\[\int 4 e^{-7x} dx\]
Let u = -7x then du = -7dx
\[4\int { { e }^{ u } } \frac { du }{ -7 }\] \[-\frac { 4 }{ 7 } \int { { e }^{ u } } du\] \[-\frac { 4 }{ 7 } { e }^{ u }+\quad constant\] since u= -7x
\[-\frac { 4 }{ 7 } { e }^{ -7x }+\quad constant\]
\[N'(t)= -\frac{3150}{t^{4}}-220\] \[N(t)\quad =\quad \int { (\frac { -3150 }{ { t }^{ 4 } } -220)dt } \]
when N=1, then
\[N(1)=1050 - 220 + constant = 6530\] \[constant = 5700\]
The function is
\[N(t) = \frac {1050} { t ^{ 4 }} -220t +5700\]
eqn <- function(x) {
2*x-9
}
area <- integrate(f=eqn, lower = 4.5, upper = 8.5)
area
## 16 with absolute error < 1.8e-13
y = x2 - 2x - 2, y = x + 2
# define two functions f and g
f <- function(x) {x^2-2*x-2}
g <- function(x) {x+2}
# draw both functions f and g
curve(expr=f, from = -5, to = 5)
curve(expr=g, from = -5, to = 5, add = T)
# find lower intersection
rt <- uniroot(function(x) f(x) - g(x) , interval = c(-5,0), tol=0.000001)
rt$root
## [1] -1
# find upper intersection
rt <- uniroot(function(x) f(x) - g(x) , interval = c(0, 5), tol=0.000001)
rt$root
## [1] 4
# f area between -1 and 1
f_area <- integrate(f, lower = -1, upper = 4)
# g area between -1 and 1
g_area <- integrate(g, lower = -1, upper = 4)
# area in between
g_area$value - f_area$value
## [1] 20.83333
Let x be a number of flat irons to order.
yearly storage cost = storage cost per iron * avg number of irons stored = 3.75 * x/2 = 1.875 * x
yearly order cost = cost of each order * num of orders = 8.25 * 110/x= 907.5/x
inv cost = yearly storage cost + yearly ordering cost = 1.8758 * x + 907.5/x = f(x)
To find the minimized value, we would need differentiate and solve for 0.
f’(x) = 0
\[1.875\quad - \quad \frac { 907.5}{ x^{2} } = 0\]
\[x\quad =\quad \sqrt { \frac { 907.5 }{ 1.875 } } \]
\[ x = 22 \]
\[ \int { ln(9x).{ x }^{ 6 }dx } \]
\[ \int { uv'dx\quad =\quad uv\quad -\quad \int { u'vdx } } \] in this case u=ln(9x) v’=\(x^{6}\)
\[ \int { ln(9x).{ x }^{ 6 }dx }\quad = \quad \frac { 1 }{ 7 } ln(9x){ x }^{ 7 }\quad -\quad \frac { 1 }{ 7 } \int { { x }^{ 6 }dx } \quad \]
\[ =\quad\quad \frac { 1 }{ 7 } ln(9x){ x }^{ 7 }\quad -\quad \frac { 1 }{ 7 } (\frac { { x }^{ 7 } }{ 7 } )\quad +\quad constant\quad \quad \] \[ = \frac { { x }^{ 7 } }{ 7 } \left[ ln(9x)\quad -\frac { 1 }{ 7 } \right] \quad +\quad constant\quad \quad \]
f(x) = \(\frac{1}{6x}\)
\[ \int _{ 1 }^{ { e }^{ 6 } }{ \frac { 1 }{ 6x } } dx\quad \quad \] \[ \frac { 1 }{ 6 } \int _{ 1 }^{ { e }^{ 6 } }{ \frac { 1 }{ x } } dx\quad \quad\]
\[ \frac { 1 }{ 6 } (ln({ e }^{ 6 })\quad -ln(1))\quad \] \[\frac { 1 }{ 6 } (6-0)\quad =\quad 1\] The definite integral of the function on interval [1, \(e^{6}\)] is 1. So it satisfies that function is indeed a probability distribution function.