\[\int { 4{ e }^{ -7x }dx }\]
\(y = {x}^{2} -2x - 2, y = x + 2\)
Let X be the units per orders Let C be the total cost 110 is the total number of unit 8.25 is the cost per order 3.75 is the cost per unit
Assuming at any time half of the ordered items are in store
Therefore the total cost can be written as
\[C = 8.25*110/X + 3.75*X/2\] \[C = 907.5/X + 1.875*X\] Finding the derivative \[f^{ 1 }\left( C \right) = \frac{-907.5}{{X}^{2}} + 1.875\] To find least cost, set C = 0 \[0 = \frac{-907.5}{{X}^{2}} + 1.875\] X = 22
Therefore, the lot size is 22 and number of order = 110/22 = 5
\[\int ln(9x) . {x}^{6}dx\]
Using the formula for integration by parts: \(\int u.dv = uv - \int v. du\)
Assume \(u = ln(9x)\), hence \(du = \frac{1}{x}dx\) Assume \(dv = x^6dx \\\), hence \(v = \frac{1}{7}x^7 \\\)
Therefore, \[\int udv = uv - \int vdu \\\] \[= ln(9x)*\frac{1}{7}x^7 - \frac{1}{7}\int x^7.\frac{1}{x}dx \\\] \[= \frac{1}{7}*ln(9x)*x^7 - \frac{1}{7}*\int x^6.dx \\\] \[= \frac{1}{7}x^7 [ln(9x) - \frac{1}{7}]\]
\[f(x) = \frac{1}{6x}\]
\[\int f(x) = \int\frac{1}{6x}dx \] \[= \frac{1}{6} .\int_{1}^{{e}^{6}}\frac{1}{x}.dx\] \[=\frac{1}{6}.ln(x)|_{1}^{{e}^{6}}\] \[=\frac{1}{6}.[ln({e}^{6}) - ln(1)] \] \[= \frac{1}{6}.[6 - 0]\] \[=1\]
Hence we can determine that the given function is a probability density function