Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)
In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.
variable | description |
---|---|
score |
average professor evaluation score: (1) very unsatisfactory - (5) excellent. |
rank |
rank of professor: teaching, tenure track, tenured. |
ethnicity |
ethnicity of professor: not minority, minority. |
gender |
gender of professor: female, male. |
language |
language of school where professor received education: english or non-english. |
age |
age of professor. |
cls_perc_eval |
percent of students in class who completed evaluation. |
cls_did_eval |
number of students in class who completed evaluation. |
cls_students |
total number of students in class. |
cls_level |
class level: lower, upper. |
cls_profs |
number of professors teaching sections in course in sample: single, multiple. |
cls_credits |
number of credits of class: one credit (lab, PE, etc.), multi credit. |
bty_f1lower |
beauty rating of professor from lower level female: (1) lowest - (10) highest. |
bty_f1upper |
beauty rating of professor from upper level female: (1) lowest - (10) highest. |
bty_f2upper |
beauty rating of professor from second upper level female: (1) lowest - (10) highest. |
bty_m1lower |
beauty rating of professor from lower level male: (1) lowest - (10) highest. |
bty_m1upper |
beauty rating of professor from upper level male: (1) lowest - (10) highest. |
bty_m2upper |
beauty rating of professor from second upper level male: (1) lowest - (10) highest. |
bty_avg |
average beauty rating of professor. |
pic_outfit |
outfit of professor in picture: not formal, formal. |
pic_color |
color of professor’s picture: color, black & white. |
This is an observational study, as they are observing qualities that alerady exist, and not implementing treatments. As there is presumaly more than beauty going towards course evaluations, I might instead phrase the question as: does beauty contribute to course evaluations.
score
. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?The distribution looks left skewed, meaning students tend use higher scores more often, while low scores are rare. I did expect this, as I often see higher scores (like 4 ot of 5) as the mean or default rating.
score
, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).Younger professors tend to be rated as more beautiful than older professors, and male professors tend to have more students than female professors (only male professors had class sizes over 500 students).
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
jitter()
on the \(y\)- or the \(x\)-coordinate. (Use ?jitter
to learn more.) What was misleading about the initial scatterplot?Many points are overlapping on the plot.
m_bty
to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty)
. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
The linear equation for the model is: score = 3.880 + 0.067 X bty_avg This means for every increase in bty_avg of 1, score goes ip by 0.067 While statistically significant (p is almost 0), the model only accounts for about 3.5% of the variation observed. Overall, beauty would not be a great predictor of score.
As shown above, the residuals plot looks more-or-less uniform, qqplot somewhat follows the qqline, and the histogram of the residuals is somewhere between left skewed and normal. The conditions for least squares regression are somewhat reasonable.
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:
These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.
As seen before, the relationship between beauty and score is linear. The new variable will add a score boost for being male, and should not affect linearity. Seen above, the residuals are mostly evenly distributed in the qqplot, and a almost normally distributed in the histogram (slightly left-tailed). The conditions for this model are reasonable, although it still does not explain most of the variance
bty_avg
still a significant predictor of score
? Has the addition of gender
to the model changed the parameter estimate for bty_avg
?It’s actually made it a slightly more effective parameter, with a slightly higher, though still low, increase in score for an increase in beauty.
Note that the estimate for gender
is now called gendermale
. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender
from having the values of female
and male
to being an indicator variable called gendermale
that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)
As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
We can plot this line and the line corresponding to males with the following custom function.
The equation for males is: score = 3.747 + 0.074 X bty_avg + 0.172 Males tend to have the higher course evaluation score.
The decision to call the indicator variable gendermale
instead ofgenderfemale
has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel
function. Use ?relevel
to learn more.)
m_bty_rank
with gender
removed and rank
added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching
, tenure track
, tenured
.##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
R will create two ‘dummy’ variables here; this results in a different fixed number being added to the formula for each given rank.
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg
reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg
scores that are one point apart.
We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
I would guess class level.
Let’s run the model…
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
Single vs multiple professors per course had the highest p-value @ 0.778.
If the professor is not of a minority ethnicity, they can expect an additional 0.123 to their score.
m_oneless <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_oneless)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
The coefficents and significance of the over variables changed only slightly. If not, then there could be colinearity.
m_best <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_best)
##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8455 -0.3221 0.1013 0.3745 0.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.907030 0.244889 15.954 < 2e-16 ***
## ethnicitynot minority 0.163818 0.075158 2.180 0.029798 *
## gendermale 0.202597 0.050102 4.044 6.18e-05 ***
## languagenon-english -0.246683 0.106146 -2.324 0.020567 *
## age -0.006925 0.002658 -2.606 0.009475 **
## cls_perc_eval 0.004942 0.001442 3.427 0.000666 ***
## cls_creditsone credit 0.517205 0.104141 4.966 9.68e-07 ***
## bty_avg 0.046732 0.017091 2.734 0.006497 **
## pic_outfitnot formal -0.113939 0.067168 -1.696 0.090510 .
## pic_colorcolor -0.180870 0.067456 -2.681 0.007601 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared: 0.1774, Adjusted R-squared: 0.161
## F-statistic: 10.85 on 9 and 453 DF, p-value: 2.441e-15
The model above has the lowest p-Value.
score = 3.907 + 0.1634 X ethnicitynot minority + 0.203 X gendermale + -0.247 X languagenon-english + -0.007 X age + 0.005 X cls_perc_eval + 0.517 X cls_creditsone credit + 0.047 X bty_avg + -0.114 X pic_outfitnot formal + -0.181 X pic_colorcolor
The conditions are reasonable. The residuals are approximately normally distributed, and the qqplot fits the qqline.
It imposes some problems when it comes to independence between observations for the same professor. It will also weight the data towards professors with more courses. Also, whether or not a professor gets to have more courses may be somewhat related to their score. The data would be better if it were one professor per observation.
Young, beautiful white guy teaching a one credit course who went to a school that taught in english, whose picture was dressed formally and in color, and for whom most students gave an evaluation.
While the model is significant, it does not really account for much of the variation observed. I’d also feel better if the dataset were one course per professor. Also, the model may not apply past the University of Texas at Austin; people there may have different expectations of their professors, or tendancies to rate them differently, than elsewhere.