\(\color{red} {f(x) = \cfrac{1}{(1-x)}}\)

\(f(x) \Rrightarrow \sum _{ n=0 }^{ \infty } {\frac{f^{(n)} (c)}{n!}}(x-c)^{n}\)

\(f^{(n)} (x) \Rrightarrow {\frac{n!}{(1-x)^{(n+1)}}}\)

\(f(c) \Rrightarrow \sum _{ n=0 }^{ \infty } {\frac{{\frac{n!}{(1-c)^{(n+1)}}}}{n!}}(x-c)^{n}\)

\(f(c) \Rrightarrow \sum _{ n=0 }^{ \infty } {\frac{(x-c)^{n}}{(1-c)^{(n+1)}}}\)

c = 0

\(f(x) \Rrightarrow \sum _{ n=0 }^{ \infty } {\frac{(x-0)^{n}}{(1-0)^{(n+1)}}}\)

\(f(x) \Rrightarrow \sum _{ n=0 }^{ \infty }{ x^{ n }}\)

\(\color{red} {f(x) = e^x}\)

\(f(x) \Rrightarrow e^x = e^a + e^a (x-c) + e^a (x-c)^2 + e^a (x-c)^3+ ...\)

c = 0

\(f(x) = e^x \Rrightarrow e^0 + e^0 (x-0) + e^0 (x-0)^2 + e^0 (x-0)^3+ ...\) \(f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ...\)

\(f(x) \Rrightarrow \sum _{ n=0 }^{ \infty }{ \frac { x^{ n } }{ n! }}\)

\(\color{red} {f(x) = ln(1+x)}\)

\(f(x) = ln(1 + x) \Rrightarrow ln(1+c) = \frac{(x-c)}{(1+c)}-\frac{(x-c)^2}{2!(1+c)^2}+\frac{(x-c)^3}{3!2(1+c)^3} - \frac{(x-c)^4}{4!(3)(2)(1+c)^3} + ...\)

c = 0

\(f(x) \Rrightarrow x - \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+ ...\)

\(f(x) \Rrightarrow \sum _{ n=0 }^{ \infty }{ (-1)^{ n+1 }\frac { x^{ n } }{ n }}\)