is 5
Lot size is 22 and inventory cost is 78.75.
Choose:
u=ln(9x), dvdx=x6
du=99xdx=1xdx
dv=x6dx
v=17x7
In equation:
∫udv=uv−∫vdu
=ln(9x)17x7−∫17x71xdx
==ln(9x)x77−x749−C
∫e61f(x)dx
=∫e6116xdx
=16∫e611xdx
=16ln(x)|e61
=16[ln(e6)−ln(1)]
=16[6−0]
=1