\[∫4e^{−7x}dx\]
\[u=−7x\]
\[du=−7dx\]
\[dx=\frac{du}{−7}\]
\[∫4e^u\frac{du}{−7}\]
\[\frac{4}{−7}∫e^udu\]
\[\frac{4}{−7}e^u+C\]
\[\frac{4}{−7}e^{−7x}+C\]
\[\frac{dN}{dt}=−\frac{3150}{t^4}−220\]
\[dN=(−\frac{3150}{t^4}−220)dt\]
\[N=∫−\frac{3150}{t^4}−220dt\]
\[N=∫−\frac{3150}{t^4}dt−∫220dt\]
\[N=−\frac{3150}{3t^3}−220t+C\]
\[N(1)=−\frac{3150}{3(1)^3}−220(1)+C=6530\]
\[C=7800\]
\[N(t)=−\frac{31503}{(t)^3}−220(t)+7800\]
\[N(0)=−\frac{3150}{3(0)^3}−220(0)+7800=7800\]
\[f ( x ) = 2x 9.\]
\[∫^{8.5}_{4.5}2x−9dx\]
\[=[x^2−9x]|^{8.5}_{4.5}\]
\[=(8.5^2−9(8.5))−(4.5^2−9(4.5))\]
\[=16\]
*** Area rectangles is equal to 16 ***
\[y=x^2−2x−2, y=x+2\]
Graph for equation:
curve(x^2 -2*x-2, lwd = 2, xlim=c(-5, 5))
curve(x+2, lwd = 2, xlim=c(-5, 5), add = TRUE)
Intersection: \[x^2 -2x-2 = x+2 x^2 -3x-4 = 0\]
f <- function(a){ a^2 - 3*a - 4 }
root <- polyroot(c(-4, -3, 1))
ifelse(Im(root) == 0, Re(root), root)
## [1] -1+0i 4-0i
Area: \[∫^4_{−1}x+2dx−∫^4_{−1}x^2−2x−2dx\]
\[=−[\frac{1}{3}x^3−\frac{3}{2}x^2−4x]|^4_{−1}\]
\[=20.8333\]
Number of orders per year = n lot size = s Cost = c
\[ns = 110 s = 110 / n\]
Assume half of inventory keep in stocks:
\[c=8.25n+\frac{375}{2n}\]
\[c=8.25n+\frac{206.25}{n}\]
\[c′=8.25−\frac{206.25}{n^2}\]
\[c′=0\]
\[0=8.25−\frac{206.25}{n^2}\]
\[n=5\]
*** Orders per year is 5 ***
*** Lot size is 22 and inventory cost is 78.75.***
\[∫ln(9x)∗x^6dx\]
Choose:
\[u=ln(9x), \frac{dv}{dx}=x^6\]
\[du=\frac{9}{9x}dx=\frac{1}{x}dx\]
\[dv=x^6dx\]
\[v=\frac{1}{7}x^7\]
In equation:
\[∫udv=uv−∫vdu\]
\[=ln(9x)\frac{1}{7}x^7−∫\frac{1}{7}x^7\frac{1}{x}dx\]
\[=ln(9x)\frac{x^7}{7}−\frac{x^7}{49}−C\]
\[f(x)=\frac{1}{6x}\]
\[∫^{e6}_1f(x)dx\]
\[=∫^{e^6}_1\frac{1}{6x}dx\]
\[=\frac{1}{6}∫^{e^6}_1\frac{1}{x}dx\]
\[=\frac{1}{6}ln(x)|^{e^6}_1\]
\[=\frac{1}{6}[ln(e^6)−ln(1)]\]
\[=\frac{1}{6}[6−0]\]
\[=1\]