rpart, rpart.plot and ROCR : These packages are used for building classification and regression models using decision trees. Further, we can visualize the tree structure and evaluate the performance of the models
forecast, tseries and sarima : These packages are used to model the time-series data including the seasonal component in the series if any
library(tidyverse) #used for data manipulation
library(rmarkdown) #used for formatting the markdown file
library(sqldf) #using SQL commands in R
CustomerData<-read.csv("data/CustomerData.csv",header=TRUE,sep=",")
1.1 Take a look into the data
head(CustomerData)
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 1 3964-QJWTRG-NPN 1 2 Female 20 15 Professional
## 2 0648-AIPJSP-UVM 5 5 Male 22 17 Sales
## 3 5195-TLUDJE-HVO 3 4 Female 67 14 Sales
## 4 4459-VLPQUH-3OL 4 3 Male 23 16 Sales
## 5 8158-SMTQFB-CNO 2 2 Male 26 16 Sales
## 6 9662-FUSYIM-1IV 4 4 Male 64 17 Service
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 Yes 0 No 31000 11.1 1.200909
## 2 No 0 No 15000 18.6 1.222020
## 3 No 16 No 35000 9.9 0.928620
## 4 No 0 No 20000 5.7 0.022800
## 5 No 1 No 23000 1.7 0.214659
## 6 No 22 No 107000 5.6 1.060584
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 2.240091 Yes Unmarried 3 0 0
## 2 1.567980 Yes Unmarried 2 6 0
## 3 2.536380 No Married 3 3 2
## 4 1.117200 Yes Married 5 0 0
## 5 0.176341 No Married 4 0 0
## 6 4.931416 No Unmarried 1 11 1
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0 0 0 2 Own Domestic 14300
## 2 0 0 1 2 Own Foreign 6800
## 3 1 0 1 3 Own Foreign 18800
## 4 0 0 1 3 Own Foreign 8700
## 5 0 0 0 1 Lease Foreign 10600
## 6 1 0 1 0 -1 -1 -1000
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1 22 Yes Yes Mast 2 5
## 2 29 Yes No Visa 4 5
## 3 24 Yes No Visa 35 9
## 4 38 No No Visa 5 17
## 5 32 No No Disc 8 8
## 6 23 No No Visa 18 11
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1 816.6 No 5 19.50 34.40
## 2 426.0 Yes 39 26.70 330.60
## 3 1842.2 No 65 85.20 1858.35
## 4 3409.9 Yes 36 18.00 199.45
## 5 2551.0 Yes 21 9.15 74.10
## 6 2282.7 No 28 24.30 264.90
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1 Yes 29.50 126.10 Yes
## 2 Yes 54.85 1975.00 Yes
## 3 No 0.00 0.00 Yes
## 4 No 0.00 0.00 Yes
## 5 No 0.00 0.00 Yes
## 6 Yes 35.50 970.95 Yes
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager Internet
## 1 No 0.00 0.00 Yes Yes Yes No
## 2 Yes 45.65 1683.55 Yes Yes Yes 4
## 3 No 0.00 0.00 Yes No No No
## 4 No 0.00 0.00 Yes No No 2
## 5 Yes 19.05 410.80 No Yes No 3
## 6 No 0.00 0.00 No No Yes No
## CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1 No Yes Yes Yes No 13 No
## 2 Yes No Yes No Yes 18 Yes
## 3 No No No No No 21 No
## 4 No No No No Yes 26 Yes
## 5 Yes Yes Yes Yes No 27 Yes
## 6 Yes Yes Yes Yes No 21 No
## OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1 Yes Yes No No
## 2 Yes Yes Yes Yes
## 3 No No No Yes
## 4 Yes Yes No Yes
## 5 No Yes No No
## 6 No No No No
1.2 Size of the dataset 1.2.1 How larger is my dataset? How many rows? How many columns?
dim(CustomerData)
## [1] 5000 59
1.2.2 How many columns?
ncol(CustomerData)
## [1] 59
1.2.3 How many rows?
nrow(CustomerData)
## [1] 5000
1.3 Glimpse at the variables
1.3.1 What is the name of my columns?
names(CustomerData)
## [1] "CustomerID" "Region" "TownSize"
## [4] "Gender" "Age" "EducationYears"
## [7] "JobCategory" "UnionMember" "EmploymentLength"
## [10] "Retired" "HHIncome" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber"
#OR
colnames(CustomerData)
## [1] "CustomerID" "Region" "TownSize"
## [4] "Gender" "Age" "EducationYears"
## [7] "JobCategory" "UnionMember" "EmploymentLength"
## [10] "Retired" "HHIncome" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber"
1.3.2 What is the structure of the data
str(CustomerData)
## 'data.frame': 5000 obs. of 59 variables:
## $ CustomerID : Factor w/ 5000 levels "0002-GTOKLU-YVY",..: 1980 347 2606 2221 4037 4826 3670 4454 4531 1758 ...
## $ Region : int 1 5 3 4 2 4 2 3 2 2 ...
## $ TownSize : Factor w/ 6 levels "#NULL!","1","2",..: 3 6 5 4 3 5 6 5 4 3 ...
## $ Gender : Factor w/ 3 levels "","Female","Male": 2 3 2 3 3 3 2 2 2 3 ...
## $ Age : int 20 22 67 23 26 64 52 44 66 47 ...
## $ EducationYears : int 15 17 14 16 16 17 14 16 12 11 ...
## $ JobCategory : Factor w/ 7 levels "","Agriculture",..: 5 6 6 6 6 7 5 5 5 4 ...
## $ UnionMember : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 1 1 1 ...
## $ EmploymentLength : int 0 0 16 0 1 22 10 11 15 19 ...
## $ Retired : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 2 1 ...
## $ HHIncome : num 31000 15000 35000 20000 23000 107000 77000 97000 16000 84000 ...
## $ DebtToIncomeRatio : num 11.1 18.6 9.9 5.7 1.7 5.6 1.9 14.4 2.6 4.1 ...
## $ CreditDebt : num 1.2009 1.222 0.9286 0.0228 0.2147 ...
## $ OtherDebt : num 2.24 1.568 2.536 1.117 0.176 ...
## $ LoanDefault : Factor w/ 2 levels "No","Yes": 2 2 1 2 1 1 1 1 1 1 ...
## $ MaritalStatus : Factor w/ 2 levels "Married","Unmarried": 2 2 1 1 1 2 2 1 2 2 ...
## $ HouseholdSize : int 3 2 3 5 4 1 1 2 1 2 ...
## $ NumberPets : int 0 6 3 0 0 11 2 10 1 1 ...
## $ NumberCats : int 0 0 2 0 0 1 0 0 1 1 ...
## $ NumberDogs : int 0 0 1 0 0 1 2 2 0 0 ...
## $ NumberBirds : int 0 0 0 0 0 0 0 0 0 0 ...
## $ HomeOwner : int 0 1 1 1 0 1 0 1 1 1 ...
## $ CarsOwned : int 2 2 3 3 1 0 2 1 1 4 ...
## $ CarOwnership : Factor w/ 3 levels "-1","Lease","Own": 3 3 3 3 2 1 3 3 3 3 ...
## $ CarBrand : Factor w/ 3 levels "-1","Domestic",..: 2 3 3 3 3 1 2 2 3 2 ...
## $ CarValue : num 14300 6800 18800 8700 10600 -1000 25600 55500 8600 41000 ...
## $ CommuteTime : Factor w/ 42 levels "#NULL!","10",..: 14 21 16 30 24 15 24 23 17 21 ...
## $ PoliticalPartyMem : Factor w/ 2 levels "No","Yes": 2 2 2 1 1 1 1 1 2 2 ...
## $ Votes : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 2 2 2 ...
## $ CreditCard : Factor w/ 5 levels "AMEX","Disc",..: 3 5 5 5 2 5 4 1 3 4 ...
## $ CardTenure : int 2 4 35 5 8 18 3 25 26 2 ...
## $ CardItemsMonthly : int 5 5 9 17 8 11 20 6 12 11 ...
## $ CardSpendMonth : num 817 426 1842 3410 2551 ...
## $ ActiveLifestyle : Factor w/ 2 levels "No","Yes": 1 2 1 2 2 1 1 1 2 2 ...
## $ PhoneCoTenure : int 5 39 65 36 21 28 15 46 53 3 ...
## $ VoiceLastMonth : num 19.5 26.7 85.2 18 9.15 ...
## $ VoiceOverTenure : Factor w/ 4438 levels "#NULL!","0.90",..: 2414 2366 1232 1367 3889 1923 2862 3524 139 1389 ...
## $ EquipmentRental : Factor w/ 2 levels "No","Yes": 2 2 1 1 1 2 1 1 1 1 ...
## $ EquipmentLastMonth : num 29.5 54.9 0 0 0 ...
## $ EquipmentOverTenure: num 126 1975 0 0 0 ...
## $ CallingCard : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 1 2 2 1 ...
## $ WirelessData : Factor w/ 2 levels "No","Yes": 1 2 1 1 2 1 1 1 1 1 ...
## $ DataLastMonth : num 0 45.6 0 0 19.1 ...
## $ DataOverTenure : num 0 1684 0 0 411 ...
## $ Multiline : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 1 1 2 2 1 ...
## $ VM : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 1 ...
## $ Pager : Factor w/ 2 levels "No","Yes": 2 2 1 1 1 2 1 1 1 1 ...
## $ Internet : Factor w/ 5 levels "2","3","4","No",..: 4 3 4 1 2 4 5 4 4 4 ...
## $ CallerID : Factor w/ 2 levels "No","Yes": 1 2 1 1 2 2 1 2 1 1 ...
## $ CallWait : Factor w/ 2 levels "No","Yes": 2 1 1 1 2 2 1 2 1 1 ...
## $ CallForward : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 2 2 2 1 1 ...
## $ ThreeWayCalling : Factor w/ 2 levels "No","Yes": 2 1 1 1 2 2 1 2 1 1 ...
## $ EBilling : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 1 1 1 1 1 ...
## $ TVWatchingHours : int 13 18 21 26 27 21 19 13 25 21 ...
## $ OwnsPC : Factor w/ 2 levels "No","Yes": 1 2 1 2 2 1 2 1 1 1 ...
## $ OwnsMobileDevice : Factor w/ 2 levels "No","Yes": 2 2 1 2 1 1 2 1 1 1 ...
## $ OwnsGameSystem : Factor w/ 2 levels "No","Yes": 2 2 1 2 2 1 1 1 1 1 ...
## $ OwnsFax : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 1 ...
## $ NewsSubscriber : Factor w/ 2 levels "No","Yes": 1 2 2 2 1 1 1 2 1 1 ...
1.3.3 How to get the format a column
class(CustomerData[,1])
## [1] "factor"
1.4 Summary statistics of the dataset 1.4.1 Getting the summary of the dataset
summary(CustomerData)
## CustomerID Region TownSize Gender
## 0002-GTOKLU-YVY: 1 Min. :1.000 #NULL!: 2 : 33
## 0003-RLTRGE-IW2: 1 1st Qu.:2.000 1 :1436 Female:2494
## 0003-UTGKPR-PRU: 1 Median :3.000 2 :1048 Male :2473
## 0008-ZIQQOT-SGB: 1 Mean :3.001 3 : 907
## 0012-CIVYLF-839: 1 3rd Qu.:4.000 4 : 857
## 0014-DOIOFX-LXB: 1 Max. :5.000 5 : 750
## (Other) :4994
## Age EducationYears JobCategory UnionMember
## Min. :18.00 Min. : 6.00 : 15 No :4244
## 1st Qu.:31.00 1st Qu.:12.00 Agriculture : 212 Yes: 756
## Median :47.00 Median :14.00 Crafts : 452
## Mean :47.03 Mean :14.54 Labor : 686
## 3rd Qu.:62.00 3rd Qu.:17.00 Professional:1380
## Max. :79.00 Max. :23.00 Sales :1635
## Service : 620
## EmploymentLength Retired HHIncome DebtToIncomeRatio
## Min. : 0.00 No :4262 Min. : 9000 Min. : 0.000
## 1st Qu.: 2.00 Yes: 738 1st Qu.: 24000 1st Qu.: 5.100
## Median : 7.00 Median : 38000 Median : 8.800
## Mean : 9.73 Mean : 54760 Mean : 9.954
## 3rd Qu.:15.00 3rd Qu.: 67000 3rd Qu.:13.600
## Max. :52.00 Max. :1073000 Max. :43.100
##
## CreditDebt OtherDebt LoanDefault MaritalStatus
## Min. : 0.0000 Min. : 0.0000 No :3829 Married :2401
## 1st Qu.: 0.3855 1st Qu.: 0.9803 Yes:1171 Unmarried:2599
## Median : 0.9264 Median : 2.0985
## Mean : 1.8573 Mean : 3.6545
## 3rd Qu.: 2.0638 3rd Qu.: 4.3148
## Max. :109.0726 Max. :141.4591
##
## HouseholdSize NumberPets NumberCats NumberDogs
## Min. :1.000 Min. : 0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.000 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :2.000 Median : 2.000 Median :0.0000 Median :0.0000
## Mean :2.202 Mean : 3.067 Mean :0.5003 Mean :0.3928
## 3rd Qu.:3.000 3rd Qu.: 5.000 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :9.000 Max. :21.000 Max. :6.0000 Max. :7.0000
## NA's :8 NA's :6 NA's :7 NA's :8
## NumberBirds HomeOwner CarsOwned CarOwnership CarBrand
## Min. :0.0000 Min. :0.0000 Min. :0.000 -1 : 497 -1 : 497
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000 Lease: 799 Domestic:2287
## Median :0.0000 Median :1.0000 Median :2.000 Own :3704 Foreign :2216
## Mean :0.1112 Mean :0.6296 Mean :2.131
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :5.0000 Max. :1.0000 Max. :8.000
## NA's :34 NA's :13
## CarValue CommuteTime PoliticalPartyMem Votes CreditCard
## Min. :-1000 24 : 336 No :3093 No :2410 AMEX: 986
## 1st Qu.: 9200 23 : 335 Yes:1907 Yes:2590 Disc:1344
## Median :17000 27 : 331 Mast:1200
## Mean :23233 25 : 330 Othe: 223
## 3rd Qu.:31100 22 : 325 Visa:1247
## Max. :99600 26 : 311
## (Other):3032
## CardTenure CardItemsMonthly CardSpendMonth ActiveLifestyle
## Min. : 0.00 Min. : 0.00 Min. : 0 No :2670
## 1st Qu.: 6.00 1st Qu.: 8.00 1st Qu.: 1834 Yes:2330
## Median :14.00 Median :10.00 Median : 2764
## Mean :16.66 Mean :10.18 Mean : 3372
## 3rd Qu.:26.00 3rd Qu.:12.00 3rd Qu.: 4185
## Max. :40.00 Max. :23.00 Max. :39264
##
## PhoneCoTenure VoiceLastMonth VoiceOverTenure EquipmentRental
## Min. : 0.0 Min. : 2.70 2.05 : 8 No :3296
## 1st Qu.:18.0 1st Qu.: 17.10 2.60 : 6 Yes:1704
## Median :38.0 Median : 28.65 14.30 : 5
## Mean :38.2 Mean : 40.41 16.45 : 5
## 3rd Qu.:59.0 3rd Qu.: 49.65 1.40 : 4
## Max. :72.0 Max. :539.55 1.85 : 4
## (Other):4968
## EquipmentLastMonth EquipmentOverTenure CallingCard WirelessData
## Min. : 0.00 Min. : 0.0 No :1419 No :3656
## 1st Qu.: 0.00 1st Qu.: 0.0 Yes:3581 Yes:1344
## Median : 0.00 Median : 0.0
## Mean : 12.99 Mean : 470.2
## 3rd Qu.: 30.80 3rd Qu.: 510.2
## Max. :106.30 Max. :6525.3
##
## DataLastMonth DataOverTenure Multiline VM Pager
## Min. : 0.00 Min. : 0.00 No :2558 No :3485 No :3782
## 1st Qu.: 0.00 1st Qu.: 0.00 Yes:2442 Yes:1515 Yes:1218
## Median : 0.00 Median : 0.00
## Mean : 10.70 Mean : 421.99
## 3rd Qu.: 20.96 3rd Qu.: 89.96
## Max. :186.25 Max. :12858.65
##
## Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 2 : 545 No :2624 No :2605 No :2597 No :2610 No :3257
## 3 : 598 Yes:2376 Yes:2395 Yes:2403 Yes:2390 Yes:1743
## 4 : 585
## No :2498
## Yes: 774
##
##
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## Min. : 0.00 No :1836 No :2604 No :2626 No :4106
## 1st Qu.:17.00 Yes:3164 Yes:2396 Yes:2374 Yes: 894
## Median :20.00
## Mean :19.64
## 3rd Qu.:23.00
## Max. :36.00
##
## NewsSubscriber
## No :2637
## Yes:2363
##
##
##
##
##
1.4.2 Getting some other statistics
#Standard Deviation
sd(CustomerData$Age)
## [1] 17.77034
#Quantiles
quantile(CustomerData$Age)
## 0% 25% 50% 75% 100%
## 18 31 47 62 79
1.4.3 Getting statistics for multiple columns
apply(CustomerData[,c(5,6,11)], 2, sd)
## Age EducationYears HHIncome
## 17.770338 3.281083 55377.511154
1.4.4 Summarizing the dataset to aggregate data and calculate various statistical values
#Mean
aggregate(.~Gender, CustomerData, mean)
## Gender CustomerID Region TownSize Age EducationYears JobCategory
## 1 2626.625 3.375000 4.218750 45.09375 13.62500 5.281250
## 2 Female 2516.975 2.980551 3.690438 46.92788 14.55916 5.120340
## 3 Male 2487.859 3.017213 3.670902 47.26066 14.53975 5.110246
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 1.062500 9.531250 1.125000 43562.50 13.734375 1.684107
## 2 1.151135 9.643031 1.140600 54381.28 9.967990 1.818785
## 3 1.152869 9.900000 1.155738 55605.33 9.892664 1.910504
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 4.623205 1.281250 1.500000 2.375000 1.906250 0.4375000
## 2 3.546985 1.232172 1.518639 2.243922 3.175446 0.5129660
## 3 3.766094 1.233607 1.520492 2.155738 2.965574 0.4905738
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0.2500000 0.00000000 0.6250000 2.562500 2.750000 2.375000 20012.50
## 2 0.3829011 0.12520259 0.6333063 2.139789 2.645867 2.352107 23115.60
## 3 0.4040984 0.09959016 0.6290984 2.108607 2.632377 2.333197 23461.84
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1 17.68750 1.312500 1.500000 3.125000 14.65625 9.25000
## 2 17.42828 1.384117 1.500000 2.985008 16.46272 10.12763
## 3 17.34836 1.379918 1.536066 2.768852 16.93975 10.23975
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1 2393.588 1.593750 37.18750 41.13281 1927.469
## 2 3224.937 1.475284 38.03566 39.37202 2212.532
## 3 3537.625 1.453279 38.43402 41.54717 2214.435
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1 1.343750 12.19219 390.2406 1.625000
## 2 1.346840 13.09801 467.7458 1.711102
## 3 1.333607 12.88115 473.7890 1.720902
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager
## 1 1.187500 6.97500 240.4828 1.343750 1.250000 1.125000
## 2 1.267018 10.38349 409.6659 1.481361 1.301053 1.239465
## 3 1.271721 11.11086 439.5887 1.498361 1.305328 1.249590
## Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 1 3.687500 1.406250 1.531250 1.406250 1.468750 1.281250
## 2 3.465559 1.456240 1.465559 1.472853 1.468801 1.359400
## 3 3.466393 1.496311 1.490984 1.489754 1.485246 1.338115
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 1 20.78125 1.468750 1.500000 1.437500 1.156250
## 2 19.61062 1.631280 1.469206 1.476094 1.182739
## 3 19.65574 1.636885 1.488934 1.474180 1.175000
## NewsSubscriber
## 1 1.437500
## 2 1.461507
## 3 1.484426
#Std. Deviation
aggregate(.~Gender, CustomerData, sd)
## Gender CustomerID Region TownSize Age EducationYears JobCategory
## 1 1313.017 1.263635 1.601096 17.70431 3.616717 1.250403
## 2 Female 1434.558 1.425500 1.429819 17.74132 3.294513 1.304984
## 3 Male 1452.206 1.416137 1.420972 17.80884 3.269634 1.336611
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 0.2459347 10.658888 0.3360108 33944.87 8.249051 2.790234
## 2 0.3582525 9.653597 0.3476786 50498.87 6.491034 2.906208
## 3 0.3599348 9.752400 0.3626808 60531.37 6.292995 3.899551
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 6.106568 0.4568034 0.5080005 1.601411 2.998488 0.8007053
## 2 4.553509 0.4223036 0.4997537 1.438252 3.430769 0.8791106
## 3 6.155443 0.4232115 0.4996823 1.336837 3.400981 0.8440961
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0.5679618 0.0000000 0.4918694 1.543718 0.5679618 0.6090712 16495.66
## 2 0.7944779 0.5266749 0.4819995 1.303665 0.6513022 0.6508449 21028.28
## 3 0.8006657 0.4682628 0.4831452 1.313852 0.6633504 0.6555378 21631.71
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure
## 1 5.844421 0.4709291 0.5080005 1.385408 10.50840
## 2 6.001564 0.4864843 0.5001013 1.431937 11.90170
## 3 5.857047 0.4854657 0.4987998 1.450231 12.16583
## CardItemsMonthly CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 1 3.398292 1310.899 0.4989909 21.67865 37.04573
## 2 3.419750 2321.157 0.4994899 22.65831 36.61488
## 3 3.371901 2589.466 0.4979144 22.69309 40.21021
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 1 1195.770 0.4825587 17.91682 917.6471
## 2 1288.189 0.4760606 19.05465 898.3427
## 3 1271.001 0.4715977 19.42142 928.8496
## CallingCard WirelessData DataLastMonth DataOverTenure Multiline VM
## 1 0.4918694 0.3965578 16.38938 885.4337 0.4825587 0.4399413
## 2 0.4533422 0.4424914 18.98478 950.5515 0.4997537 0.4588089
## 3 0.4486479 0.4449382 20.70989 1056.9149 0.5000998 0.4606406
## Pager Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 1 0.3360108 0.9651174 0.4989909 0.5070073 0.4989909 0.5070073 0.4568034
## 2 0.4268436 1.2036414 0.4981823 0.4989135 0.4993636 0.4991268 0.4799219
## 3 0.4328645 1.2130972 0.5000889 0.5000212 0.4999975 0.4998847 0.4731648
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 1 5.374578 0.5070073 0.5080005 0.5040161 0.3689020
## 2 5.152667 0.4825555 0.4991520 0.4995294 0.3865308
## 3 5.158370 0.4809961 0.4999800 0.4994353 0.3800450
## NewsSubscriber
## 1 0.5040161
## 2 0.4986171
## 3 0.4998598
1.4.5 One-way counting
table(CustomerData$Gender)
##
## Female Male
## 33 2494 2473
1.4.6 Two way counting table
table(CustomerData$Gender,CustomerData$UnionMember)
##
## No Yes
## 31 2
## Female 2115 379
## Male 2098 375
2.1.1 Single Histogram
hist(CustomerData$Age, col="yellow", breaks=20)
2.1.2 Histogram combined with density curve
hist(CustomerData$Age, prob=T, col="yellow", breaks=20, main="Histogram and Density of Age", xlim=c(min(CustomerData$Age)-1,max(CustomerData$Age)+1), xlab="Age")
lines(density(CustomerData$Age), col="red", lwd=2)
# Add a vertical line that indicates the average of Sepal Length
abline(v=mean(CustomerData$Age), col="blue", lty=2, lwd=1.5)
2.1.3 Plotting multiple bar charts
avg<- apply(CustomerData[,c(5,6)], 2, mean)
barplot(avg, ylab = "Average")
2.1.4 Plotting multiple bar charts for same variable split by another variable
counts <- table(CustomerData$UnionMember,CustomerData$Gender)
barplot(counts, main="Union Members by Gender",
xlab="Gender", col=c("darkblue","yellow"),
legend = rownames(counts), beside=TRUE)
2.2 Finding the outliers
2.2.1 Single box plot
boxplot(CustomerData$Age)
2.2.2 Plotting multiple box plots in same graph
boxplot(CustomerData[,c(5,6,9)], notch=T, col=c("blue", "yellow","red"))
2.2.3 Box plot of single variable with groups
boxplot(CustomerData[,'HouseholdSize']~CustomerData[,'Gender'], notch=T, ylab="Household Size", col="blue")
2.3.1 Scatter plot to observe the relation between two variables
plot(CustomerData$Age, CustomerData$HouseholdSize, xlab = "Age", ylab = "HH Size", main = "Household Size vs Age")
2.3.2 Scatter plot of multiple variables
pairs(CustomerData[,c(5,6,11)])
2.4 Plotting multiple graphs in same window
# set arrangement of multiple plots. 2,2 will allow us to plot 4 graphs in a window
par(mfrow=c(2,2))
# set margins
par(mar=c(4.5, 4.2, 3, 1.5))
#Graph1
hist(CustomerData$Age, xlab = "Age", cex.lab=1.5, col = "yellow")
#Graph2
hist(CustomerData$HHIncome, xlab = "Household Income", col = "red")
#Graph3 (pch allows us to change shapes)
plot(CustomerData$Age, CustomerData$HouseholdSize, xlab = "Age", ylab = "Household Size", main= "Household Size vs Age", pch=17)
#Graph4
boxplot(CustomerData[,c(5,6)], notch=T, col=c("red", "blue"))
3.1 Filtering data
3.1.1 Method 1 : Using subset() function
subset(x = CustomerData, subset = Age > 25 & HHIncome > 400000)
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 18 0649-TBFJFL-QU4 5 2 Male 63 14 Labor
## 755 5071-YMPEFZ-4BK 3 5 Male 63 17 Agriculture
## 990 8162-PHLLNH-12V 5 1 Female 68 15 Labor
## 1103 8402-SILWTV-4YR 4 4 Male 58 19 Service
## 2062 8607-AMZELA-S5B 5 1 Female 57 18 Agriculture
## 2080 6879-SZBXXQ-ERC 4 4 Female 58 16 Service
## 2193 2329-EIXEIO-VD3 5 5 Male 52 18 Labor
## 2347 2435-DERRXC-V3A 5 1 Female 70 19 Labor
## 3069 9069-XTCDOO-RZV 4 3 Male 57 21 Sales
## 3213 6308-REILUL-K6N 3 1 Male 54 22 Professional
## 3624 9204-WXRZIL-7QG 5 3 Male 70 16 Labor
## 4917 4490-YKVPRY-KYA 5 4 Male 58 21 Professional
## 4950 2885-KFFQPU-BNO 4 4 Male 56 17 Crafts
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18 Yes 29 No 424000 10.7 13.111352
## 755 No 29 No 515000 3.9 2.289690
## 990 Yes 31 No 411000 8.3 10.506804
## 1103 No 20 No 1073000 19.7 109.072596
## 2062 No 23 No 472000 1.2 1.376352
## 2080 No 20 No 409000 6.7 6.987765
## 2193 No 24 No 995000 21.0 67.490850
## 2347 No 37 No 418000 13.9 14.351194
## 3069 No 11 No 780000 13.1 35.252100
## 3213 No 11 No 642000 4.6 11.251692
## 3624 No 35 No 526000 10.2 31.279116
## 4917 No 9 No 437000 14.9 48.704524
## 4950 No 19 No 575000 5.2 4.215900
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18 32.256648 No Married 2 0 0
## 755 17.795310 No Married 2 9 0
## 990 23.606196 No Married 2 2 2
## 1103 102.308404 Yes Married 2 8 0
## 2062 4.287648 No Unmarried 1 0 0
## 2080 20.415235 No Unmarried 4 4 1
## 2193 141.459150 Yes Unmarried 1 1 0
## 2347 43.750806 Yes Unmarried 1 0 0
## 3069 66.927900 Yes Married 2 0 0
## 3213 18.280308 No Married 2 2 0
## 3624 22.372884 Yes Unmarried 1 1 1
## 4917 16.408476 Yes Married 3 4 0
## 4950 25.684100 Yes Unmarried 1 7 1
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18 0 0 1 3 Own Domestic 88600
## 755 0 0 1 2 Own Foreign 88500
## 990 0 0 1 2 Own Foreign 91300
## 1103 2 0 1 4 Own Domestic 77600
## 2062 0 0 1 2 Own Domestic 88000
## 2080 2 1 1 1 Own Foreign 93200
## 2193 1 0 1 3 Own Domestic 99600
## 2347 0 0 1 2 Own Foreign 97300
## 3069 0 0 1 2 Own Foreign 93100
## 3213 2 0 1 1 Own Foreign 86300
## 3624 0 0 1 2 Own Foreign 92200
## 4917 0 0 1 2 Own Foreign 92300
## 4950 0 0 1 1 Own Foreign 93600
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18 29 No Yes Mast 36 10
## 755 20 No No Disc 36 8
## 990 13 Yes No Visa 33 6
## 1103 32 Yes Yes Disc 37 13
## 2062 19 Yes No Disc 17 10
## 2080 24 Yes Yes Mast 17 14
## 2193 31 No Yes AMEX 19 12
## 2347 25 Yes Yes Disc 14 13
## 3069 35 No Yes Disc 33 9
## 3213 25 No Yes Disc 21 10
## 3624 29 No Yes AMEX 40 7
## 4917 19 No Yes Mast 22 8
## 4950 33 No No AMEX 23 8
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18 4957.5 No 70 104.40
## 755 3230.4 Yes 67 72.30
## 990 1541.8 No 66 120.30
## 1103 29693.9 Yes 72 140.70
## 2062 4239.4 No 22 53.10
## 2080 12952.9 No 48 20.40
## 2193 16039.1 Yes 57 39.60
## 2347 8788.6 No 31 17.70
## 3069 3739.2 No 68 114.00
## 3213 5136.8 No 46 27.45
## 3624 10907.9 Yes 72 104.55
## 4917 2082.2 No 53 51.15
## 4950 5140.4 No 50 40.20
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18 2540.15 No 0.0 0.00
## 755 1590.70 No 0.0 0.00
## 990 2613.15 Yes 42.9 2845.75
## 1103 3393.10 No 0.0 0.00
## 2062 328.70 No 0.0 0.00
## 2080 331.30 No 0.0 0.00
## 2193 761.45 No 0.0 0.00
## 2347 196.35 No 0.0 0.00
## 3069 2582.40 No 0.0 0.00
## 3213 438.80 Yes 83.9 3886.10
## 3624 2405.90 Yes 46.7 3244.45
## 4917 913.40 Yes 64.7 3332.05
## 4950 643.85 Yes 48.1 2455.90
## CallingCard WirelessData DataLastMonth DataOverTenure Multiline VM Pager
## 18 Yes No 0.00 0.00 Yes Yes No
## 755 Yes No 0.00 0.00 Yes Yes No
## 990 Yes No 0.00 0.00 Yes No No
## 1103 Yes Yes 44.90 3174.75 Yes No Yes
## 2062 Yes No 0.00 0.00 No Yes No
## 2080 No No 0.00 0.00 No No No
## 2193 Yes Yes 40.75 2113.45 Yes Yes Yes
## 2347 Yes No 0.00 0.00 Yes No No
## 3069 Yes Yes 93.80 6273.95 Yes Yes Yes
## 3213 Yes Yes 104.25 4603.15 Yes Yes Yes
## 3624 Yes Yes 53.05 3634.70 Yes Yes Yes
## 4917 Yes Yes 51.60 2701.50 Yes Yes Yes
## 4950 No Yes 33.15 1612.40 No Yes Yes
## Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18 No Yes No Yes Yes Yes
## 755 Yes No Yes Yes Yes No
## 990 3 No No Yes No No
## 1103 4 No Yes No Yes No
## 2062 Yes Yes Yes Yes Yes No
## 2080 No Yes Yes Yes Yes No
## 2193 3 Yes Yes Yes Yes Yes
## 2347 4 No Yes No Yes No
## 3069 No Yes Yes Yes Yes No
## 3213 4 Yes Yes Yes Yes Yes
## 3624 Yes Yes Yes Yes Yes No
## 4917 Yes Yes Yes Yes Yes Yes
## 4950 4 Yes Yes No Yes Yes
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18 24 No No No No
## 755 25 Yes Yes Yes No
## 990 11 Yes No Yes Yes
## 1103 28 Yes Yes No No
## 2062 24 Yes Yes Yes Yes
## 2080 28 No Yes Yes No
## 2193 22 Yes Yes No Yes
## 2347 27 Yes No No No
## 3069 18 No Yes No Yes
## 3213 18 Yes Yes Yes Yes
## 3624 17 Yes No No No
## 4917 23 Yes Yes Yes Yes
## 4950 11 Yes Yes Yes Yes
## NewsSubscriber
## 18 Yes
## 755 Yes
## 990 Yes
## 1103 Yes
## 2062 No
## 2080 No
## 2193 No
## 2347 No
## 3069 Yes
## 3213 No
## 3624 Yes
## 4917 Yes
## 4950 No
# OR
subset(CustomerData, Age > 25 & HHIncome > 400000)
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 18 0649-TBFJFL-QU4 5 2 Male 63 14 Labor
## 755 5071-YMPEFZ-4BK 3 5 Male 63 17 Agriculture
## 990 8162-PHLLNH-12V 5 1 Female 68 15 Labor
## 1103 8402-SILWTV-4YR 4 4 Male 58 19 Service
## 2062 8607-AMZELA-S5B 5 1 Female 57 18 Agriculture
## 2080 6879-SZBXXQ-ERC 4 4 Female 58 16 Service
## 2193 2329-EIXEIO-VD3 5 5 Male 52 18 Labor
## 2347 2435-DERRXC-V3A 5 1 Female 70 19 Labor
## 3069 9069-XTCDOO-RZV 4 3 Male 57 21 Sales
## 3213 6308-REILUL-K6N 3 1 Male 54 22 Professional
## 3624 9204-WXRZIL-7QG 5 3 Male 70 16 Labor
## 4917 4490-YKVPRY-KYA 5 4 Male 58 21 Professional
## 4950 2885-KFFQPU-BNO 4 4 Male 56 17 Crafts
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18 Yes 29 No 424000 10.7 13.111352
## 755 No 29 No 515000 3.9 2.289690
## 990 Yes 31 No 411000 8.3 10.506804
## 1103 No 20 No 1073000 19.7 109.072596
## 2062 No 23 No 472000 1.2 1.376352
## 2080 No 20 No 409000 6.7 6.987765
## 2193 No 24 No 995000 21.0 67.490850
## 2347 No 37 No 418000 13.9 14.351194
## 3069 No 11 No 780000 13.1 35.252100
## 3213 No 11 No 642000 4.6 11.251692
## 3624 No 35 No 526000 10.2 31.279116
## 4917 No 9 No 437000 14.9 48.704524
## 4950 No 19 No 575000 5.2 4.215900
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18 32.256648 No Married 2 0 0
## 755 17.795310 No Married 2 9 0
## 990 23.606196 No Married 2 2 2
## 1103 102.308404 Yes Married 2 8 0
## 2062 4.287648 No Unmarried 1 0 0
## 2080 20.415235 No Unmarried 4 4 1
## 2193 141.459150 Yes Unmarried 1 1 0
## 2347 43.750806 Yes Unmarried 1 0 0
## 3069 66.927900 Yes Married 2 0 0
## 3213 18.280308 No Married 2 2 0
## 3624 22.372884 Yes Unmarried 1 1 1
## 4917 16.408476 Yes Married 3 4 0
## 4950 25.684100 Yes Unmarried 1 7 1
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18 0 0 1 3 Own Domestic 88600
## 755 0 0 1 2 Own Foreign 88500
## 990 0 0 1 2 Own Foreign 91300
## 1103 2 0 1 4 Own Domestic 77600
## 2062 0 0 1 2 Own Domestic 88000
## 2080 2 1 1 1 Own Foreign 93200
## 2193 1 0 1 3 Own Domestic 99600
## 2347 0 0 1 2 Own Foreign 97300
## 3069 0 0 1 2 Own Foreign 93100
## 3213 2 0 1 1 Own Foreign 86300
## 3624 0 0 1 2 Own Foreign 92200
## 4917 0 0 1 2 Own Foreign 92300
## 4950 0 0 1 1 Own Foreign 93600
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18 29 No Yes Mast 36 10
## 755 20 No No Disc 36 8
## 990 13 Yes No Visa 33 6
## 1103 32 Yes Yes Disc 37 13
## 2062 19 Yes No Disc 17 10
## 2080 24 Yes Yes Mast 17 14
## 2193 31 No Yes AMEX 19 12
## 2347 25 Yes Yes Disc 14 13
## 3069 35 No Yes Disc 33 9
## 3213 25 No Yes Disc 21 10
## 3624 29 No Yes AMEX 40 7
## 4917 19 No Yes Mast 22 8
## 4950 33 No No AMEX 23 8
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18 4957.5 No 70 104.40
## 755 3230.4 Yes 67 72.30
## 990 1541.8 No 66 120.30
## 1103 29693.9 Yes 72 140.70
## 2062 4239.4 No 22 53.10
## 2080 12952.9 No 48 20.40
## 2193 16039.1 Yes 57 39.60
## 2347 8788.6 No 31 17.70
## 3069 3739.2 No 68 114.00
## 3213 5136.8 No 46 27.45
## 3624 10907.9 Yes 72 104.55
## 4917 2082.2 No 53 51.15
## 4950 5140.4 No 50 40.20
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18 2540.15 No 0.0 0.00
## 755 1590.70 No 0.0 0.00
## 990 2613.15 Yes 42.9 2845.75
## 1103 3393.10 No 0.0 0.00
## 2062 328.70 No 0.0 0.00
## 2080 331.30 No 0.0 0.00
## 2193 761.45 No 0.0 0.00
## 2347 196.35 No 0.0 0.00
## 3069 2582.40 No 0.0 0.00
## 3213 438.80 Yes 83.9 3886.10
## 3624 2405.90 Yes 46.7 3244.45
## 4917 913.40 Yes 64.7 3332.05
## 4950 643.85 Yes 48.1 2455.90
## CallingCard WirelessData DataLastMonth DataOverTenure Multiline VM Pager
## 18 Yes No 0.00 0.00 Yes Yes No
## 755 Yes No 0.00 0.00 Yes Yes No
## 990 Yes No 0.00 0.00 Yes No No
## 1103 Yes Yes 44.90 3174.75 Yes No Yes
## 2062 Yes No 0.00 0.00 No Yes No
## 2080 No No 0.00 0.00 No No No
## 2193 Yes Yes 40.75 2113.45 Yes Yes Yes
## 2347 Yes No 0.00 0.00 Yes No No
## 3069 Yes Yes 93.80 6273.95 Yes Yes Yes
## 3213 Yes Yes 104.25 4603.15 Yes Yes Yes
## 3624 Yes Yes 53.05 3634.70 Yes Yes Yes
## 4917 Yes Yes 51.60 2701.50 Yes Yes Yes
## 4950 No Yes 33.15 1612.40 No Yes Yes
## Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18 No Yes No Yes Yes Yes
## 755 Yes No Yes Yes Yes No
## 990 3 No No Yes No No
## 1103 4 No Yes No Yes No
## 2062 Yes Yes Yes Yes Yes No
## 2080 No Yes Yes Yes Yes No
## 2193 3 Yes Yes Yes Yes Yes
## 2347 4 No Yes No Yes No
## 3069 No Yes Yes Yes Yes No
## 3213 4 Yes Yes Yes Yes Yes
## 3624 Yes Yes Yes Yes Yes No
## 4917 Yes Yes Yes Yes Yes Yes
## 4950 4 Yes Yes No Yes Yes
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18 24 No No No No
## 755 25 Yes Yes Yes No
## 990 11 Yes No Yes Yes
## 1103 28 Yes Yes No No
## 2062 24 Yes Yes Yes Yes
## 2080 28 No Yes Yes No
## 2193 22 Yes Yes No Yes
## 2347 27 Yes No No No
## 3069 18 No Yes No Yes
## 3213 18 Yes Yes Yes Yes
## 3624 17 Yes No No No
## 4917 23 Yes Yes Yes Yes
## 4950 11 Yes Yes Yes Yes
## NewsSubscriber
## 18 Yes
## 755 Yes
## 990 Yes
## 1103 Yes
## 2062 No
## 2080 No
## 2193 No
## 2347 No
## 3069 Yes
## 3213 No
## 3624 Yes
## 4917 Yes
## 4950 No
# OR
CustomerData[(CustomerData$Age > 25 & CustomerData$HHIncome > 400000), ]
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 18 0649-TBFJFL-QU4 5 2 Male 63 14 Labor
## 755 5071-YMPEFZ-4BK 3 5 Male 63 17 Agriculture
## 990 8162-PHLLNH-12V 5 1 Female 68 15 Labor
## 1103 8402-SILWTV-4YR 4 4 Male 58 19 Service
## 2062 8607-AMZELA-S5B 5 1 Female 57 18 Agriculture
## 2080 6879-SZBXXQ-ERC 4 4 Female 58 16 Service
## 2193 2329-EIXEIO-VD3 5 5 Male 52 18 Labor
## 2347 2435-DERRXC-V3A 5 1 Female 70 19 Labor
## 3069 9069-XTCDOO-RZV 4 3 Male 57 21 Sales
## 3213 6308-REILUL-K6N 3 1 Male 54 22 Professional
## 3624 9204-WXRZIL-7QG 5 3 Male 70 16 Labor
## 4917 4490-YKVPRY-KYA 5 4 Male 58 21 Professional
## 4950 2885-KFFQPU-BNO 4 4 Male 56 17 Crafts
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18 Yes 29 No 424000 10.7 13.111352
## 755 No 29 No 515000 3.9 2.289690
## 990 Yes 31 No 411000 8.3 10.506804
## 1103 No 20 No 1073000 19.7 109.072596
## 2062 No 23 No 472000 1.2 1.376352
## 2080 No 20 No 409000 6.7 6.987765
## 2193 No 24 No 995000 21.0 67.490850
## 2347 No 37 No 418000 13.9 14.351194
## 3069 No 11 No 780000 13.1 35.252100
## 3213 No 11 No 642000 4.6 11.251692
## 3624 No 35 No 526000 10.2 31.279116
## 4917 No 9 No 437000 14.9 48.704524
## 4950 No 19 No 575000 5.2 4.215900
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18 32.256648 No Married 2 0 0
## 755 17.795310 No Married 2 9 0
## 990 23.606196 No Married 2 2 2
## 1103 102.308404 Yes Married 2 8 0
## 2062 4.287648 No Unmarried 1 0 0
## 2080 20.415235 No Unmarried 4 4 1
## 2193 141.459150 Yes Unmarried 1 1 0
## 2347 43.750806 Yes Unmarried 1 0 0
## 3069 66.927900 Yes Married 2 0 0
## 3213 18.280308 No Married 2 2 0
## 3624 22.372884 Yes Unmarried 1 1 1
## 4917 16.408476 Yes Married 3 4 0
## 4950 25.684100 Yes Unmarried 1 7 1
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18 0 0 1 3 Own Domestic 88600
## 755 0 0 1 2 Own Foreign 88500
## 990 0 0 1 2 Own Foreign 91300
## 1103 2 0 1 4 Own Domestic 77600
## 2062 0 0 1 2 Own Domestic 88000
## 2080 2 1 1 1 Own Foreign 93200
## 2193 1 0 1 3 Own Domestic 99600
## 2347 0 0 1 2 Own Foreign 97300
## 3069 0 0 1 2 Own Foreign 93100
## 3213 2 0 1 1 Own Foreign 86300
## 3624 0 0 1 2 Own Foreign 92200
## 4917 0 0 1 2 Own Foreign 92300
## 4950 0 0 1 1 Own Foreign 93600
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18 29 No Yes Mast 36 10
## 755 20 No No Disc 36 8
## 990 13 Yes No Visa 33 6
## 1103 32 Yes Yes Disc 37 13
## 2062 19 Yes No Disc 17 10
## 2080 24 Yes Yes Mast 17 14
## 2193 31 No Yes AMEX 19 12
## 2347 25 Yes Yes Disc 14 13
## 3069 35 No Yes Disc 33 9
## 3213 25 No Yes Disc 21 10
## 3624 29 No Yes AMEX 40 7
## 4917 19 No Yes Mast 22 8
## 4950 33 No No AMEX 23 8
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18 4957.5 No 70 104.40
## 755 3230.4 Yes 67 72.30
## 990 1541.8 No 66 120.30
## 1103 29693.9 Yes 72 140.70
## 2062 4239.4 No 22 53.10
## 2080 12952.9 No 48 20.40
## 2193 16039.1 Yes 57 39.60
## 2347 8788.6 No 31 17.70
## 3069 3739.2 No 68 114.00
## 3213 5136.8 No 46 27.45
## 3624 10907.9 Yes 72 104.55
## 4917 2082.2 No 53 51.15
## 4950 5140.4 No 50 40.20
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18 2540.15 No 0.0 0.00
## 755 1590.70 No 0.0 0.00
## 990 2613.15 Yes 42.9 2845.75
## 1103 3393.10 No 0.0 0.00
## 2062 328.70 No 0.0 0.00
## 2080 331.30 No 0.0 0.00
## 2193 761.45 No 0.0 0.00
## 2347 196.35 No 0.0 0.00
## 3069 2582.40 No 0.0 0.00
## 3213 438.80 Yes 83.9 3886.10
## 3624 2405.90 Yes 46.7 3244.45
## 4917 913.40 Yes 64.7 3332.05
## 4950 643.85 Yes 48.1 2455.90
## CallingCard WirelessData DataLastMonth DataOverTenure Multiline VM Pager
## 18 Yes No 0.00 0.00 Yes Yes No
## 755 Yes No 0.00 0.00 Yes Yes No
## 990 Yes No 0.00 0.00 Yes No No
## 1103 Yes Yes 44.90 3174.75 Yes No Yes
## 2062 Yes No 0.00 0.00 No Yes No
## 2080 No No 0.00 0.00 No No No
## 2193 Yes Yes 40.75 2113.45 Yes Yes Yes
## 2347 Yes No 0.00 0.00 Yes No No
## 3069 Yes Yes 93.80 6273.95 Yes Yes Yes
## 3213 Yes Yes 104.25 4603.15 Yes Yes Yes
## 3624 Yes Yes 53.05 3634.70 Yes Yes Yes
## 4917 Yes Yes 51.60 2701.50 Yes Yes Yes
## 4950 No Yes 33.15 1612.40 No Yes Yes
## Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18 No Yes No Yes Yes Yes
## 755 Yes No Yes Yes Yes No
## 990 3 No No Yes No No
## 1103 4 No Yes No Yes No
## 2062 Yes Yes Yes Yes Yes No
## 2080 No Yes Yes Yes Yes No
## 2193 3 Yes Yes Yes Yes Yes
## 2347 4 No Yes No Yes No
## 3069 No Yes Yes Yes Yes No
## 3213 4 Yes Yes Yes Yes Yes
## 3624 Yes Yes Yes Yes Yes No
## 4917 Yes Yes Yes Yes Yes Yes
## 4950 4 Yes Yes No Yes Yes
## TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18 24 No No No No
## 755 25 Yes Yes Yes No
## 990 11 Yes No Yes Yes
## 1103 28 Yes Yes No No
## 2062 24 Yes Yes Yes Yes
## 2080 28 No Yes Yes No
## 2193 22 Yes Yes No Yes
## 2347 27 Yes No No No
## 3069 18 No Yes No Yes
## 3213 18 Yes Yes Yes Yes
## 3624 17 Yes No No No
## 4917 23 Yes Yes Yes Yes
## 4950 11 Yes Yes Yes Yes
## NewsSubscriber
## 18 Yes
## 755 Yes
## 990 Yes
## 1103 Yes
## 2062 No
## 2080 No
## 2193 No
## 2347 No
## 3069 Yes
## 3213 No
## 3624 Yes
## 4917 Yes
## 4950 No
3.1.2 Method 2 : Using SQL to filter data
sqldf('select * from CustomerData where `Age` > 25 and `HHIncome` > 400000')
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 1 0649-TBFJFL-QU4 5 2 Male 63 14 Labor
## 2 5071-YMPEFZ-4BK 3 5 Male 63 17 Agriculture
## 3 8162-PHLLNH-12V 5 1 Female 68 15 Labor
## 4 8402-SILWTV-4YR 4 4 Male 58 19 Service
## 5 8607-AMZELA-S5B 5 1 Female 57 18 Agriculture
## 6 6879-SZBXXQ-ERC 4 4 Female 58 16 Service
## 7 2329-EIXEIO-VD3 5 5 Male 52 18 Labor
## 8 2435-DERRXC-V3A 5 1 Female 70 19 Labor
## 9 9069-XTCDOO-RZV 4 3 Male 57 21 Sales
## 10 6308-REILUL-K6N 3 1 Male 54 22 Professional
## 11 9204-WXRZIL-7QG 5 3 Male 70 16 Labor
## 12 4490-YKVPRY-KYA 5 4 Male 58 21 Professional
## 13 2885-KFFQPU-BNO 4 4 Male 56 17 Crafts
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 Yes 29 No 424000 10.7 13.111352
## 2 No 29 No 515000 3.9 2.289690
## 3 Yes 31 No 411000 8.3 10.506804
## 4 No 20 No 1073000 19.7 109.072596
## 5 No 23 No 472000 1.2 1.376352
## 6 No 20 No 409000 6.7 6.987765
## 7 No 24 No 995000 21.0 67.490850
## 8 No 37 No 418000 13.9 14.351194
## 9 No 11 No 780000 13.1 35.252100
## 10 No 11 No 642000 4.6 11.251692
## 11 No 35 No 526000 10.2 31.279116
## 12 No 9 No 437000 14.9 48.704524
## 13 No 19 No 575000 5.2 4.215900
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 32.256648 No Married 2 0 0
## 2 17.795310 No Married 2 9 0
## 3 23.606196 No Married 2 2 2
## 4 102.308404 Yes Married 2 8 0
## 5 4.287648 No Unmarried 1 0 0
## 6 20.415235 No Unmarried 4 4 1
## 7 141.459150 Yes Unmarried 1 1 0
## 8 43.750806 Yes Unmarried 1 0 0
## 9 66.927900 Yes Married 2 0 0
## 10 18.280308 No Married 2 2 0
## 11 22.372884 Yes Unmarried 1 1 1
## 12 16.408476 Yes Married 3 4 0
## 13 25.684100 Yes Unmarried 1 7 1
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0 0 1 3 Own Domestic 88600
## 2 0 0 1 2 Own Foreign 88500
## 3 0 0 1 2 Own Foreign 91300
## 4 2 0 1 4 Own Domestic 77600
## 5 0 0 1 2 Own Domestic 88000
## 6 2 1 1 1 Own Foreign 93200
## 7 1 0 1 3 Own Domestic 99600
## 8 0 0 1 2 Own Foreign 97300
## 9 0 0 1 2 Own Foreign 93100
## 10 2 0 1 1 Own Foreign 86300
## 11 0 0 1 2 Own Foreign 92200
## 12 0 0 1 2 Own Foreign 92300
## 13 0 0 1 1 Own Foreign 93600
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1 29 No Yes Mast 36 10
## 2 20 No No Disc 36 8
## 3 13 Yes No Visa 33 6
## 4 32 Yes Yes Disc 37 13
## 5 19 Yes No Disc 17 10
## 6 24 Yes Yes Mast 17 14
## 7 31 No Yes AMEX 19 12
## 8 25 Yes Yes Disc 14 13
## 9 35 No Yes Disc 33 9
## 10 25 No Yes Disc 21 10
## 11 29 No Yes AMEX 40 7
## 12 19 No Yes Mast 22 8
## 13 33 No No AMEX 23 8
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1 4957.5 No 70 104.40 2540.15
## 2 3230.4 Yes 67 72.30 1590.70
## 3 1541.8 No 66 120.30 2613.15
## 4 29693.9 Yes 72 140.70 3393.10
## 5 4239.4 No 22 53.10 328.70
## 6 12952.9 No 48 20.40 331.30
## 7 16039.1 Yes 57 39.60 761.45
## 8 8788.6 No 31 17.70 196.35
## 9 3739.2 No 68 114.00 2582.40
## 10 5136.8 No 46 27.45 438.80
## 11 10907.9 Yes 72 104.55 2405.90
## 12 2082.2 No 53 51.15 913.40
## 13 5140.4 No 50 40.20 643.85
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1 No 0.0 0.00 Yes
## 2 No 0.0 0.00 Yes
## 3 Yes 42.9 2845.75 Yes
## 4 No 0.0 0.00 Yes
## 5 No 0.0 0.00 Yes
## 6 No 0.0 0.00 No
## 7 No 0.0 0.00 Yes
## 8 No 0.0 0.00 Yes
## 9 No 0.0 0.00 Yes
## 10 Yes 83.9 3886.10 Yes
## 11 Yes 46.7 3244.45 Yes
## 12 Yes 64.7 3332.05 Yes
## 13 Yes 48.1 2455.90 No
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager Internet
## 1 No 0.00 0.00 Yes Yes No No
## 2 No 0.00 0.00 Yes Yes No Yes
## 3 No 0.00 0.00 Yes No No 3
## 4 Yes 44.90 3174.75 Yes No Yes 4
## 5 No 0.00 0.00 No Yes No Yes
## 6 No 0.00 0.00 No No No No
## 7 Yes 40.75 2113.45 Yes Yes Yes 3
## 8 No 0.00 0.00 Yes No No 4
## 9 Yes 93.80 6273.95 Yes Yes Yes No
## 10 Yes 104.25 4603.15 Yes Yes Yes 4
## 11 Yes 53.05 3634.70 Yes Yes Yes Yes
## 12 Yes 51.60 2701.50 Yes Yes Yes Yes
## 13 Yes 33.15 1612.40 No Yes Yes 4
## CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours
## 1 Yes No Yes Yes Yes 24
## 2 No Yes Yes Yes No 25
## 3 No No Yes No No 11
## 4 No Yes No Yes No 28
## 5 Yes Yes Yes Yes No 24
## 6 Yes Yes Yes Yes No 28
## 7 Yes Yes Yes Yes Yes 22
## 8 No Yes No Yes No 27
## 9 Yes Yes Yes Yes No 18
## 10 Yes Yes Yes Yes Yes 18
## 11 Yes Yes Yes Yes No 17
## 12 Yes Yes Yes Yes Yes 23
## 13 Yes Yes No Yes Yes 11
## OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1 No No No No Yes
## 2 Yes Yes Yes No Yes
## 3 Yes No Yes Yes Yes
## 4 Yes Yes No No Yes
## 5 Yes Yes Yes Yes No
## 6 No Yes Yes No No
## 7 Yes Yes No Yes No
## 8 Yes No No No No
## 9 No Yes No Yes Yes
## 10 Yes Yes Yes Yes No
## 11 Yes No No No Yes
## 12 Yes Yes Yes Yes Yes
## 13 Yes Yes Yes Yes No
3.1.3 Method 3 : Using filter() function
CustomerData1 <- filter(CustomerData, Age>25 & HHIncome>400000)
CustomerData2 <- filter(CustomerData1, Gender=="Female", EducationYears<=20 | UnionMember=="Yes")
3.2.1 Random subsetting of data
# Randomly sampling 90% data
CustomerDataSample1 <- CustomerData[sample(x = nrow(CustomerData), size = nrow(CustomerData)*0.90),]
# OR
CustomerDataSample2 <- sample_frac(CustomerData, 0.9)
# To sample fixed number of rows
CustomerDataSample3 <- sample_n(CustomerData, 1000)
3.2.2 Randomly splitting data into two groups
index <- sample(nrow(CustomerData),nrow(CustomerData)*0.90)
CustomerData.train = CustomerData[index,]
CustomerData.test = CustomerData[-index,]
3.3 Sorting data Here we are extracting the first 5 rows. This can be modified based on the requirements
CustomerData[order(CustomerData$Age, decreasing = TRUE)[1:5], ]
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 172 8214-NVCQAC-3HH 2 2 Male 79 12 Crafts
## 176 8931-XMXDFT-RXL 1 1 Female 79 7 Agriculture
## 185 1734-EAYBEZ-PZ0 2 1 Male 79 16 Professional
## 227 4092-XAPMSL-F1S 1 1 Female 79 12 Professional
## 312 2175-VGCTPF-370 4 4 Male 79 12 Sales
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 172 No 39 Yes 47000 7.9 1.095335
## 176 No 45 Yes 20000 19.2 1.409280
## 185 No 15 Yes 26000 18.1 2.301234
## 227 No 13 Yes 10000 6.8 0.060520
## 312 No 6 Yes 9000 3.8 0.166896
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 172 2.617665 No Married 2 0 0
## 176 2.430720 No Unmarried 1 2 0
## 185 2.404766 No Unmarried 1 0 0
## 227 0.619480 No Married 2 4 3
## 312 0.175104 No Married 2 1 0
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 172 0 0 1 1 Lease Foreign 19300
## 176 0 0 1 1 Lease Foreign 10000
## 185 0 0 0 4 Lease Domestic 11500
## 227 1 0 0 1 Own Foreign 4200
## 312 1 0 0 3 Lease Domestic 3800
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 172 26 No No Disc 39 10
## 176 22 No Yes Visa 39 9
## 185 21 Yes No AMEX 29 14
## 227 27 Yes No Mast 19 14
## 312 27 Yes Yes Mast 15 5
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 172 4017.7 Yes 71 57.45 1313.45
## 176 1228.1 No 72 54.75 1307.20
## 185 2316.3 No 67 54.15 1144.85
## 227 2363.9 Yes 45 44.25 687.25
## 312 653.6 No 34 16.50 225.70
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 172 No 0 0 Yes
## 176 No 0 0 Yes
## 185 No 0 0 Yes
## 227 No 0 0 No
## 312 No 0 0 Yes
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager Internet
## 172 Yes 35.65 2467.8 No Yes No No
## 176 No 0.00 0.0 Yes No No No
## 185 No 0.00 0.0 Yes No No No
## 227 No 0.00 0.0 No No No No
## 312 No 0.00 0.0 No No No No
## CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours
## 172 Yes Yes Yes Yes No 20
## 176 Yes No Yes Yes No 10
## 185 No No No No No 25
## 227 No No No No No 15
## 312 No Yes Yes Yes No 0
## OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 172 No No No Yes Yes
## 176 No No No No Yes
## 185 Yes No No No Yes
## 227 No No No No No
## 312 No No No No No
# OR
arrange(CustomerData, desc(Age))[1:5, ] #Descending
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 1 8214-NVCQAC-3HH 2 2 Male 79 12 Crafts
## 2 8931-XMXDFT-RXL 1 1 Female 79 7 Agriculture
## 3 1734-EAYBEZ-PZ0 2 1 Male 79 16 Professional
## 4 4092-XAPMSL-F1S 1 1 Female 79 12 Professional
## 5 2175-VGCTPF-370 4 4 Male 79 12 Sales
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 No 39 Yes 47000 7.9 1.095335
## 2 No 45 Yes 20000 19.2 1.409280
## 3 No 15 Yes 26000 18.1 2.301234
## 4 No 13 Yes 10000 6.8 0.060520
## 5 No 6 Yes 9000 3.8 0.166896
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 2.617665 No Married 2 0 0
## 2 2.430720 No Unmarried 1 2 0
## 3 2.404766 No Unmarried 1 0 0
## 4 0.619480 No Married 2 4 3
## 5 0.175104 No Married 2 1 0
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0 0 1 1 Lease Foreign 19300
## 2 0 0 1 1 Lease Foreign 10000
## 3 0 0 0 4 Lease Domestic 11500
## 4 1 0 0 1 Own Foreign 4200
## 5 1 0 0 3 Lease Domestic 3800
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1 26 No No Disc 39 10
## 2 22 No Yes Visa 39 9
## 3 21 Yes No AMEX 29 14
## 4 27 Yes No Mast 19 14
## 5 27 Yes Yes Mast 15 5
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1 4017.7 Yes 71 57.45 1313.45
## 2 1228.1 No 72 54.75 1307.20
## 3 2316.3 No 67 54.15 1144.85
## 4 2363.9 Yes 45 44.25 687.25
## 5 653.6 No 34 16.50 225.70
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1 No 0 0 Yes
## 2 No 0 0 Yes
## 3 No 0 0 Yes
## 4 No 0 0 No
## 5 No 0 0 Yes
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager Internet
## 1 Yes 35.65 2467.8 No Yes No No
## 2 No 0.00 0.0 Yes No No No
## 3 No 0.00 0.0 Yes No No No
## 4 No 0.00 0.0 No No No No
## 5 No 0.00 0.0 No No No No
## CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1 Yes Yes Yes Yes No 20 No
## 2 Yes No Yes Yes No 10 No
## 3 No No No No No 25 Yes
## 4 No No No No No 15 No
## 5 No Yes Yes Yes No 0 No
## OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1 No No Yes Yes
## 2 No No No Yes
## 3 No No No Yes
## 4 No No No No
## 5 No No No No
# OR
arrange(CustomerData, Age)[1:5, ] #Ascending
## CustomerID Region TownSize Gender Age EducationYears JobCategory
## 1 9723-VUGZBJ-ZQA 3 3 Male 18 13 Service
## 2 3754-JJTSIX-HW4 5 5 Female 18 13 Professional
## 3 1103-KTXUJS-ZPH 3 1 Female 18 13 Service
## 4 2736-QDRAAN-VAI 5 5 Female 18 13 Sales
## 5 1163-JCDRWZ-Q3K 4 2 Male 18 13 Professional
## UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1 No 0 No 15000 10.9 0.516660
## 2 No 0 No 19000 4.1 0.101270
## 3 No 0 No 15000 4.9 0.210210
## 4 No 0 No 21000 4.5 0.179550
## 5 No 0 No 19000 22.2 3.766674
## OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1 1.118340 Yes Unmarried 1 0 0
## 2 0.677730 No Married 6 2 0
## 3 0.524790 No Married 4 1 1
## 4 0.765450 Yes Married 4 2 2
## 5 0.451326 Yes Married 5 0 0
## NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1 0 0 0 3 Lease Domestic 6100
## 2 1 0 0 5 Own Foreign 8700
## 3 0 0 1 2 Lease Domestic 9100
## 4 0 0 1 3 Own Domestic 13400
## 5 0 0 1 4 Own Domestic 10600
## CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1 30 No Yes Visa 1 7
## 2 24 Yes No Othe 0 14
## 3 17 Yes Yes Mast 0 14
## 4 44 Yes Yes Disc 0 12
## 5 25 Yes No Mast 0 7
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1 563.2 Yes 2 12.15 7.20
## 2 2242.5 No 6 40.05 75.25
## 3 2318.1 No 2 42.30 28.65
## 4 3884.1 No 7 12.60 28.20
## 5 1240.2 No 7 13.95 31.90
## EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1 No 0.00 0.0 No
## 2 No 0.00 0.0 No
## 3 Yes 30.55 26.1 Yes
## 4 No 0.00 0.0 Yes
## 5 Yes 29.75 186.3 No
## WirelessData DataLastMonth DataOverTenure Multiline VM Pager Internet
## 1 No 0 0 No No No No
## 2 No 0 0 No No No No
## 3 No 0 0 Yes No No 3
## 4 No 0 0 No No Yes No
## 5 No 0 0 Yes Yes No Yes
## CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1 No No No No No 24 No
## 2 No No No No Yes 35 No
## 3 No No No No Yes 14 Yes
## 4 Yes Yes Yes Yes No 20 No
## 5 No No No No No 21 Yes
## OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1 Yes Yes No No
## 2 No Yes No No
## 3 Yes Yes No Yes
## 4 No No No No
## 5 Yes Yes No No
# Sorting using multiple columns
CustomerData_sort<- arrange(CustomerData, Age, desc(HHIncome))[1:5,]
3.4 Variable details 3.4.1 Extracting column names
names(CustomerData)
## [1] "CustomerID" "Region" "TownSize"
## [4] "Gender" "Age" "EducationYears"
## [7] "JobCategory" "UnionMember" "EmploymentLength"
## [10] "Retired" "HHIncome" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber"
3.4.2 Selecting columns
CustomerData[, c("Age", "HHIncome")]
## Age HHIncome
## 1 20 31000
## 2 22 15000
## 3 67 35000
## 4 23 20000
## 5 26 23000
## 6 64 107000
## 7 52 77000
## 8 44 97000
## 9 66 16000
## 10 47 84000
## 11 59 47000
## 12 33 19000
## 13 44 73000
## 14 58 63000
## 15 72 17000
## 16 66 23000
## 17 57 171000
## 18 63 424000
## 19 28 23000
## 20 78 22000
## 21 61 35000
## 22 70 28000
## 23 61 12000
## 24 37 29000
## 25 39 130000
## 26 73 69000
## 27 26 24000
## 28 24 29000
## 29 77 11000
## 30 36 30000
## 31 55 80000
## 32 60 51000
## 33 59 30000
## 34 28 17000
## 35 53 141000
## 36 36 45000
## 37 47 137000
## 38 75 10000
## 39 49 73000
## 40 59 63000
## 41 55 50000
## 42 25 50000
## 43 78 28000
## 44 48 23000
## 45 47 75000
## 46 75 28000
## 47 43 33000
## 48 45 44000
## 49 21 31000
## 50 53 284000
## 51 30 49000
## 52 58 15000
## 53 35 17000
## 54 48 83000
## 55 57 82000
## 56 61 62000
## 57 56 138000
## 58 29 35000
## 59 68 35000
## 60 22 20000
## 61 46 25000
## 62 24 33000
## 63 78 32000
## 64 73 16000
## 65 26 64000
## 66 44 31000
## 67 30 18000
## 68 44 41000
## 69 21 22000
## 70 62 14000
## 71 33 82000
## 72 65 91000
## 73 38 74000
## 74 34 46000
## 75 78 14000
## 76 47 68000
## 77 60 101000
## 78 61 121000
## 79 77 19000
## 80 21 30000
## 81 31 43000
## 82 74 18000
## 83 27 42000
## 84 64 327000
## 85 72 30000
## 86 66 96000
## 87 55 143000
## 88 20 25000
## 89 59 68000
## 90 69 78000
## 91 43 38000
## 92 62 56000
## 93 32 65000
## 94 78 17000
## 95 64 62000
## 96 75 11000
## 97 74 108000
## 98 20 19000
## 99 65 26000
## 100 66 21000
## 101 45 82000
## 102 44 60000
## 103 59 100000
## 104 38 81000
## 105 65 34000
## 106 26 23000
## 107 70 107000
## 108 65 66000
## 109 61 107000
## 110 63 69000
## 111 70 224000
## 112 64 28000
## 113 56 31000
## 114 43 32000
## 115 53 82000
## 116 36 54000
## 117 52 42000
## 118 44 58000
## 119 48 73000
## 120 60 36000
## 121 67 51000
## 122 77 27000
## 123 72 36000
## 124 44 59000
## 125 75 41000
## 126 78 59000
## 127 55 128000
## 128 29 54000
## 129 43 44000
## 130 18 15000
## 131 28 17000
## 132 70 59000
## 133 43 57000
## 134 56 29000
## 135 66 12000
## 136 73 9000
## 137 26 85000
## 138 54 25000
## 139 39 48000
## 140 24 29000
## 141 26 64000
## 142 19 13000
## 143 60 131000
## 144 24 10000
## 145 31 27000
## 146 61 11000
## 147 24 51000
## 148 66 57000
## 149 50 54000
## 150 64 98000
## 151 46 28000
## 152 29 69000
## 153 69 149000
## 154 60 155000
## 155 50 49000
## 156 73 17000
## 157 68 31000
## 158 57 39000
## 159 29 156000
## 160 63 17000
## 161 49 60000
## 162 51 122000
## 163 22 32000
## 164 51 43000
## 165 53 142000
## 166 75 123000
## 167 30 32000
## 168 65 14000
## 169 35 17000
## 170 58 58000
## 171 30 39000
## 172 79 47000
## 173 62 49000
## 174 27 29000
## 175 34 51000
## 176 79 20000
## 177 68 74000
## 178 37 193000
## 179 52 94000
## 180 23 21000
## 181 57 121000
## 182 40 24000
## 183 66 53000
## 184 61 56000
## 185 79 26000
## 186 75 19000
## 187 35 47000
## 188 22 19000
## 189 73 164000
## 190 23 16000
## 191 19 23000
## 192 77 13000
## 193 51 74000
## 194 56 129000
## 195 46 56000
## 196 69 59000
## 197 38 36000
## 198 52 96000
## 199 67 22000
## 200 28 43000
## 201 36 29000
## 202 39 28000
## 203 55 29000
## 204 65 18000
## 205 73 14000
## 206 34 36000
## 207 67 152000
## 208 54 84000
## 209 31 32000
## 210 66 22000
## 211 51 143000
## 212 35 22000
## 213 47 50000
## 214 65 42000
## 215 23 13000
## 216 34 55000
## 217 78 23000
## 218 68 15000
## 219 47 45000
## 220 33 20000
## 221 36 48000
## 222 32 42000
## 223 64 35000
## 224 54 38000
## 225 62 66000
## 226 18 19000
## 227 79 10000
## 228 70 21000
## 229 42 114000
## 230 69 41000
## 231 24 23000
## 232 26 21000
## 233 61 110000
## 234 36 29000
## 235 68 102000
## 236 35 22000
## 237 55 42000
## 238 49 36000
## 239 20 19000
## 240 25 31000
## 241 47 66000
## 242 66 23000
## 243 18 15000
## 244 25 21000
## 245 68 237000
## 246 61 32000
## 247 49 208000
## 248 26 82000
## 249 62 182000
## 250 20 17000
## 251 74 62000
## 252 30 30000
## 253 64 18000
## 254 22 20000
## 255 30 109000
## 256 66 88000
## 257 42 46000
## 258 27 22000
## 259 45 58000
## 260 75 28000
## 261 43 127000
## 262 35 51000
## 263 31 29000
## 264 70 141000
## 265 22 20000
## 266 69 64000
## 267 42 30000
## 268 57 19000
## 269 43 22000
## 270 56 79000
## 271 65 55000
## 272 66 350000
## 273 42 81000
## 274 78 17000
## 275 24 30000
## 276 68 10000
## 277 23 26000
## 278 22 23000
## 279 52 50000
## 280 26 21000
## 281 32 22000
## 282 49 60000
## 283 55 101000
## 284 42 65000
## 285 65 32000
## 286 19 25000
## 287 39 34000
## 288 25 37000
## 289 23 31000
## 290 30 19000
## 291 50 59000
## 292 49 37000
## 293 32 30000
## 294 45 83000
## 295 34 31000
## 296 19 43000
## 297 22 19000
## 298 30 64000
## 299 46 24000
## 300 51 24000
## 301 52 33000
## 302 27 17000
## 303 38 37000
## 304 18 21000
## 305 21 29000
## 306 42 34000
## 307 68 15000
## 308 56 43000
## 309 31 78000
## 310 18 19000
## 311 32 29000
## 312 79 9000
## 313 64 66000
## 314 53 32000
## 315 40 42000
## 316 39 50000
## 317 49 50000
## 318 75 74000
## 319 29 20000
## 320 32 36000
## 321 23 64000
## 322 79 9000
## 323 74 16000
## 324 38 76000
## 325 44 66000
## 326 68 11000
## 327 19 13000
## 328 28 55000
## 329 65 28000
## 330 60 191000
## 331 29 71000
## 332 72 17000
## 333 48 27000
## 334 33 53000
## 335 26 37000
## 336 75 21000
## 337 29 47000
## 338 30 30000
## 339 74 9000
## 340 24 18000
## 341 64 69000
## 342 74 51000
## 343 61 35000
## 344 20 28000
## 345 64 143000
## 346 66 80000
## 347 59 18000
## 348 54 41000
## 349 55 32000
## 350 71 310000
## 351 55 182000
## 352 44 154000
## 353 63 49000
## 354 61 143000
## 355 32 25000
## 356 19 19000
## 357 41 31000
## 358 68 10000
## 359 18 19000
## 360 54 83000
## 361 52 165000
## 362 70 117000
## 363 43 43000
## 364 77 58000
## 365 52 27000
## 366 30 40000
## 367 55 143000
## 368 54 118000
## 369 31 18000
## 370 60 20000
## 371 49 31000
## 372 39 36000
## 373 25 13000
## 374 74 11000
## 375 46 43000
## 376 33 25000
## 377 26 36000
## 378 62 11000
## 379 22 36000
## 380 43 42000
## 381 62 48000
## 382 51 31000
## 383 37 16000
## 384 57 47000
## 385 75 14000
## 386 68 47000
## 387 55 181000
## 388 39 92000
## 389 31 33000
## 390 74 13000
## 391 72 43000
## 392 31 34000
## 393 71 193000
## 394 27 33000
## 395 58 54000
## 396 42 117000
## 397 60 73000
## 398 44 33000
## 399 70 102000
## 400 67 103000
## 401 49 36000
## 402 44 64000
## 403 27 30000
## 404 54 74000
## 405 52 81000
## 406 26 37000
## 407 45 63000
## 408 20 23000
## 409 62 20000
## 410 25 24000
## 411 34 37000
## 412 60 33000
## 413 62 45000
## 414 56 54000
## 415 39 71000
## 416 35 51000
## 417 30 26000
## 418 27 70000
## 419 60 30000
## 420 61 105000
## 421 55 259000
## 422 26 40000
## 423 71 25000
## 424 66 49000
## 425 36 55000
## 426 67 65000
## 427 54 24000
## 428 66 9000
## 429 27 22000
## 430 33 98000
## 431 26 30000
## 432 37 57000
## 433 61 28000
## 434 75 63000
## 435 46 53000
## 436 36 29000
## 437 51 56000
## 438 55 208000
## 439 58 15000
## 440 38 55000
## 441 40 101000
## 442 26 19000
## 443 21 19000
## 444 19 32000
## 445 32 19000
## 446 42 78000
## 447 55 91000
## 448 59 78000
## 449 25 45000
## 450 57 293000
## 451 47 29000
## 452 28 25000
## 453 61 61000
## 454 48 94000
## 455 46 37000
## 456 35 38000
## 457 52 27000
## 458 67 57000
## 459 29 24000
## 460 49 44000
## 461 41 95000
## 462 66 32000
## 463 19 17000
## 464 44 32000
## 465 52 41000
## 466 50 207000
## 467 61 339000
## 468 71 59000
## 469 79 11000
## 470 41 24000
## 471 39 145000
## 472 50 60000
## 473 57 25000
## 474 63 91000
## 475 55 54000
## 476 72 50000
## 477 57 96000
## 478 74 66000
## 479 69 105000
## 480 37 147000
## 481 28 39000
## 482 35 53000
## 483 68 144000
## 484 42 22000
## 485 51 66000
## 486 27 14000
## 487 34 32000
## 488 20 24000
## 489 70 10000
## 490 67 38000
## 491 41 43000
## 492 76 15000
## 493 68 12000
## 494 40 107000
## 495 77 10000
## 496 74 19000
## 497 54 33000
## 498 36 41000
## 499 64 236000
## 500 23 44000
## 501 21 17000
## 502 53 94000
## 503 68 57000
## 504 57 70000
## 505 28 19000
## 506 55 68000
## 507 59 184000
## 508 47 54000
## 509 54 80000
## 510 43 60000
## 511 63 9000
## 512 40 43000
## 513 22 18000
## 514 33 38000
## 515 58 27000
## 516 51 35000
## 517 61 96000
## 518 33 53000
## 519 57 29000
## 520 76 20000
## 521 37 52000
## 522 65 296000
## 523 45 41000
## 524 56 20000
## 525 46 33000
## 526 75 12000
## 527 68 23000
## 528 65 21000
## 529 27 16000
## 530 68 108000
## 531 65 167000
## 532 56 20000
## 533 37 26000
## 534 53 49000
## 535 72 17000
## 536 58 19000
## 537 39 46000
## 538 39 83000
## 539 73 26000
## 540 51 46000
## 541 37 41000
## 542 18 13000
## 543 36 81000
## 544 65 31000
## 545 75 107000
## 546 33 32000
## 547 57 25000
## 548 54 125000
## 549 43 44000
## 550 31 137000
## 551 33 49000
## 552 20 28000
## 553 65 60000
## 554 62 186000
## 555 39 49000
## 556 36 34000
## 557 25 32000
## 558 43 28000
## 559 26 24000
## 560 20 27000
## 561 49 38000
## 562 22 17000
## 563 48 90000
## 564 74 26000
## 565 55 112000
## 566 58 70000
## 567 49 197000
## 568 23 15000
## 569 52 98000
## 570 36 116000
## 571 32 40000
## 572 45 190000
## 573 29 25000
## 574 49 240000
## 575 56 74000
## 576 68 17000
## 577 44 54000
## 578 57 73000
## 579 19 12000
## 580 51 23000
## 581 53 190000
## 582 69 72000
## 583 63 31000
## 584 36 47000
## 585 38 23000
## 586 63 52000
## 587 78 20000
## 588 44 23000
## 589 47 136000
## 590 37 39000
## 591 37 22000
## 592 68 36000
## 593 29 13000
## 594 51 68000
## 595 54 95000
## 596 55 75000
## 597 63 304000
## 598 75 14000
## 599 35 46000
## 600 28 39000
## 601 59 9000
## 602 36 96000
## 603 37 72000
## 604 18 18000
## 605 73 9000
## 606 67 28000
## 607 18 14000
## 608 76 17000
## 609 43 49000
## 610 42 25000
## 611 20 19000
## 612 63 183000
## 613 50 112000
## 614 70 54000
## 615 19 19000
## 616 25 21000
## 617 49 47000
## 618 55 58000
## 619 45 140000
## 620 76 14000
## 621 27 24000
## 622 51 203000
## 623 59 79000
## 624 32 62000
## 625 46 30000
## 626 75 22000
## 627 28 15000
## 628 76 20000
## 629 57 75000
## 630 24 35000
## 631 77 41000
## 632 69 14000
## 633 68 32000
## 634 61 25000
## 635 36 21000
## 636 33 35000
## 637 55 95000
## 638 64 72000
## 639 35 50000
## 640 44 72000
## 641 41 39000
## 642 51 91000
## 643 59 182000
## 644 50 84000
## 645 33 29000
## 646 31 23000
## 647 59 76000
## 648 67 388000
## 649 60 106000
## 650 33 23000
## 651 28 42000
## 652 69 165000
## 653 59 147000
## 654 20 18000
## 655 18 28000
## 656 74 9000
## 657 26 29000
## 658 32 54000
## 659 28 25000
## 660 60 218000
## 661 18 17000
## 662 19 17000
## 663 32 122000
## 664 31 23000
## 665 20 43000
## 666 45 25000
## 667 79 9000
## 668 61 58000
## 669 48 297000
## 670 20 26000
## 671 26 45000
## 672 23 22000
## 673 48 26000
## 674 56 80000
## 675 30 71000
## 676 35 34000
## 677 41 65000
## 678 24 19000
## 679 49 23000
## 680 52 85000
## 681 33 54000
## 682 45 37000
## 683 26 36000
## 684 31 18000
## 685 26 17000
## 686 76 20000
## 687 66 68000
## 688 33 149000
## 689 18 16000
## 690 72 46000
## 691 42 97000
## 692 42 95000
## 693 51 54000
## 694 34 37000
## 695 35 33000
## 696 40 120000
## 697 58 45000
## 698 54 197000
## 699 60 78000
## 700 66 148000
## 701 35 35000
## 702 41 58000
## 703 21 44000
## 704 18 19000
## 705 42 89000
## 706 71 97000
## 707 38 41000
## 708 69 16000
## 709 35 43000
## 710 29 35000
## 711 23 16000
## 712 62 84000
## 713 48 46000
## 714 33 39000
## 715 38 24000
## 716 68 54000
## 717 42 59000
## 718 78 10000
## 719 68 47000
## 720 25 14000
## 721 61 108000
## 722 47 36000
## 723 60 60000
## 724 40 33000
## 725 39 73000
## 726 52 70000
## 727 54 42000
## 728 48 34000
## 729 46 204000
## 730 26 16000
## 731 55 43000
## 732 38 18000
## 733 26 19000
## 734 79 9000
## 735 18 23000
## 736 73 18000
## 737 67 14000
## 738 53 44000
## 739 67 9000
## 740 79 9000
## 741 36 41000
## 742 26 42000
## 743 52 67000
## 744 64 25000
## 745 21 40000
## 746 30 28000
## 747 37 42000
## 748 69 58000
## 749 32 39000
## 750 75 46000
## 751 73 13000
## 752 51 62000
## 753 40 55000
## 754 36 26000
## 755 63 515000
## 756 41 39000
## 757 42 40000
## 758 52 59000
## 759 35 77000
## 760 32 15000
## 761 18 19000
## 762 28 22000
## 763 68 41000
## 764 20 16000
## 765 41 97000
## 766 24 18000
## 767 41 45000
## 768 23 13000
## 769 60 27000
## 770 58 45000
## 771 21 39000
## 772 49 76000
## 773 32 46000
## 774 42 73000
## 775 19 20000
## 776 25 36000
## 777 62 131000
## 778 25 40000
## 779 40 63000
## 780 49 73000
## 781 23 61000
## 782 68 24000
## 783 52 41000
## 784 27 25000
## 785 26 15000
## 786 22 20000
## 787 19 29000
## 788 46 62000
## 789 38 34000
## 790 34 22000
## 791 76 36000
## 792 21 24000
## 793 28 18000
## 794 40 28000
## 795 42 78000
## 796 51 40000
## 797 65 14000
## 798 47 78000
## 799 35 48000
## 800 55 99000
## 801 47 80000
## 802 77 29000
## 803 25 32000
## 804 30 24000
## 805 60 41000
## 806 64 83000
## 807 25 17000
## 808 24 22000
## 809 18 16000
## 810 52 33000
## 811 48 29000
## 812 51 84000
## 813 27 20000
## 814 54 41000
## 815 56 113000
## 816 36 42000
## 817 65 76000
## 818 46 91000
## 819 72 38000
## 820 66 167000
## 821 65 143000
## 822 79 27000
## 823 74 21000
## 824 42 57000
## 825 21 20000
## 826 65 11000
## 827 76 22000
## 828 40 30000
## 829 24 19000
## 830 78 25000
## 831 35 59000
## 832 45 51000
## 833 68 16000
## 834 68 74000
## 835 31 56000
## 836 43 32000
## 837 78 17000
## 838 42 39000
## 839 70 38000
## 840 47 34000
## 841 55 25000
## 842 18 15000
## 843 23 21000
## 844 26 30000
## 845 25 27000
## 846 26 23000
## 847 73 25000
## 848 63 59000
## 849 57 19000
## 850 24 19000
## 851 76 40000
## 852 65 172000
## 853 54 85000
## 854 19 25000
## 855 26 24000
## 856 22 20000
## 857 45 51000
## 858 66 36000
## 859 74 20000
## 860 49 45000
## 861 37 60000
## 862 25 22000
## 863 43 134000
## 864 51 33000
## 865 44 35000
## 866 63 130000
## 867 21 38000
## 868 19 24000
## 869 50 34000
## 870 48 226000
## 871 67 96000
## 872 30 16000
## 873 36 37000
## 874 63 33000
## 875 24 29000
## 876 79 24000
## 877 24 24000
## 878 20 32000
## 879 63 30000
## 880 63 42000
## 881 35 24000
## 882 29 20000
## 883 39 43000
## 884 55 79000
## 885 38 59000
## 886 48 36000
## 887 36 56000
## 888 79 18000
## 889 71 39000
## 890 26 52000
## 891 37 24000
## 892 51 42000
## 893 62 64000
## 894 28 61000
## 895 53 141000
## 896 62 60000
## 897 32 32000
## 898 50 86000
## 899 25 13000
## 900 70 150000
## 901 67 126000
## 902 22 22000
## 903 45 56000
## 904 59 118000
## 905 29 33000
## 906 68 57000
## 907 36 65000
## 908 34 64000
## 909 79 11000
## 910 49 38000
## 911 18 13000
## 912 20 24000
## 913 63 34000
## 914 67 114000
## 915 73 9000
## 916 64 116000
## 917 38 105000
## 918 26 18000
## 919 69 46000
## 920 34 52000
## 921 43 62000
## 922 47 73000
## 923 32 27000
## 924 48 212000
## 925 34 49000
## 926 33 48000
## 927 71 9000
## 928 47 111000
## 929 45 58000
## 930 71 54000
## 931 41 55000
## 932 65 29000
## 933 76 9000
## 934 67 39000
## 935 63 10000
## 936 53 25000
## 937 41 40000
## 938 77 66000
## 939 43 58000
## 940 66 109000
## 941 47 48000
## 942 63 76000
## 943 75 22000
## 944 37 35000
## 945 54 77000
## 946 27 23000
## 947 34 107000
## 948 28 56000
## 949 78 23000
## 950 66 64000
## 951 68 89000
## 952 23 60000
## 953 46 44000
## 954 41 63000
## 955 49 150000
## 956 68 13000
## 957 39 51000
## 958 23 39000
## 959 57 31000
## 960 20 13000
## 961 55 146000
## 962 48 121000
## 963 51 31000
## 964 27 44000
## 965 76 10000
## 966 30 27000
## 967 67 34000
## 968 42 92000
## 969 24 25000
## 970 42 38000
## 971 67 95000
## 972 40 63000
## 973 62 32000
## 974 19 13000
## 975 33 65000
## 976 47 148000
## 977 27 44000
## 978 30 17000
## 979 47 72000
## 980 71 53000
## 981 48 186000
## 982 59 29000
## 983 41 93000
## 984 36 60000
## 985 46 42000
## 986 38 85000
## 987 77 49000
## 988 23 26000
## 989 71 12000
## 990 68 411000
## 991 68 80000
## 992 63 136000
## 993 69 91000
## 994 45 81000
## 995 19 21000
## 996 68 75000
## 997 65 73000
## 998 77 17000
## 999 52 41000
## 1000 59 22000
## 1001 36 22000
## 1002 33 28000
## 1003 34 27000
## 1004 20 18000
## 1005 30 40000
## 1006 61 102000
## 1007 36 53000
## 1008 28 25000
## 1009 26 23000
## 1010 36 33000
## 1011 31 68000
## 1012 31 66000
## 1013 55 49000
## 1014 66 34000
## 1015 47 111000
## 1016 61 56000
## 1017 74 19000
## 1018 61 180000
## 1019 59 64000
## 1020 29 20000
## 1021 64 29000
## 1022 66 27000
## 1023 40 31000
## 1024 43 32000
## 1025 75 68000
## 1026 54 20000
## 1027 40 29000
## 1028 18 17000
## 1029 62 29000
## 1030 66 13000
## 1031 70 21000
## 1032 18 24000
## 1033 36 99000
## 1034 29 22000
## 1035 58 242000
## 1036 51 52000
## 1037 31 34000
## 1038 68 9000
## 1039 47 64000
## 1040 24 24000
## 1041 72 11000
## 1042 57 70000
## 1043 44 49000
## 1044 31 24000
## 1045 20 19000
## 1046 53 68000
## 1047 78 48000
## 1048 25 49000
## 1049 48 41000
## 1050 56 28000
## 1051 32 47000
## 1052 31 37000
## 1053 21 20000
## 1054 19 14000
## 1055 36 73000
## 1056 36 43000
## 1057 49 19000
## 1058 32 34000
## 1059 30 36000
## 1060 39 119000
## 1061 35 98000
## 1062 57 62000
## 1063 21 21000
## 1064 47 32000
## 1065 66 35000
## 1066 48 51000
## 1067 44 62000
## 1068 63 69000
## 1069 24 25000
## 1070 28 29000
## 1071 23 24000
## 1072 29 43000
## 1073 50 80000
## 1074 52 65000
## 1075 43 43000
## 1076 49 32000
## 1077 43 60000
## 1078 70 87000
## 1079 24 58000
## 1080 66 43000
## 1081 20 20000
## 1082 31 30000
## 1083 53 35000
## 1084 34 111000
## 1085 34 26000
## 1086 27 30000
## 1087 60 12000
## 1088 43 44000
## 1089 31 30000
## 1090 70 61000
## 1091 61 12000
## 1092 45 134000
## 1093 40 46000
## 1094 68 11000
## 1095 74 11000
## 1096 54 33000
## 1097 27 19000
## 1098 65 10000
## 1099 54 58000
## 1100 28 40000
## 1101 45 47000
## 1102 36 48000
## 1103 58 1073000
## 1104 70 240000
## 1105 18 28000
## 1106 74 35000
## 1107 20 28000
## 1108 70 32000
## 1109 42 44000
## 1110 21 16000
## 1111 74 39000
## 1112 69 115000
## 1113 45 47000
## 1114 58 31000
## 1115 75 35000
## 1116 66 38000
## 1117 18 16000
## 1118 66 80000
## 1119 32 53000
## 1120 76 9000
## 1121 43 49000
## 1122 44 54000
## 1123 18 14000
## 1124 76 42000
## 1125 48 25000
## 1126 35 36000
## 1127 30 30000
## 1128 32 37000
## 1129 64 30000
## 1130 53 53000
## 1131 61 49000
## 1132 30 30000
## 1133 25 26000
## 1134 24 24000
## 1135 78 23000
## 1136 44 50000
## 1137 26 41000
## 1138 19 18000
## 1139 35 51000
## 1140 53 51000
## 1141 37 37000
## 1142 36 29000
## 1143 69 68000
## 1144 78 10000
## 1145 54 109000
## 1146 64 158000
## 1147 40 47000
## 1148 73 259000
## 1149 45 52000
## 1150 74 22000
## 1151 34 41000
## 1152 55 22000
## 1153 65 224000
## 1154 60 34000
## 1155 50 103000
## 1156 25 30000
## 1157 54 37000
## 1158 32 27000
## 1159 24 16000
## 1160 55 26000
## 1161 43 89000
## 1162 20 28000
## 1163 66 56000
## 1164 23 25000
## 1165 69 40000
## 1166 37 29000
## 1167 29 48000
## 1168 53 67000
## 1169 57 77000
## 1170 68 93000
## 1171 46 26000
## 1172 73 20000
## 1173 35 87000
## 1174 21 14000
## 1175 27 44000
## 1176 79 18000
## 1177 18 17000
## 1178 40 29000
## 1179 78 76000
## 1180 51 84000
## 1181 58 21000
## 1182 49 67000
## 1183 56 122000
## 1184 72 27000
## 1185 40 46000
## 1186 57 78000
## 1187 34 30000
## 1188 20 33000
## 1189 63 179000
## 1190 48 80000
## 1191 18 17000
## 1192 23 18000
## 1193 54 280000
## 1194 64 42000
## 1195 56 32000
## 1196 68 45000
## 1197 66 13000
## 1198 49 55000
## 1199 37 20000
## 1200 24 33000
## 1201 56 59000
## 1202 71 12000
## 1203 52 58000
## 1204 72 84000
## 1205 44 62000
## 1206 61 27000
## 1207 36 63000
## 1208 31 56000
## 1209 57 202000
## 1210 33 29000
## 1211 25 35000
## 1212 44 29000
## 1213 49 138000
## 1214 57 145000
## 1215 21 21000
## 1216 27 17000
## 1217 23 14000
## 1218 67 10000
## 1219 67 24000
## 1220 30 127000
## 1221 61 22000
## 1222 46 27000
## 1223 36 71000
## 1224 53 130000
## 1225 21 20000
## 1226 37 56000
## 1227 26 48000
## 1228 55 60000
## 1229 22 19000
## 1230 42 72000
## 1231 48 56000
## 1232 34 58000
## 1233 60 106000
## 1234 23 22000
## 1235 27 21000
## 1236 43 41000
## 1237 46 45000
## 1238 75 346000
## 1239 43 34000
## 1240 61 68000
## 1241 35 25000
## 1242 48 25000
## 1243 79 19000
## 1244 35 44000
## 1245 53 81000
## 1246 55 48000
## 1247 35 39000
## 1248 37 19000
## 1249 70 16000
## 1250 63 68000
## 1251 58 35000
## 1252 74 38000
## 1253 34 29000
## 1254 54 113000
## 1255 71 37000
## 1256 71 34000
## 1257 69 46000
## 1258 29 32000
## 1259 51 36000
## 1260 69 73000
## 1261 21 20000
## 1262 55 55000
## 1263 51 187000
## 1264 64 32000
## 1265 33 28000
## 1266 24 16000
## 1267 49 146000
## 1268 33 30000
## 1269 56 45000
## 1270 45 56000
## 1271 35 60000
## 1272 19 18000
## 1273 54 24000
## 1274 25 26000
## 1275 61 55000
## 1276 33 33000
## 1277 27 78000
## 1278 18 20000
## 1279 22 19000
## 1280 22 25000
## 1281 24 47000
## 1282 77 9000
## 1283 18 14000
## 1284 44 60000
## 1285 42 21000
## 1286 39 54000
## 1287 24 32000
## 1288 74 12000
## 1289 39 67000
## 1290 25 19000
## 1291 42 40000
## 1292 32 21000
## 1293 76 179000
## 1294 28 17000
## 1295 31 21000
## 1296 28 28000
## 1297 31 28000
## 1298 56 170000
## 1299 61 129000
## 1300 46 29000
## 1301 18 28000
## 1302 48 46000
## 1303 28 77000
## 1304 28 70000
## 1305 50 31000
## 1306 66 48000
## 1307 43 30000
## 1308 79 98000
## 1309 44 57000
## 1310 71 137000
## 1311 31 56000
## 1312 60 142000
## 1313 24 20000
## 1314 23 15000
## 1315 70 49000
## 1316 29 32000
## 1317 18 22000
## 1318 53 74000
## 1319 39 38000
## 1320 62 47000
## 1321 55 112000
## 1322 78 19000
## 1323 34 29000
## 1324 78 12000
## 1325 21 21000
## 1326 24 18000
## 1327 21 31000
## 1328 42 79000
## 1329 38 113000
## 1330 62 160000
## 1331 53 83000
## 1332 63 14000
## 1333 54 97000
## 1334 59 46000
## 1335 57 111000
## 1336 68 37000
## 1337 26 43000
## 1338 46 33000
## 1339 37 102000
## 1340 42 42000
## 1341 48 92000
## 1342 27 33000
## 1343 28 27000
## 1344 48 23000
## 1345 40 27000
## 1346 56 32000
## 1347 60 44000
## 1348 61 42000
## 1349 34 50000
## 1350 75 15000
## 1351 25 22000
## 1352 31 40000
## 1353 40 71000
## 1354 66 88000
## 1355 31 23000
## 1356 21 29000
## 1357 67 11000
## 1358 30 23000
## 1359 64 69000
## 1360 53 83000
## 1361 19 21000
## 1362 69 60000
## 1363 71 20000
## 1364 25 29000
## 1365 75 48000
## 1366 39 38000
## 1367 41 37000
## 1368 76 68000
## 1369 53 88000
## 1370 21 44000
## 1371 54 90000
## 1372 47 29000
## 1373 50 35000
## 1374 48 91000
## 1375 69 29000
## 1376 29 24000
## 1377 35 49000
## 1378 22 20000
## 1379 51 68000
## 1380 69 72000
## 1381 34 29000
## 1382 47 74000
## 1383 77 10000
## 1384 37 35000
## 1385 75 68000
## 1386 52 33000
## 1387 25 16000
## 1388 46 63000
## 1389 59 159000
## 1390 33 37000
## 1391 61 34000
## 1392 75 15000
## 1393 35 30000
## 1394 41 42000
## 1395 37 28000
## 1396 57 31000
## 1397 39 53000
## 1398 60 59000
## 1399 21 29000
## 1400 22 21000
## 1401 65 41000
## 1402 72 29000
## 1403 42 92000
## 1404 56 26000
## 1405 46 59000
## 1406 74 18000
## 1407 29 16000
## 1408 25 22000
## 1409 18 16000
## 1410 69 9000
## 1411 71 209000
## 1412 42 30000
## 1413 27 72000
## 1414 18 24000
## 1415 40 138000
## 1416 24 15000
## 1417 54 108000
## 1418 63 87000
## 1419 24 42000
## 1420 35 25000
## 1421 24 20000
## 1422 36 23000
## 1423 45 57000
## 1424 45 32000
## 1425 52 140000
## 1426 53 106000
## 1427 33 23000
## 1428 53 103000
## 1429 42 45000
## 1430 25 23000
## 1431 69 115000
## 1432 77 53000
## 1433 49 66000
## 1434 70 74000
## 1435 72 261000
## 1436 60 88000
## 1437 76 11000
## 1438 38 54000
## 1439 22 20000
## 1440 31 30000
## 1441 30 23000
## 1442 75 22000
## 1443 27 89000
## 1444 63 44000
## 1445 73 25000
## 1446 22 35000
## 1447 27 34000
## 1448 72 12000
## 1449 44 35000
## 1450 24 21000
## 1451 77 90000
## 1452 19 17000
## 1453 47 46000
## 1454 48 36000
## 1455 34 47000
## 1456 59 32000
## 1457 68 148000
## 1458 28 37000
## 1459 41 33000
## 1460 69 48000
## 1461 43 93000
## 1462 28 39000
## 1463 21 40000
## 1464 19 13000
## 1465 38 52000
## 1466 23 22000
## 1467 72 137000
## 1468 48 134000
## 1469 50 91000
## 1470 63 77000
## 1471 79 12000
## 1472 61 46000
## 1473 51 36000
## 1474 35 29000
## 1475 31 31000
## 1476 44 41000
## 1477 31 156000
## 1478 63 37000
## 1479 52 41000
## 1480 39 37000
## 1481 64 52000
## 1482 35 19000
## 1483 22 20000
## 1484 21 16000
## 1485 24 30000
## 1486 34 45000
## 1487 61 22000
## 1488 62 68000
## 1489 68 69000
## 1490 78 28000
## 1491 39 64000
## 1492 40 44000
## 1493 51 27000
## 1494 63 14000
## 1495 78 16000
## 1496 53 61000
## 1497 52 119000
## 1498 52 67000
## 1499 42 91000
## 1500 48 117000
## 1501 69 18000
## 1502 51 57000
## 1503 53 40000
## 1504 56 48000
## 1505 37 81000
## 1506 18 25000
## 1507 52 85000
## 1508 21 20000
## 1509 64 133000
## 1510 23 28000
## 1511 40 33000
## 1512 72 88000
## 1513 51 52000
## 1514 74 11000
## 1515 73 130000
## 1516 26 37000
## 1517 38 33000
## 1518 25 40000
## 1519 26 19000
## 1520 22 44000
## 1521 70 9000
## 1522 44 123000
## 1523 57 54000
## 1524 29 137000
## 1525 29 35000
## 1526 45 38000
## 1527 51 218000
## 1528 64 35000
## 1529 28 33000
## 1530 77 21000
## 1531 66 11000
## 1532 23 14000
## 1533 44 91000
## 1534 75 20000
## 1535 56 102000
## 1536 35 66000
## 1537 24 44000
## 1538 35 44000
## 1539 59 67000
## 1540 33 20000
## 1541 56 38000
## 1542 56 76000
## 1543 39 49000
## 1544 41 40000
## 1545 21 27000
## 1546 51 70000
## 1547 37 38000
## 1548 29 38000
## 1549 78 15000
## 1550 41 40000
## 1551 46 44000
## 1552 43 73000
## 1553 71 10000
## 1554 19 17000
## 1555 79 13000
## 1556 74 167000
## 1557 44 43000
## 1558 42 80000
## 1559 35 29000
## 1560 42 55000
## 1561 48 116000
## 1562 55 9000
## 1563 60 75000
## 1564 52 70000
## 1565 55 89000
## 1566 35 34000
## 1567 64 10000
## 1568 27 38000
## 1569 79 10000
## 1570 42 92000
## 1571 57 234000
## 1572 27 27000
## 1573 26 16000
## 1574 76 16000
## 1575 27 29000
## 1576 66 179000
## 1577 19 18000
## 1578 36 29000
## 1579 39 80000
## 1580 63 10000
## 1581 30 28000
## 1582 59 67000
## 1583 45 68000
## 1584 20 30000
## 1585 33 28000
## 1586 73 44000
## 1587 24 19000
## 1588 70 179000
## 1589 73 12000
## 1590 29 29000
## 1591 57 166000
## 1592 51 40000
## 1593 76 18000
## 1594 53 27000
## 1595 78 17000
## 1596 48 36000
## 1597 65 9000
## 1598 54 168000
## 1599 41 37000
## 1600 61 80000
## 1601 21 18000
## 1602 65 115000
## 1603 31 28000
## 1604 18 15000
## 1605 53 59000
## 1606 79 10000
## 1607 34 65000
## 1608 63 109000
## 1609 51 99000
## 1610 32 49000
## 1611 36 27000
## 1612 60 22000
## 1613 45 35000
## 1614 47 90000
## 1615 72 25000
## 1616 48 24000
## 1617 35 81000
## 1618 71 295000
## 1619 34 24000
## 1620 79 14000
## 1621 56 26000
## 1622 65 70000
## 1623 54 58000
## 1624 31 25000
## 1625 64 58000
## 1626 37 51000
## 1627 48 68000
## 1628 68 18000
## 1629 20 24000
## 1630 43 45000
## 1631 45 112000
## 1632 26 19000
## 1633 28 23000
## 1634 68 37000
## 1635 19 29000
## 1636 63 15000
## 1637 71 93000
## 1638 30 49000
## 1639 46 84000
## 1640 33 31000
## 1641 59 36000
## 1642 18 23000
## 1643 23 18000
## 1644 66 51000
## 1645 56 47000
## 1646 31 18000
## 1647 50 93000
## 1648 23 18000
## 1649 19 16000
## 1650 55 29000
## 1651 21 14000
## 1652 29 18000
## 1653 34 31000
## 1654 58 82000
## 1655 41 33000
## 1656 66 293000
## 1657 30 76000
## 1658 61 38000
## 1659 18 13000
## 1660 33 37000
## 1661 64 51000
## 1662 27 17000
## 1663 56 84000
## 1664 32 81000
## 1665 29 22000
## 1666 56 63000
## 1667 76 13000
## 1668 60 113000
## 1669 67 86000
## 1670 28 38000
## 1671 21 18000
## 1672 36 17000
## 1673 28 54000
## 1674 55 69000
## 1675 35 20000
## 1676 34 30000
## 1677 69 35000
## 1678 46 28000
## 1679 29 55000
## 1680 63 21000
## 1681 59 54000
## 1682 71 14000
## 1683 39 210000
## 1684 32 62000
## 1685 33 16000
## 1686 18 44000
## 1687 56 90000
## 1688 28 20000
## 1689 44 67000
## 1690 22 24000
## 1691 79 12000
## 1692 70 13000
## 1693 24 14000
## 1694 71 12000
## 1695 28 45000
## 1696 55 61000
## 1697 62 185000
## 1698 55 69000
## 1699 34 66000
## 1700 74 11000
## 1701 40 53000
## 1702 60 37000
## 1703 49 49000
## 1704 78 13000
## 1705 23 15000
## 1706 58 118000
## 1707 53 252000
## 1708 45 112000
## 1709 51 64000
## 1710 21 30000
## 1711 50 90000
## 1712 63 61000
## 1713 26 29000
## 1714 31 38000
## 1715 59 50000
## 1716 28 30000
## 1717 32 33000
## 1718 49 27000
## 1719 25 21000
## 1720 38 77000
## 1721 48 41000
## 1722 61 61000
## 1723 44 31000
## 1724 18 15000
## 1725 37 42000
## 1726 50 29000
## 1727 73 39000
## 1728 60 89000
## 1729 38 71000
## 1730 24 21000
## 1731 48 300000
## 1732 20 26000
## 1733 44 41000
## 1734 42 47000
## 1735 55 79000
## 1736 40 62000
## 1737 65 34000
## 1738 50 61000
## 1739 71 123000
## 1740 58 112000
## 1741 50 64000
## 1742 75 10000
## 1743 56 63000
## 1744 61 75000
## 1745 19 21000
## 1746 37 46000
## 1747 40 61000
## 1748 78 32000
## 1749 28 20000
## 1750 54 36000
## 1751 64 50000
## 1752 73 51000
## 1753 75 9000
## 1754 35 25000
## 1755 66 64000
## 1756 38 28000
## 1757 37 60000
## 1758 22 23000
## 1759 23 43000
## 1760 65 84000
## 1761 70 13000
## 1762 36 35000
## 1763 62 64000
## 1764 61 13000
## 1765 61 13000
## 1766 63 174000
## 1767 45 27000
## 1768 53 24000
## 1769 19 20000
## 1770 78 26000
## 1771 68 313000
## 1772 64 31000
## 1773 68 41000
## 1774 59 87000
## 1775 44 37000
## 1776 26 28000
## 1777 73 188000
## 1778 39 23000
## 1779 28 75000
## 1780 35 38000
## 1781 37 74000
## 1782 41 57000
## 1783 39 133000
## 1784 57 79000
## 1785 77 25000
## 1786 68 9000
## 1787 54 45000
## 1788 41 94000
## 1789 57 23000
## 1790 39 156000
## 1791 25 37000
## 1792 53 21000
## 1793 62 72000
## 1794 35 34000
## 1795 26 30000
## 1796 60 142000
## 1797 68 89000
## 1798 23 18000
## 1799 53 91000
## 1800 44 43000
## 1801 63 66000
## 1802 68 67000
## 1803 32 34000
## 1804 22 17000
## 1805 44 41000
## 1806 67 11000
## 1807 42 33000
## 1808 76 29000
## 1809 29 52000
## 1810 58 226000
## 1811 29 34000
## 1812 37 53000
## 1813 52 60000
## 1814 30 39000
## 1815 26 100000
## 1816 65 20000
## 1817 77 9000
## 1818 69 117000
## 1819 71 24000
## 1820 24 15000
## 1821 50 32000
## 1822 60 69000
## 1823 37 82000
## 1824 47 32000
## 1825 42 32000
## 1826 33 48000
## 1827 42 54000
## 1828 62 76000
## 1829 34 36000
## 1830 77 14000
## 1831 77 60000
## 1832 58 48000
## 1833 40 25000
## 1834 57 48000
## 1835 21 18000
## 1836 77 14000
## 1837 64 11000
## 1838 19 12000
## 1839 64 25000
## 1840 32 69000
## 1841 59 29000
## 1842 20 22000
## 1843 39 33000
## 1844 58 69000
## 1845 28 64000
## 1846 52 173000
## 1847 20 15000
## 1848 34 21000
## 1849 46 26000
## 1850 48 38000
## 1851 51 62000
## 1852 55 117000
## 1853 33 22000
## 1854 51 60000
## 1855 37 28000
## 1856 33 47000
## 1857 66 123000
## 1858 57 33000
## 1859 35 23000
## 1860 36 36000
## 1861 46 58000
## 1862 57 33000
## 1863 48 107000
## 1864 57 43000
## 1865 73 123000
## 1866 22 17000
## 1867 77 11000
## 1868 21 15000
## 1869 49 80000
## 1870 19 32000
## 1871 41 31000
## 1872 55 67000
## 1873 38 119000
## 1874 26 18000
## 1875 27 34000
## 1876 47 185000
## 1877 50 38000
## 1878 27 42000
## 1879 48 46000
## 1880 46 30000
## 1881 22 16000
## 1882 37 87000
## 1883 68 84000
## 1884 55 109000
## 1885 56 60000
## 1886 38 37000
## 1887 26 35000
## 1888 38 57000
## 1889 66 18000
## 1890 47 164000
## 1891 77 15000
## 1892 49 63000
## 1893 76 9000
## 1894 49 67000
## 1895 79 14000
## 1896 18 11000
## 1897 60 9000
## 1898 69 73000
## 1899 76 42000
## 1900 60 81000
## 1901 62 123000
## 1902 66 111000
## 1903 27 46000
## 1904 73 12000
## 1905 79 13000
## 1906 18 16000
## 1907 35 35000
## 1908 19 28000
## 1909 36 46000
## 1910 44 34000
## 1911 37 39000
## 1912 39 57000
## 1913 58 16000
## 1914 29 38000
## 1915 71 22000
## 1916 36 36000
## 1917 69 40000
## 1918 63 74000
## 1919 66 13000
## 1920 78 15000
## 1921 46 80000
## 1922 44 38000
## 1923 63 55000
## 1924 69 72000
## 1925 63 33000
## 1926 55 129000
## 1927 49 42000
## 1928 56 48000
## 1929 65 53000
## 1930 65 144000
## 1931 53 35000
## 1932 25 94000
## 1933 76 17000
## 1934 62 65000
## 1935 43 42000
## 1936 28 37000
## 1937 23 21000
## 1938 48 33000
## 1939 63 71000
## 1940 66 32000
## 1941 27 135000
## 1942 56 142000
## 1943 42 56000
## 1944 35 25000
## 1945 53 73000
## 1946 46 131000
## 1947 55 89000
## 1948 60 48000
## 1949 29 22000
## 1950 65 9000
## 1951 49 73000
## 1952 45 67000
## 1953 66 25000
## 1954 18 14000
## 1955 61 123000
## 1956 79 57000
## 1957 50 85000
## 1958 70 324000
## 1959 46 88000
## 1960 28 20000
## 1961 46 90000
## 1962 52 128000
## 1963 35 60000
## 1964 53 368000
## 1965 58 32000
## 1966 75 16000
## 1967 35 42000
## 1968 43 51000
## 1969 62 75000
## 1970 60 52000
## 1971 78 9000
## 1972 72 10000
## 1973 64 42000
## 1974 40 61000
## 1975 48 25000
## 1976 30 90000
## 1977 29 42000
## 1978 68 110000
## 1979 63 97000
## 1980 62 131000
## 1981 57 54000
## 1982 32 40000
## 1983 23 47000
## 1984 58 44000
## 1985 35 34000
## 1986 58 46000
## 1987 71 53000
## 1988 21 20000
## 1989 34 29000
## 1990 79 12000
## 1991 18 15000
## 1992 72 10000
## 1993 46 47000
## 1994 37 22000
## 1995 72 58000
## 1996 37 28000
## 1997 69 106000
## 1998 64 10000
## 1999 32 29000
## 2000 67 128000
## 2001 25 53000
## 2002 65 21000
## 2003 54 51000
## 2004 55 47000
## 2005 79 28000
## 2006 68 33000
## 2007 62 43000
## 2008 72 11000
## 2009 72 82000
## 2010 50 47000
## 2011 21 20000
## 2012 79 12000
## 2013 37 28000
## 2014 31 118000
## 2015 68 10000
## 2016 44 144000
## 2017 29 25000
## 2018 24 61000
## 2019 77 13000
## 2020 25 17000
## 2021 44 38000
## 2022 65 36000
## 2023 49 35000
## 2024 29 18000
## 2025 21 16000
## 2026 29 199000
## 2027 24 28000
## 2028 27 43000
## 2029 67 81000
## 2030 33 47000
## 2031 32 40000
## 2032 20 28000
## 2033 25 25000
## 2034 45 30000
## 2035 53 104000
## 2036 25 25000
## 2037 40 54000
## 2038 56 109000
## 2039 76 14000
## 2040 36 30000
## 2041 24 97000
## 2042 43 46000
## 2043 65 16000
## 2044 71 63000
## 2045 46 56000
## 2046 72 67000
## 2047 18 17000
## 2048 25 50000
## 2049 42 40000
## 2050 51 29000
## 2051 28 19000
## 2052 47 88000
## 2053 43 92000
## 2054 38 41000
## 2055 30 36000
## 2056 43 26000
## 2057 73 127000
## 2058 66 52000
## 2059 66 71000
## 2060 60 82000
## 2061 78 16000
## 2062 57 472000
## 2063 67 92000
## 2064 25 23000
## 2065 76 51000
## 2066 67 47000
## 2067 50 54000
## 2068 77 20000
## 2069 21 15000
## 2070 21 21000
## 2071 76 9000
## 2072 46 171000
## 2073 37 34000
## 2074 21 23000
## 2075 73 9000
## 2076 58 79000
## 2077 59 20000
## 2078 37 24000
## 2079 22 13000
## 2080 58 409000
## 2081 76 12000
## 2082 33 52000
## 2083 37 58000
## 2084 62 106000
## 2085 33 30000
## 2086 53 29000
## 2087 76 25000
## 2088 24 53000
## 2089 52 66000
## 2090 33 30000
## 2091 19 14000
## 2092 51 69000
## 2093 30 104000
## 2094 53 66000
## 2095 32 69000
## 2096 74 15000
## 2097 54 32000
## 2098 53 28000
## 2099 46 23000
## 2100 61 29000
## 2101 42 62000
## 2102 38 28000
## 2103 46 27000
## 2104 70 21000
## 2105 63 170000
## 2106 30 41000
## 2107 50 24000
## 2108 76 17000
## 2109 54 133000
## 2110 37 44000
## 2111 74 16000
## 2112 37 49000
## 2113 61 118000
## 2114 79 16000
## 2115 38 49000
## 2116 61 146000
## 2117 49 58000
## 2118 25 30000
## 2119 35 56000
## 2120 34 49000
## 2121 55 78000
## 2122 52 142000
## 2123 25 20000
## 2124 53 66000
## 2125 69 10000
## 2126 70 91000
## 2127 33 43000
## 2128 36 80000
## 2129 69 33000
## 2130 26 31000
## 2131 50 228000
## 2132 76 13000
## 2133 63 163000
## 2134 47 122000
## 2135 71 84000
## 2136 74 16000
## 2137 56 142000
## 2138 28 25000
## 2139 41 32000
## 2140 45 97000
## 2141 46 32000
## 2142 40 25000
## 2143 34 37000
## 2144 18 16000
## 2145 20 35000
## 2146 53 51000
## 2147 24 34000
## 2148 78 25000
## 2149 33 35000
## 2150 78 13000
## 2151 24 32000
## 2152 26 29000
## 2153 64 13000
## 2154 70 15000
## 2155 57 56000
## 2156 29 25000
## 2157 44 95000
## 2158 50 71000
## 2159 47 24000
## 2160 79 10000
## 2161 22 14000
## 2162 75 33000
## 2163 65 50000
## 2164 69 30000
## 2165 54 94000
## 2166 61 52000
## 2167 55 169000
## 2168 33 73000
## 2169 72 45000
## 2170 67 62000
## 2171 58 127000
## 2172 65 30000
## 2173 52 81000
## 2174 18 15000
## 2175 70 14000
## 2176 52 114000
## 2177 70 49000
## 2178 61 29000
## 2179 19 22000
## 2180 50 87000
## 2181 67 131000
## 2182 64 31000
## 2183 21 20000
## 2184 73 16000
## 2185 32 21000
## 2186 31 22000
## 2187 78 11000
## 2188 42 52000
## 2189 63 44000
## 2190 76 89000
## 2191 68 11000
## 2192 27 35000
## 2193 52 995000
## 2194 27 51000
## 2195 63 168000
## 2196 50 26000
## 2197 48 27000
## 2198 51 84000
## 2199 59 338000
## 2200 32 76000
## 2201 66 11000
## 2202 75 10000
## 2203 51 35000
## 2204 55 74000
## 2205 70 52000
## 2206 47 90000
## 2207 33 49000
## 2208 57 49000
## 2209 60 38000
## 2210 66 71000
## 2211 21 43000
## 2212 75 51000
## 2213 62 65000
## 2214 71 112000
## 2215 43 23000
## 2216 67 20000
## 2217 42 43000
## 2218 77 68000
## 2219 48 74000
## 2220 36 27000
## 2221 70 37000
## 2222 73 95000
## 2223 50 92000
## 2224 21 29000
## 2225 46 46000
## 2226 20 16000
## 2227 50 61000
## 2228 64 46000
## 2229 32 33000
## 2230 44 100000
## 2231 30 46000
## 2232 33 38000
## 2233 75 13000
## 2234 70 9000
## 2235 38 92000
## 2236 20 15000
## 2237 62 111000
## 2238 78 40000
## 2239 34 33000
## 2240 31 52000
## 2241 70 15000
## 2242 24 27000
## 2243 18 11000
## 2244 46 26000
## 2245 65 67000
## 2246 75 18000
## 2247 68 16000
## 2248 42 69000
## 2249 18 15000
## 2250 23 25000
## 2251 31 42000
## 2252 67 132000
## 2253 60 99000
## 2254 45 71000
## 2255 32 34000
## 2256 24 19000
## 2257 20 20000
## 2258 18 16000
## 2259 42 44000
## 2260 46 101000
## 2261 43 43000
## 2262 34 28000
## 2263 50 51000
## 2264 33 75000
## 2265 78 13000
## 2266 61 82000
## 2267 22 30000
## 2268 21 16000
## 2269 29 86000
## 2270 18 18000
## 2271 28 31000
## 2272 28 22000
## 2273 76 11000
## 2274 72 23000
## 2275 52 261000
## 2276 73 53000
## 2277 68 18000
## 2278 58 360000
## 2279 20 21000
## 2280 28 29000
## 2281 18 20000
## 2282 41 73000
## 2283 30 42000
## 2284 23 34000
## 2285 39 42000
## 2286 30 74000
## 2287 70 12000
## 2288 51 60000
## 2289 37 89000
## 2290 29 29000
## 2291 42 29000
## 2292 31 32000
## 2293 55 103000
## 2294 23 39000
## 2295 49 150000
## 2296 21 18000
## 2297 19 19000
## 2298 51 66000
## 2299 28 34000
## 2300 45 38000
## 2301 25 20000
## 2302 76 29000
## 2303 57 111000
## 2304 64 26000
## 2305 37 45000
## 2306 41 74000
## 2307 42 63000
## 2308 71 60000
## 2309 41 45000
## 2310 32 36000
## 2311 34 29000
## 2312 52 52000
## 2313 30 30000
## 2314 33 26000
## 2315 67 45000
## 2316 45 17000
## 2317 57 14000
## 2318 38 115000
## 2319 58 67000
## 2320 60 77000
## 2321 67 30000
## 2322 62 16000
## 2323 60 86000
## 2324 41 56000
## 2325 29 16000
## 2326 51 37000
## 2327 47 60000
## 2328 75 11000
## 2329 36 55000
## 2330 76 28000
## 2331 41 34000
## 2332 61 40000
## 2333 53 100000
## 2334 51 40000
## 2335 57 48000
## 2336 51 58000
## 2337 53 97000
## 2338 21 30000
## 2339 21 25000
## 2340 66 77000
## 2341 40 27000
## 2342 24 35000
## 2343 59 53000
## 2344 60 52000
## 2345 58 129000
## 2346 18 16000
## 2347 70 418000
## 2348 63 11000
## 2349 56 55000
## 2350 46 62000
## 2351 67 18000
## 2352 25 33000
## 2353 40 68000
## 2354 64 44000
## 2355 46 33000
## 2356 24 45000
## 2357 50 68000
## 2358 49 117000
## 2359 26 21000
## 2360 45 148000
## 2361 36 35000
## 2362 72 55000
## 2363 54 32000
## 2364 35 19000
## 2365 50 70000
## 2366 39 30000
## 2367 38 85000
## 2368 66 11000
## 2369 28 21000
## 2370 56 64000
## 2371 69 18000
## 2372 77 21000
## 2373 74 92000
## 2374 78 84000
## 2375 64 106000
## 2376 61 38000
## 2377 42 52000
## 2378 26 20000
## 2379 67 166000
## 2380 72 9000
## 2381 42 44000
## 2382 28 124000
## 2383 71 37000
## 2384 63 109000
## 2385 41 74000
## 2386 63 21000
## 2387 74 10000
## 2388 69 62000
## 2389 57 124000
## 2390 34 132000
## 2391 43 37000
## 2392 57 45000
## 2393 37 31000
## 2394 35 41000
## 2395 39 85000
## 2396 23 28000
## 2397 75 20000
## 2398 61 135000
## 2399 32 66000
## 2400 19 23000
## 2401 27 24000
## 2402 66 59000
## 2403 29 22000
## 2404 20 25000
## 2405 57 31000
## 2406 78 17000
## 2407 73 218000
## 2408 51 85000
## 2409 21 22000
## 2410 48 49000
## 2411 40 28000
## 2412 45 18000
## 2413 61 66000
## 2414 20 20000
## 2415 66 109000
## 2416 37 22000
## 2417 50 133000
## 2418 74 57000
## 2419 32 30000
## 2420 44 38000
## 2421 38 36000
## 2422 23 84000
## 2423 78 33000
## 2424 46 61000
## 2425 74 104000
## 2426 35 34000
## 2427 48 25000
## 2428 39 37000
## 2429 23 16000
## 2430 40 44000
## 2431 35 37000
## 2432 57 73000
## 2433 39 84000
## 2434 34 142000
## 2435 27 62000
## 2436 69 30000
## 2437 66 31000
## 2438 26 28000
## 2439 79 9000
## 2440 77 10000
## 2441 59 300000
## 2442 24 22000
## 2443 23 29000
## 2444 41 30000
## 2445 18 41000
## 2446 69 38000
## 2447 61 16000
## 2448 19 22000
## 2449 48 27000
## 2450 23 16000
## 2451 55 18000
## 2452 24 24000
## 2453 29 67000
## 2454 21 37000
## 2455 18 14000
## 2456 57 40000
## 2457 42 75000
## 2458 57 97000
## 2459 39 24000
## 2460 79 17000
## 2461 65 82000
## 2462 43 54000
## 2463 55 48000
## 2464 37 57000
## 2465 26 41000
## 2466 29 20000
## 2467 34 125000
## 2468 18 18000
## 2469 58 99000
## 2470 18 15000
## 2471 23 28000
## 2472 19 23000
## 2473 63 22000
## 2474 65 37000
## 2475 34 97000
## 2476 46 161000
## 2477 39 22000
## 2478 64 279000
## 2479 45 39000
## 2480 39 42000
## 2481 60 41000
## 2482 35 46000
## 2483 75 95000
## 2484 20 30000
## 2485 38 56000
## 2486 62 38000
## 2487 62 49000
## 2488 19 16000
## 2489 79 14000
## 2490 74 323000
## 2491 43 42000
## 2492 18 13000
## 2493 34 72000
## 2494 22 26000
## 2495 75 138000
## 2496 48 68000
## 2497 35 33000
## 2498 64 53000
## 2499 28 37000
## 2500 54 36000
## 2501 44 47000
## 2502 50 100000
## 2503 22 18000
## 2504 56 99000
## 2505 32 34000
## 2506 46 37000
## 2507 59 257000
## 2508 60 30000
## 2509 76 15000
## 2510 30 27000
## 2511 72 15000
## 2512 48 31000
## 2513 27 72000
## 2514 26 70000
## 2515 61 90000
## 2516 28 29000
## 2517 23 30000
## 2518 42 23000
## 2519 42 40000
## 2520 29 24000
## 2521 56 57000
## 2522 18 15000
## 2523 40 44000
## 2524 30 18000
## 2525 29 32000
## 2526 41 61000
## 2527 24 29000
## 2528 60 86000
## 2529 32 50000
## 2530 45 57000
## 2531 56 150000
## 2532 22 22000
## 2533 38 117000
## 2534 75 18000
## 2535 65 44000
## 2536 49 51000
## 2537 24 12000
## 2538 37 27000
## 2539 75 22000
## 2540 39 19000
## 2541 32 29000
## 2542 24 17000
## 2543 32 23000
## 2544 58 38000
## 2545 27 144000
## 2546 63 52000
## 2547 28 29000
## 2548 58 133000
## 2549 56 140000
## 2550 59 74000
## 2551 75 134000
## 2552 67 11000
## 2553 30 32000
## 2554 40 25000
## 2555 55 29000
## 2556 74 26000
## 2557 36 142000
## 2558 52 35000
## 2559 23 22000
## 2560 18 14000
## 2561 25 27000
## 2562 34 123000
## 2563 20 14000
## 2564 25 15000
## 2565 41 40000
## 2566 23 26000
## 2567 48 140000
## 2568 35 23000
## 2569 72 15000
## 2570 34 36000
## 2571 26 25000
## 2572 69 28000
## 2573 58 149000
## 2574 78 56000
## 2575 56 77000
## 2576 77 26000
## 2577 29 86000
## 2578 31 38000
## 2579 44 46000
## 2580 58 138000
## 2581 25 25000
## 2582 30 48000
## 2583 44 36000
## 2584 77 24000
## 2585 45 36000
## 2586 38 56000
## 2587 34 31000
## 2588 34 29000
## 2589 68 34000
## 2590 39 43000
## 2591 22 31000
## 2592 74 9000
## 2593 64 81000
## 2594 50 120000
## 2595 49 48000
## 2596 53 26000
## 2597 37 70000
## 2598 22 15000
## 2599 61 53000
## 2600 64 113000
## 2601 23 31000
## 2602 28 33000
## 2603 61 98000
## 2604 21 20000
## 2605 36 122000
## 2606 23 22000
## 2607 66 133000
## 2608 18 25000
## 2609 48 80000
## 2610 27 29000
## 2611 25 23000
## 2612 21 22000
## 2613 69 14000
## 2614 55 41000
## 2615 41 48000
## 2616 37 45000
## 2617 53 40000
## 2618 32 83000
## 2619 37 52000
## 2620 75 17000
## 2621 36 63000
## 2622 49 31000
## 2623 27 32000
## 2624 22 32000
## 2625 71 49000
## 2626 25 37000
## 2627 52 69000
## 2628 53 47000
## 2629 47 29000
## 2630 18 15000
## 2631 27 17000
## 2632 27 30000
## 2633 41 59000
## 2634 28 45000
## 2635 77 19000
## 2636 41 81000
## 2637 41 81000
## 2638 46 28000
## 2639 32 59000
## 2640 26 26000
## 2641 34 47000
## 2642 32 24000
## 2643 29 24000
## 2644 31 29000
## 2645 36 78000
## 2646 62 90000
## 2647 59 47000
## 2648 72 31000
## 2649 22 19000
## 2650 30 23000
## 2651 56 28000
## 2652 56 35000
## 2653 66 57000
## 2654 66 10000
## 2655 28 22000
## 2656 55 46000
## 2657 26 22000
## 2658 54 111000
## 2659 54 91000
## 2660 60 46000
## 2661 37 26000
## 2662 20 40000
## 2663 47 84000
## 2664 78 9000
## 2665 46 37000
## 2666 26 18000
## 2667 43 29000
## 2668 28 20000
## 2669 34 64000
## 2670 77 22000
## 2671 31 42000
## 2672 23 22000
## 2673 25 15000
## 2674 76 9000
## 2675 50 84000
## 2676 51 103000
## 2677 35 41000
## 2678 53 54000
## 2679 54 48000
## 2680 37 76000
## 2681 50 26000
## 2682 73 14000
## 2683 79 9000
## 2684 37 30000
## 2685 47 52000
## 2686 66 160000
## 2687 46 37000
## 2688 31 36000
## 2689 19 20000
## 2690 18 17000
## 2691 25 18000
## 2692 69 111000
## 2693 72 9000
## 2694 50 29000
## 2695 36 60000
## 2696 61 26000
## 2697 52 84000
## 2698 37 58000
## 2699 25 38000
## 2700 19 11000
## 2701 27 24000
## 2702 58 11000
## 2703 63 101000
## 2704 50 47000
## 2705 24 14000
## 2706 67 181000
## 2707 23 53000
## 2708 44 24000
## 2709 50 26000
## 2710 34 24000
## 2711 46 68000
## 2712 67 52000
## 2713 32 38000
## 2714 30 41000
## 2715 72 22000
## 2716 62 30000
## 2717 55 87000
## 2718 18 16000
## 2719 66 26000
## 2720 39 112000
## 2721 58 42000
## 2722 56 67000
## 2723 64 18000
## 2724 72 130000
## 2725 26 20000
## 2726 43 20000
## 2727 37 30000
## 2728 20 13000
## 2729 29 25000
## 2730 40 28000
## 2731 19 22000
## 2732 68 23000
## 2733 48 65000
## 2734 57 171000
## 2735 39 52000
## 2736 69 38000
## 2737 68 10000
## 2738 62 53000
## 2739 48 34000
## 2740 44 67000
## 2741 75 55000
## 2742 60 39000
## 2743 36 29000
## 2744 18 20000
## 2745 79 26000
## 2746 46 45000
## 2747 49 53000
## 2748 30 26000
## 2749 29 31000
## 2750 31 215000
## 2751 77 27000
## 2752 26 16000
## 2753 31 42000
## 2754 64 180000
## 2755 32 227000
## 2756 60 12000
## 2757 35 37000
## 2758 18 14000
## 2759 68 186000
## 2760 43 68000
## 2761 19 16000
## 2762 59 36000
## 2763 53 86000
## 2764 48 89000
## 2765 47 106000
## 2766 58 73000
## 2767 25 33000
## 2768 56 55000
## 2769 68 20000
## 2770 66 68000
## 2771 38 33000
## 2772 22 20000
## 2773 77 10000
## 2774 49 59000
## 2775 69 81000
## 2776 19 14000
## 2777 69 23000
## 2778 40 97000
## 2779 51 64000
## 2780 58 62000
## 2781 49 87000
## 2782 36 34000
## 2783 60 93000
## 2784 41 50000
## 2785 52 62000
## 2786 25 34000
## 2787 50 132000
## 2788 69 39000
## 2789 69 9000
## 2790 24 25000
## 2791 37 43000
## 2792 42 66000
## 2793 35 35000
## 2794 36 43000
## 2795 65 66000
## 2796 70 23000
## 2797 73 11000
## 2798 39 24000
## 2799 24 92000
## 2800 25 19000
## 2801 59 143000
## 2802 23 79000
## 2803 30 50000
## 2804 63 93000
## 2805 67 19000
## 2806 38 43000
## 2807 24 34000
## 2808 40 22000
## 2809 18 20000
## 2810 18 18000
## 2811 53 181000
## 2812 70 90000
## 2813 51 33000
## 2814 38 167000
## 2815 33 33000
## 2816 74 9000
## 2817 56 112000
## 2818 66 44000
## 2819 21 18000
## 2820 28 30000
## 2821 41 35000
## 2822 27 22000
## 2823 38 32000
## 2824 18 23000
## 2825 67 68000
## 2826 71 175000
## 2827 37 54000
## 2828 45 55000
## 2829 65 30000
## 2830 22 31000
## 2831 65 95000
## 2832 58 43000
## 2833 62 66000
## 2834 25 32000
## 2835 46 124000
## 2836 46 64000
## 2837 33 28000
## 2838 61 48000
## 2839 71 102000
## 2840 19 36000
## 2841 24 26000
## 2842 23 22000
## 2843 54 35000
## 2844 70 87000
## 2845 19 19000
## 2846 44 22000
## 2847 79 12000
## 2848 62 111000
## 2849 35 53000
## 2850 41 44000
## 2851 69 22000
## 2852 20 42000
## 2853 76 18000
## 2854 65 122000
## 2855 34 31000
## 2856 63 215000
## 2857 65 10000
## 2858 69 73000
## 2859 79 33000
## 2860 34 29000
## 2861 50 23000
## 2862 49 191000
## 2863 58 156000
## 2864 59 137000
## 2865 43 77000
## 2866 25 17000
## 2867 39 35000
## 2868 32 24000
## 2869 70 60000
## 2870 36 56000
## 2871 31 23000
## 2872 23 16000
## 2873 44 34000
## 2874 31 26000
## 2875 45 53000
## 2876 21 21000
## 2877 50 48000
## 2878 38 46000
## 2879 71 9000
## 2880 36 52000
## 2881 76 53000
## 2882 53 61000
## 2883 60 36000
## 2884 76 48000
## 2885 52 48000
## 2886 27 21000
## 2887 55 15000
## 2888 25 36000
## 2889 65 78000
## 2890 72 75000
## 2891 64 273000
## 2892 49 87000
## 2893 18 16000
## 2894 34 25000
## 2895 63 13000
## 2896 41 28000
## 2897 77 54000
## 2898 21 17000
## 2899 37 24000
## 2900 56 24000
## 2901 60 34000
## 2902 42 96000
## 2903 44 82000
## 2904 48 74000
## 2905 71 174000
## 2906 51 89000
## 2907 40 62000
## 2908 34 22000
## 2909 64 193000
## 2910 44 35000
## 2911 22 16000
## 2912 39 75000
## 2913 34 54000
## 2914 38 42000
## 2915 37 28000
## 2916 37 47000
## 2917 55 96000
## 2918 35 32000
## 2919 63 18000
## 2920 47 58000
## 2921 26 41000
## 2922 38 37000
## 2923 40 39000
## 2924 40 49000
## 2925 77 159000
## 2926 30 56000
## 2927 33 55000
## 2928 25 27000
## 2929 27 19000
## 2930 77 9000
## 2931 54 29000
## 2932 79 17000
## 2933 36 29000
## 2934 42 142000
## 2935 67 169000
## 2936 27 27000
## 2937 73 15000
## 2938 63 14000
## 2939 47 43000
## 2940 75 13000
## 2941 63 55000
## 2942 53 36000
## 2943 61 33000
## 2944 31 20000
## 2945 21 15000
## 2946 46 54000
## 2947 47 62000
## 2948 58 125000
## 2949 71 146000
## 2950 25 13000
## 2951 68 19000
## 2952 31 70000
## 2953 54 119000
## 2954 63 45000
## 2955 26 46000
## 2956 35 36000
## 2957 60 73000
## 2958 34 60000
## 2959 25 46000
## 2960 63 237000
## 2961 25 30000
## 2962 30 45000
## 2963 64 46000
## 2964 31 33000
## 2965 60 147000
## 2966 65 42000
## 2967 51 62000
## 2968 46 88000
## 2969 44 30000
## 2970 70 345000
## 2971 75 133000
## 2972 35 35000
## 2973 44 32000
## 2974 30 45000
## 2975 31 18000
## 2976 19 20000
## 2977 55 56000
## 2978 25 20000
## 2979 30 35000
## 2980 18 17000
## 2981 34 48000
## 2982 29 15000
## 2983 20 16000
## 2984 24 28000
## 2985 66 17000
## 2986 54 57000
## 2987 49 44000
## 2988 32 26000
## 2989 27 18000
## 2990 41 87000
## 2991 19 21000
## 2992 47 185000
## 2993 54 42000
## 2994 37 48000
## 2995 45 53000
## 2996 50 97000
## 2997 57 99000
## 2998 18 12000
## 2999 46 113000
## 3000 78 9000
## 3001 28 34000
## 3002 20 14000
## 3003 65 18000
## 3004 57 26000
## 3005 59 46000
## 3006 57 92000
## 3007 19 14000
## 3008 21 34000
## 3009 60 158000
## 3010 46 84000
## 3011 68 51000
## 3012 18 15000
## 3013 31 27000
## 3014 33 32000
## 3015 57 40000
## 3016 18 16000
## 3017 33 38000
## 3018 44 28000
## 3019 63 97000
## 3020 60 52000
## 3021 43 86000
## 3022 68 35000
## 3023 78 15000
## 3024 32 19000
## 3025 48 24000
## 3026 33 55000
## 3027 47 132000
## 3028 21 15000
## 3029 55 31000
## 3030 35 32000
## 3031 66 32000
## 3032 33 33000
## 3033 58 117000
## 3034 56 34000
## 3035 21 17000
## 3036 38 53000
## 3037 22 21000
## 3038 50 70000
## 3039 19 19000
## 3040 66 165000
## 3041 33 120000
## 3042 28 29000
## 3043 60 28000
## 3044 67 70000
## 3045 20 16000
## 3046 22 18000
## 3047 34 41000
## 3048 19 16000
## 3049 43 23000
## 3050 60 115000
## 3051 40 27000
## 3052 37 37000
## 3053 58 197000
## 3054 49 51000
## 3055 35 73000
## 3056 19 18000
## 3057 55 56000
## 3058 47 34000
## 3059 29 26000
## 3060 49 71000
## 3061 52 20000
## 3062 45 42000
## 3063 38 32000
## 3064 42 48000
## 3065 48 36000
## 3066 74 255000
## 3067 77 26000
## 3068 28 25000
## 3069 57 780000
## 3070 68 68000
## 3071 67 55000
## 3072 27 20000
## 3073 54 112000
## 3074 67 63000
## 3075 32 36000
## 3076 30 29000
## 3077 20 16000
## 3078 40 70000
## 3079 19 16000
## 3080 57 44000
## 3081 23 60000
## 3082 60 121000
## 3083 43 33000
## 3084 42 54000
## 3085 38 84000
## 3086 29 25000
## 3087 39 86000
## 3088 62 59000
## 3089 42 30000
## 3090 34 67000
## 3091 67 11000
## 3092 77 86000
## 3093 25 32000
## 3094 35 51000
## 3095 64 61000
## 3096 33 44000
## 3097 28 30000
## 3098 70 49000
## 3099 23 90000
## 3100 67 26000
## 3101 42 45000
## 3102 77 13000
## 3103 55 54000
## 3104 62 74000
## 3105 66 66000
## 3106 45 32000
## 3107 66 34000
## 3108 54 126000
## 3109 50 51000
## 3110 61 15000
## 3111 70 88000
## 3112 39 46000
## 3113 25 12000
## 3114 38 33000
## 3115 48 56000
## 3116 53 196000
## 3117 79 17000
## 3118 73 35000
## 3119 79 15000
## 3120 72 24000
## 3121 24 23000
## 3122 57 12000
## 3123 18 12000
## 3124 54 245000
## 3125 56 81000
## 3126 49 80000
## 3127 31 95000
## 3128 39 40000
## 3129 42 71000
## 3130 53 48000
## 3131 22 28000
## 3132 21 19000
## 3133 21 17000
## 3134 18 23000
## 3135 72 27000
## 3136 73 39000
## 3137 79 14000
## 3138 19 18000
## 3139 52 32000
## 3140 57 88000
## 3141 69 14000
## 3142 24 26000
## 3143 77 160000
## 3144 27 26000
## 3145 70 61000
## 3146 76 12000
## 3147 67 137000
## 3148 30 29000
## 3149 37 38000
## 3150 24 31000
## 3151 34 19000
## 3152 57 105000
## 3153 43 69000
## 3154 24 24000
## 3155 44 184000
## 3156 58 145000
## 3157 24 28000
## 3158 29 43000
## 3159 66 72000
## 3160 31 25000
## 3161 63 31000
## 3162 36 54000
## 3163 38 45000
## 3164 39 32000
## 3165 65 38000
## 3166 43 59000
## 3167 59 34000
## 3168 74 70000
## 3169 59 32000
## 3170 24 14000
## 3171 77 15000
## 3172 24 30000
## 3173 25 25000
## 3174 28 15000
## 3175 18 16000
## 3176 52 36000
## 3177 35 16000
## 3178 64 24000
## 3179 32 21000
## 3180 60 28000
## 3181 59 89000
## 3182 38 34000
## 3183 57 68000
## 3184 28 32000
## 3185 26 31000
## 3186 27 21000
## 3187 69 10000
## 3188 63 90000
## 3189 67 89000
## 3190 40 63000
## 3191 34 38000
## 3192 32 38000
## 3193 63 41000
## 3194 40 19000
## 3195 43 30000
## 3196 66 34000
## 3197 47 39000
## 3198 19 35000
## 3199 41 21000
## 3200 68 17000
## 3201 27 21000
## 3202 78 25000
## 3203 51 54000
## 3204 78 12000
## 3205 42 45000
## 3206 45 28000
## 3207 40 31000
## 3208 67 39000
## 3209 30 25000
## 3210 51 143000
## 3211 57 51000
## 3212 68 10000
## 3213 54 642000
## 3214 51 59000
## 3215 47 59000
## 3216 69 56000
## 3217 38 76000
## 3218 45 19000
## 3219 39 22000
## 3220 47 76000
## 3221 46 110000
## 3222 46 52000
## 3223 51 76000
## 3224 51 36000
## 3225 75 11000
## 3226 41 37000
## 3227 27 24000
## 3228 37 32000
## 3229 35 96000
## 3230 51 151000
## 3231 44 83000
## 3232 46 89000
## 3233 42 42000
## 3234 31 31000
## 3235 51 43000
## 3236 27 23000
## 3237 77 17000
## 3238 54 41000
## 3239 39 92000
## 3240 69 13000
## 3241 29 27000
## 3242 45 37000
## 3243 47 92000
## 3244 32 48000
## 3245 35 72000
## 3246 31 17000
## 3247 68 56000
## 3248 56 82000
## 3249 60 44000
## 3250 40 39000
## 3251 68 36000
## 3252 26 72000
## 3253 65 273000
## 3254 41 91000
## 3255 68 15000
## 3256 63 52000
## 3257 18 14000
## 3258 57 93000
## 3259 51 56000
## 3260 41 68000
## 3261 56 183000
## 3262 39 43000
## 3263 61 40000
## 3264 49 69000
## 3265 61 9000
## 3266 41 54000
## 3267 39 48000
## 3268 67 27000
## 3269 52 47000
## 3270 35 60000
## 3271 33 35000
## 3272 34 51000
## 3273 54 30000
## 3274 75 40000
## 3275 71 68000
## 3276 72 24000
## 3277 52 29000
## 3278 63 37000
## 3279 32 50000
## 3280 24 64000
## 3281 74 51000
## 3282 19 21000
## 3283 74 27000
## 3284 72 9000
## 3285 38 38000
## 3286 75 14000
## 3287 62 157000
## 3288 53 18000
## 3289 51 122000
## 3290 61 232000
## 3291 56 34000
## 3292 23 20000
## 3293 54 62000
## 3294 33 57000
## 3295 50 50000
## 3296 21 52000
## 3297 70 22000
## 3298 62 30000
## 3299 66 9000
## 3300 66 64000
## 3301 31 32000
## 3302 78 38000
## 3303 69 20000
## 3304 33 36000
## 3305 41 46000
## 3306 22 15000
## 3307 28 24000
## 3308 76 21000
## 3309 26 81000
## 3310 49 145000
## 3311 44 24000
## 3312 78 12000
## 3313 44 79000
## 3314 56 12000
## 3315 71 24000
## 3316 22 38000
## 3317 54 30000
## 3318 41 119000
## 3319 20 18000
## 3320 64 10000
## 3321 50 50000
## 3322 33 31000
## 3323 77 48000
## 3324 31 23000
## 3325 66 18000
## 3326 35 26000
## 3327 69 91000
## 3328 78 17000
## 3329 18 29000
## 3330 65 70000
## 3331 24 22000
## 3332 35 32000
## 3333 31 113000
## 3334 22 26000
## 3335 33 91000
## 3336 74 12000
## 3337 22 30000
## 3338 46 75000
## 3339 32 47000
## 3340 34 49000
## 3341 29 30000
## 3342 72 59000
## 3343 20 18000
## 3344 22 15000
## 3345 32 55000
## 3346 59 128000
## 3347 63 103000
## 3348 51 70000
## 3349 69 62000
## 3350 37 53000
## 3351 22 14000
## 3352 46 122000
## 3353 36 26000
## 3354 22 38000
## 3355 68 50000
## 3356 68 12000
## 3357 35 100000
## 3358 36 33000
## 3359 23 18000
## 3360 76 10000
## 3361 27 38000
## 3362 66 34000
## 3363 26 34000
## 3364 73 15000
## 3365 59 38000
## 3366 51 173000
## 3367 36 38000
## 3368 71 10000
## 3369 49 26000
## 3370 69 13000
## 3371 35 26000
## 3372 43 60000
## 3373 59 55000
## 3374 61 211000
## 3375 19 27000
## 3376 19 32000
## 3377 26 25000
## 3378 60 101000
## 3379 32 30000
## 3380 30 32000
## 3381 72 18000
## 3382 23 39000
## 3383 32 81000
## 3384 24 31000
## 3385 78 26000
## 3386 57 220000
## 3387 37 150000
## 3388 25 32000
## 3389 70 58000
## 3390 31 50000
## 3391 68 64000
## 3392 53 174000
## 3393 47 55000
## 3394 22 25000
## 3395 30 67000
## 3396 75 21000
## 3397 44 34000
## 3398 71 11000
## 3399 77 15000
## 3400 68 9000
## 3401 23 43000
## 3402 65 66000
## 3403 24 18000
## 3404 65 13000
## 3405 49 28000
## 3406 26 28000
## 3407 58 84000
## 3408 43 33000
## 3409 69 55000
## 3410 46 84000
## 3411 57 62000
## 3412 34 25000
## 3413 41 21000
## 3414 53 144000
## 3415 57 146000
## 3416 29 46000
## 3417 70 34000
## 3418 68 87000
## 3419 61 12000
## 3420 52 110000
## 3421 18 18000
## 3422 43 36000
## 3423 32 64000
## 3424 56 83000
## 3425 67 22000
## 3426 56 105000
## 3427 54 62000
## 3428 30 30000
## 3429 47 73000
## 3430 28 23000
## 3431 18 24000
## 3432 67 126000
## 3433 76 27000
## 3434 36 38000
## 3435 35 33000
## 3436 39 31000
## 3437 78 49000
## 3438 47 153000
## 3439 73 126000
## 3440 19 33000
## 3441 23 20000
## 3442 56 58000
## 3443 55 43000
## 3444 66 242000
## 3445 71 108000
## 3446 62 27000
## 3447 76 11000
## 3448 53 35000
## 3449 28 52000
## 3450 27 21000
## 3451 73 43000
## 3452 24 23000
## 3453 45 107000
## 3454 24 24000
## 3455 38 49000
## 3456 23 13000
## 3457 30 25000
## 3458 64 70000
## 3459 57 72000
## 3460 52 57000
## 3461 29 34000
## 3462 48 28000
## 3463 54 147000
## 3464 31 30000
## 3465 36 31000
## 3466 20 45000
## 3467 47 53000
## 3468 73 72000
## 3469 70 91000
## 3470 72 16000
## 3471 35 41000
## 3472 18 17000
## 3473 22 31000
## 3474 20 25000
## 3475 73 32000
## 3476 28 56000
## 3477 42 48000
## 3478 37 44000
## 3479 33 43000
## 3480 18 19000
## 3481 60 72000
## 3482 36 17000
## 3483 69 99000
## 3484 21 14000
## 3485 45 88000
## 3486 75 24000
## 3487 54 165000
## 3488 59 61000
## 3489 43 50000
## 3490 31 68000
## 3491 39 85000
## 3492 52 38000
## 3493 29 62000
## 3494 72 30000
## 3495 54 76000
## 3496 21 20000
## 3497 37 61000
## 3498 47 90000
## 3499 43 31000
## 3500 79 16000
## 3501 65 65000
## 3502 24 23000
## 3503 31 17000
## 3504 72 14000
## 3505 73 72000
## 3506 79 17000
## 3507 33 27000
## 3508 22 29000
## 3509 28 22000
## 3510 19 22000
## 3511 38 33000
## 3512 54 47000
## 3513 56 49000
## 3514 74 54000
## 3515 57 75000
## 3516 38 74000
## 3517 50 64000
## 3518 65 27000
## 3519 28 22000
## 3520 22 18000
## 3521 44 139000
## 3522 70 171000
## 3523 30 82000
## 3524 65 171000
## 3525 59 173000
## 3526 57 56000
## 3527 65 221000
## 3528 55 63000
## 3529 18 21000
## 3530 45 36000
## 3531 72 35000
## 3532 60 10000
## 3533 50 163000
## 3534 64 10000
## 3535 41 184000
## 3536 20 15000
## 3537 68 14000
## 3538 78 11000
## 3539 40 31000
## 3540 79 12000
## 3541 20 18000
## 3542 44 66000
## 3543 77 9000
## 3544 49 103000
## 3545 69 19000
## 3546 40 60000
## 3547 52 53000
## 3548 71 12000
## 3549 73 12000
## 3550 24 13000
## 3551 54 46000
## 3552 29 20000
## 3553 20 22000
## 3554 52 60000
## 3555 63 64000
## 3556 70 17000
## 3557 42 110000
## 3558 52 108000
## 3559 52 48000
## 3560 20 17000
## 3561 39 58000
## 3562 48 31000
## 3563 38 29000
## 3564 25 22000
## 3565 45 26000
## 3566 48 22000
## 3567 20 17000
## 3568 59 57000
## 3569 49 86000
## 3570 67 46000
## 3571 32 37000
## 3572 51 41000
## 3573 31 29000
## 3574 26 18000
## 3575 64 39000
## 3576 33 42000
## 3577 48 46000
## 3578 49 59000
## 3579 71 40000
## 3580 67 40000
## 3581 39 68000
## 3582 77 9000
## 3583 20 19000
## 3584 21 40000
## 3585 70 32000
## 3586 75 23000
## 3587 35 59000
## 3588 28 27000
## 3589 24 21000
## 3590 34 23000
## 3591 78 26000
## 3592 78 17000
## 3593 23 37000
## 3594 43 73000
## 3595 75 10000
## 3596 57 44000
## 3597 52 26000
## 3598 18 16000
## 3599 71 12000
## 3600 66 21000
## 3601 34 29000
## 3602 34 21000
## 3603 77 34000
## 3604 28 77000
## 3605 72 65000
## 3606 42 38000
## 3607 53 86000
## 3608 22 19000
## 3609 25 16000
## 3610 22 29000
## 3611 63 31000
## 3612 57 35000
## 3613 39 69000
## 3614 40 36000
## 3615 73 41000
## 3616 47 79000
## 3617 52 34000
## 3618 43 38000
## 3619 74 45000
## 3620 50 51000
## 3621 37 23000
## 3622 55 60000
## 3623 46 59000
## 3624 70 526000
## 3625 75 10000
## 3626 19 21000
## 3627 29 42000
## 3628 58 59000
## 3629 49 55000
## 3630 67 47000
## 3631 37 41000
## 3632 46 33000
## 3633 48 59000
## 3634 78 100000
## 3635 23 24000
## 3636 51 26000
## 3637 21 27000
## 3638 51 181000
## 3639 37 40000
## 3640 27 20000
## 3641 18 18000
## 3642 24 46000
## 3643 38 44000
## 3644 37 46000
## 3645 71 39000
## 3646 51 73000
## 3647 77 22000
## 3648 63 39000
## 3649 51 68000
## 3650 62 283000
## 3651 24 22000
## 3652 40 168000
## 3653 23 15000
## 3654 42 45000
## 3655 21 43000
## 3656 36 69000
## 3657 27 29000
## 3658 43 50000
## 3659 61 252000
## 3660 36 19000
## 3661 51 58000
## 3662 18 16000
## 3663 42 42000
## 3664 57 224000
## 3665 36 60000
## 3666 41 66000
## 3667 75 279000
## 3668 70 17000
## 3669 41 45000
## 3670 77 40000
## 3671 30 19000
## 3672 76 78000
## 3673 57 93000
## 3674 64 22000
## 3675 62 55000
## 3676 60 161000
## 3677 25 25000
## 3678 75 32000
## 3679 22 19000
## 3680 44 58000
## 3681 27 25000
## 3682 47 62000
## 3683 71 22000
## 3684 29 66000
## 3685 23 14000
## 3686 71 31000
## 3687 29 37000
## 3688 57 124000
## 3689 27 29000
## 3690 29 22000
## 3691 79 13000
## 3692 21 23000
## 3693 31 23000
## 3694 57 48000
## 3695 46 25000
## 3696 40 36000
## 3697 20 41000
## 3698 24 25000
## 3699 30 42000
## 3700 60 57000
## 3701 22 22000
## 3702 68 10000
## 3703 40 88000
## 3704 52 67000
## 3705 67 16000
## 3706 45 50000
## 3707 67 57000
## 3708 28 45000
## 3709 41 51000
## 3710 52 82000
## 3711 41 35000
## 3712 18 48000
## 3713 57 82000
## 3714 40 59000
## 3715 50 133000
## 3716 40 36000
## 3717 43 24000
## 3718 21 23000
## 3719 30 45000
## 3720 26 40000
## 3721 34 42000
## 3722 76 34000
## 3723 35 34000
## 3724 62 14000
## 3725 31 25000
## 3726 22 23000
## 3727 62 55000
## 3728 74 79000
## 3729 77 32000
## 3730 61 86000
## 3731 78 9000
## 3732 52 158000
## 3733 31 22000
## 3734 74 9000
## 3735 38 38000
## 3736 21 15000
## 3737 43 45000
## 3738 66 28000
## 3739 46 69000
## 3740 34 35000
## 3741 28 26000
## 3742 71 11000
## 3743 18 15000
## 3744 33 41000
## 3745 64 60000
## 3746 25 22000
## 3747 24 21000
## 3748 57 47000
## 3749 48 45000
## 3750 76 36000
## 3751 59 28000
## 3752 45 65000
## 3753 68 43000
## 3754 50 48000
## 3755 52 185000
## 3756 51 52000
## 3757 33 76000
## 3758 76 39000
## 3759 36 30000
## 3760 47 65000
## 3761 48 24000
## 3762 71 103000
## 3763 63 44000
## 3764 68 9000
## 3765 69 12000
## 3766 39 20000
## 3767 31 31000
## 3768 43 92000
## 3769 32 26000
## 3770 26 32000
## 3771 70 27000
## 3772 47 113000
## 3773 78 35000
## 3774 18 13000
## 3775 62 62000
## 3776 34 23000
## 3777 26 24000
## 3778 37 65000
## 3779 22 19000
## 3780 75 9000
## 3781 30 50000
## 3782 53 192000
## 3783 27 53000
## 3784 40 35000
## 3785 79 56000
## 3786 50 142000
## 3787 32 30000
## 3788 35 19000
## 3789 56 35000
## 3790 24 15000
## 3791 63 31000
## 3792 50 27000
## 3793 62 27000
## 3794 67 193000
## 3795 47 39000
## 3796 36 46000
## 3797 52 79000
## 3798 26 32000
## 3799 30 46000
## 3800 42 202000
## 3801 24 20000
## 3802 48 94000
## 3803 65 142000
## 3804 37 21000
## 3805 41 67000
## 3806 73 9000
## 3807 77 12000
## 3808 79 21000
## 3809 47 76000
## 3810 30 46000
## 3811 26 22000
## 3812 38 34000
## 3813 65 57000
## 3814 22 36000
## 3815 73 14000
## 3816 52 46000
## 3817 61 123000
## 3818 74 36000
## 3819 26 27000
## 3820 62 157000
## 3821 19 16000
## 3822 67 68000
## 3823 42 29000
## 3824 23 61000
## 3825 56 129000
## 3826 70 72000
## 3827 22 21000
## 3828 23 26000
## 3829 37 76000
## 3830 29 46000
## 3831 74 48000
## 3832 35 35000
## 3833 63 47000
## 3834 32 22000
## 3835 28 28000
## 3836 38 65000
## 3837 34 30000
## 3838 64 11000
## 3839 69 11000
## 3840 33 42000
## 3841 70 9000
## 3842 23 26000
## 3843 23 24000
## 3844 47 31000
## 3845 58 77000
## 3846 72 42000
## 3847 37 27000
## 3848 72 191000
## 3849 66 10000
## 3850 52 116000
## 3851 31 15000
## 3852 42 97000
## 3853 25 66000
## 3854 48 46000
## 3855 44 70000
## 3856 49 31000
## 3857 70 66000
## 3858 24 17000
## 3859 47 76000
## 3860 36 97000
## 3861 23 35000
## 3862 33 66000
## 3863 56 157000
## 3864 78 14000
## 3865 49 21000
## 3866 52 38000
## 3867 61 10000
## 3868 21 24000
## 3869 25 19000
## 3870 70 9000
## 3871 63 49000
## 3872 33 31000
## 3873 58 44000
## 3874 76 9000
## 3875 79 9000
## 3876 36 39000
## 3877 43 115000
## 3878 33 36000
## 3879 44 62000
## 3880 71 11000
## 3881 68 11000
## 3882 57 29000
## 3883 41 17000
## 3884 66 18000
## 3885 31 27000
## 3886 61 274000
## 3887 33 40000
## 3888 29 16000
## 3889 35 235000
## 3890 19 23000
## 3891 21 16000
## 3892 42 38000
## 3893 64 90000
## 3894 58 75000
## 3895 43 35000
## 3896 50 25000
## 3897 74 27000
## 3898 28 25000
## 3899 65 125000
## 3900 65 36000
## 3901 58 76000
## 3902 29 45000
## 3903 40 84000
## 3904 28 25000
## 3905 38 31000
## 3906 37 84000
## 3907 42 59000
## 3908 31 152000
## 3909 43 142000
## 3910 48 80000
## 3911 38 26000
## 3912 51 151000
## 3913 36 47000
## 3914 26 31000
## 3915 71 31000
## 3916 54 75000
## 3917 23 23000
## 3918 59 56000
## 3919 44 74000
## 3920 79 18000
## 3921 43 203000
## 3922 59 18000
## 3923 79 159000
## 3924 44 41000
## 3925 35 40000
## 3926 64 52000
## 3927 21 32000
## 3928 49 51000
## 3929 70 128000
## 3930 53 53000
## 3931 29 52000
## 3932 49 108000
## 3933 25 28000
## 3934 32 25000
## 3935 32 43000
## 3936 29 27000
## 3937 20 15000
## 3938 59 40000
## 3939 54 79000
## 3940 67 20000
## 3941 45 141000
## 3942 69 53000
## 3943 53 64000
## 3944 67 110000
## 3945 62 84000
## 3946 37 64000
## 3947 29 25000
## 3948 39 61000
## 3949 45 31000
## 3950 31 61000
## 3951 18 17000
## 3952 62 250000
## 3953 62 55000
## 3954 36 71000
## 3955 52 77000
## 3956 29 24000
## 3957 50 33000
## 3958 40 31000
## 3959 79 9000
## 3960 20 17000
## 3961 63 41000
## 3962 69 15000
## 3963 36 28000
## 3964 70 16000
## 3965 69 96000
## 3966 53 32000
## 3967 75 15000
## 3968 67 30000
## 3969 23 22000
## 3970 65 30000
## 3971 22 34000
## 3972 27 25000
## 3973 35 40000
## 3974 38 45000
## 3975 29 59000
## 3976 22 33000
## 3977 49 46000
## 3978 47 71000
## 3979 71 49000
## 3980 26 125000
## 3981 39 43000
## 3982 70 11000
## 3983 68 43000
## 3984 34 24000
## 3985 56 31000
## 3986 70 95000
## 3987 40 25000
## 3988 44 80000
## 3989 34 29000
## 3990 48 86000
## 3991 20 17000
## 3992 78 12000
## 3993 70 20000
## 3994 27 40000
## 3995 69 29000
## 3996 33 33000
## 3997 63 41000
## 3998 58 42000
## 3999 31 21000
## 4000 28 30000
## 4001 78 56000
## 4002 31 21000
## 4003 31 37000
## 4004 76 16000
## 4005 25 31000
## 4006 36 100000
## 4007 46 67000
## 4008 18 19000
## 4009 30 58000
## 4010 66 396000
## 4011 72 11000
## 4012 56 175000
## 4013 76 20000
## 4014 56 143000
## 4015 22 51000
## 4016 60 79000
## 4017 72 15000
## 4018 45 30000
## 4019 64 11000
## 4020 37 48000
## 4021 23 35000
## 4022 53 48000
## 4023 59 169000
## 4024 41 273000
## 4025 65 10000
## 4026 75 11000
## 4027 25 27000
## 4028 25 24000
## 4029 27 44000
## 4030 38 42000
## 4031 72 9000
## 4032 35 34000
## 4033 52 76000
## 4034 22 33000
## 4035 78 10000
## 4036 52 35000
## 4037 77 35000
## 4038 45 215000
## 4039 79 9000
## 4040 38 59000
## 4041 34 41000
## 4042 68 18000
## 4043 61 115000
## 4044 55 217000
## 4045 37 37000
## 4046 38 32000
## 4047 79 13000
## 4048 50 72000
## 4049 52 80000
## 4050 36 45000
## 4051 79 9000
## 4052 37 39000
## 4053 72 40000
## 4054 21 20000
## 4055 19 27000
## 4056 59 42000
## 4057 57 62000
## 4058 43 88000
## 4059 29 43000
## 4060 54 135000
## 4061 36 47000
## 4062 46 70000
## 4063 72 133000
## 4064 73 21000
## 4065 62 83000
## 4066 74 106000
## 4067 59 17000
## 4068 24 27000
## 4069 31 35000
## 4070 33 82000
## 4071 50 69000
## 4072 54 55000
## 4073 73 16000
## 4074 26 32000
## 4075 30 22000
## 4076 45 105000
## 4077 74 27000
## 4078 56 56000
## 4079 23 18000
## 4080 75 25000
## 4081 69 49000
## 4082 18 16000
## 4083 56 203000
## 4084 57 41000
## 4085 58 90000
## 4086 60 69000
## 4087 30 30000
## 4088 33 34000
## 4089 40 41000
## 4090 49 53000
## 4091 21 21000
## 4092 43 85000
## 4093 31 30000
## 4094 39 49000
## 4095 73 12000
## 4096 77 162000
## 4097 27 38000
## 4098 38 33000
## 4099 22 38000
## 4100 57 66000
## 4101 37 17000
## 4102 18 13000
## 4103 44 112000
## 4104 19 17000
## 4105 22 23000
## 4106 59 33000
## 4107 54 78000
## 4108 24 27000
## 4109 46 32000
## 4110 28 53000
## 4111 47 33000
## 4112 49 181000
## 4113 31 60000
## 4114 32 72000
## 4115 31 68000
## 4116 67 20000
## 4117 25 39000
## 4118 65 11000
## 4119 45 70000
## 4120 61 58000
## 4121 38 21000
## 4122 48 81000
## 4123 30 27000
## 4124 33 32000
## 4125 53 70000
## 4126 37 78000
## 4127 43 59000
## 4128 68 32000
## 4129 37 37000
## 4130 45 27000
## 4131 76 9000
## 4132 24 16000
## 4133 49 85000
## 4134 35 41000
## 4135 22 20000
## 4136 30 90000
## 4137 47 53000
## 4138 51 81000
## 4139 32 35000
## 4140 42 76000
## 4141 21 22000
## 4142 27 37000
## 4143 32 32000
## 4144 53 61000
## 4145 44 119000
## 4146 75 50000
## 4147 33 47000
## 4148 32 81000
## 4149 29 35000
## 4150 61 42000
## 4151 22 23000
## 4152 19 24000
## 4153 37 88000
## 4154 64 64000
## 4155 55 68000
## 4156 34 28000
## 4157 69 15000
## 4158 55 39000
## 4159 62 76000
## 4160 35 57000
## 4161 64 17000
## 4162 62 65000
## 4163 43 47000
## 4164 52 43000
## 4165 77 11000
## 4166 27 46000
## 4167 47 45000
## 4168 41 31000
## 4169 73 26000
## 4170 27 20000
## 4171 31 17000
## 4172 18 15000
## 4173 48 44000
## 4174 43 46000
## 4175 34 44000
## 4176 56 50000
## 4177 36 47000
## 4178 69 71000
## 4179 50 113000
## 4180 32 24000
## 4181 35 65000
## 4182 40 31000
## 4183 55 108000
## 4184 27 28000
## 4185 25 16000
## 4186 47 96000
## 4187 77 21000
## 4188 23 29000
## 4189 19 33000
## 4190 67 61000
## 4191 49 143000
## 4192 70 20000
## 4193 28 24000
## 4194 21 17000
## 4195 57 140000
## 4196 54 80000
## 4197 33 23000
## 4198 67 38000
## 4199 78 20000
## 4200 19 18000
## 4201 20 18000
## 4202 40 96000
## 4203 48 95000
## 4204 51 40000
## 4205 56 43000
## 4206 53 44000
## 4207 25 42000
## 4208 67 22000
## 4209 61 246000
## 4210 24 20000
## 4211 56 66000
## 4212 72 41000
## 4213 22 25000
## 4214 24 15000
## 4215 44 80000
## 4216 23 25000
## 4217 44 121000
## 4218 68 39000
## 4219 64 58000
## 4220 43 52000
## 4221 21 27000
## 4222 44 54000
## 4223 21 20000
## 4224 55 114000
## 4225 20 15000
## 4226 41 38000
## 4227 60 23000
## 4228 71 45000
## 4229 44 120000
## 4230 67 28000
## 4231 18 15000
## 4232 21 17000
## 4233 75 94000
## 4234 28 29000
## 4235 58 62000
## 4236 32 27000
## 4237 19 13000
## 4238 63 36000
## 4239 35 53000
## 4240 59 160000
## 4241 77 23000
## 4242 79 9000
## 4243 76 13000
## 4244 65 11000
## 4245 33 25000
## 4246 27 45000
## 4247 58 146000
## 4248 50 45000
## 4249 64 66000
## 4250 53 84000
## 4251 26 16000
## 4252 44 34000
## 4253 51 95000
## 4254 20 18000
## 4255 50 172000
## 4256 72 52000
## 4257 37 34000
## 4258 73 14000
## 4259 69 12000
## 4260 29 26000
## 4261 54 58000
## 4262 62 42000
## 4263 28 28000
## 4264 73 93000
## 4265 47 64000
## 4266 72 9000
## 4267 56 67000
## 4268 54 51000
## 4269 45 33000
## 4270 19 22000
## 4271 50 118000
## 4272 49 314000
## 4273 66 50000
## 4274 58 50000
## 4275 59 32000
## 4276 20 21000
## 4277 24 28000
## 4278 42 50000
## 4279 79 22000
## 4280 19 41000
## 4281 48 41000
## 4282 74 14000
## 4283 27 91000
## 4284 53 73000
## 4285 72 9000
## 4286 18 20000
## 4287 55 380000
## 4288 46 37000
## 4289 53 41000
## 4290 31 31000
## 4291 19 16000
## 4292 56 78000
## 4293 50 142000
## 4294 26 37000
## 4295 67 92000
## 4296 42 62000
## 4297 35 74000
## 4298 45 85000
## 4299 18 18000
## 4300 38 25000
## 4301 32 33000
## 4302 20 18000
## 4303 77 33000
## 4304 34 28000
## 4305 55 261000
## 4306 56 60000
## 4307 78 68000
## 4308 73 10000
## 4309 44 29000
## 4310 28 19000
## 4311 62 160000
## 4312 73 21000
## 4313 18 15000
## 4314 36 101000
## 4315 39 45000
## 4316 48 96000
## 4317 48 87000
## 4318 18 14000
## 4319 73 77000
## 4320 76 16000
## 4321 72 14000
## 4322 58 140000
## 4323 41 35000
## 4324 50 80000
## 4325 20 18000
## 4326 79 9000
## 4327 52 65000
## 4328 62 32000
## 4329 25 19000
## 4330 29 39000
## 4331 18 19000
## 4332 70 123000
## 4333 18 24000
## 4334 37 33000
## 4335 54 43000
## 4336 28 22000
## 4337 48 50000
## 4338 74 142000
## 4339 54 77000
## 4340 57 85000
## 4341 29 21000
## 4342 37 34000
## 4343 21 22000
## 4344 48 56000
## 4345 43 37000
## 4346 47 144000
## 4347 32 39000
## 4348 27 16000
## 4349 27 23000
## 4350 67 130000
## 4351 30 19000
## 4352 67 28000
## 4353 52 248000
## 4354 73 33000
## 4355 76 23000
## 4356 23 28000
## 4357 62 16000
## 4358 55 130000
## 4359 24 18000
## 4360 20 18000
## 4361 39 35000
## 4362 21 28000
## 4363 77 41000
## 4364 72 18000
## 4365 20 15000
## 4366 62 45000
## 4367 62 112000
## 4368 57 170000
## 4369 20 18000
## 4370 30 28000
## 4371 35 36000
## 4372 69 103000
## 4373 35 51000
## 4374 57 13000
## 4375 71 11000
## 4376 77 10000
## 4377 26 20000
## 4378 23 19000
## 4379 46 37000
## 4380 32 28000
## 4381 64 129000
## 4382 33 25000
## 4383 52 32000
## 4384 25 29000
## 4385 78 9000
## 4386 58 149000
## 4387 21 15000
## 4388 30 37000
## 4389 78 12000
## 4390 79 15000
## 4391 31 22000
## 4392 58 35000
## 4393 48 88000
## 4394 30 65000
## 4395 69 87000
## 4396 52 137000
## 4397 27 33000
## 4398 27 22000
## 4399 45 161000
## 4400 77 14000
## 4401 36 41000
## 4402 69 12000
## 4403 79 10000
## 4404 50 166000
## 4405 37 34000
## 4406 37 85000
## 4407 19 32000
## 4408 56 219000
## 4409 21 21000
## 4410 38 44000
## 4411 64 42000
## 4412 77 13000
## 4413 62 276000
## 4414 39 83000
## 4415 19 17000
## 4416 74 23000
## 4417 39 49000
## 4418 40 83000
## 4419 41 59000
## 4420 25 16000
## 4421 42 31000
## 4422 44 30000
## 4423 32 28000
## 4424 45 92000
## 4425 29 35000
## 4426 34 43000
## 4427 31 37000
## 4428 36 43000
## 4429 55 49000
## 4430 47 31000
## 4431 21 18000
## 4432 63 88000
## 4433 59 39000
## 4434 48 94000
## 4435 76 44000
## 4436 68 31000
## 4437 73 17000
## 4438 55 11000
## 4439 29 53000
## 4440 28 26000
## 4441 57 272000
## 4442 76 13000
## 4443 54 108000
## 4444 25 24000
## 4445 51 73000
## 4446 27 39000
## 4447 64 52000
## 4448 75 106000
## 4449 21 18000
## 4450 57 107000
## 4451 44 106000
## 4452 51 22000
## 4453 36 35000
## 4454 25 19000
## 4455 39 76000
## 4456 35 34000
## 4457 22 21000
## 4458 26 18000
## 4459 55 50000
## 4460 51 66000
## 4461 20 31000
## 4462 39 70000
## 4463 74 121000
## 4464 57 62000
## 4465 56 72000
## 4466 61 11000
## 4467 44 42000
## 4468 48 46000
## 4469 77 23000
## 4470 51 90000
## 4471 54 36000
## 4472 54 40000
## 4473 79 27000
## 4474 43 102000
## 4475 75 32000
## 4476 25 25000
## 4477 70 12000
## 4478 18 17000
## 4479 60 168000
## 4480 46 31000
## 4481 29 30000
## 4482 32 35000
## 4483 63 70000
## 4484 29 31000
## 4485 20 22000
## 4486 36 29000
## 4487 37 36000
## 4488 59 135000
## 4489 64 9000
## 4490 78 24000
## 4491 68 24000
## 4492 77 131000
## 4493 56 296000
## 4494 61 9000
## 4495 30 63000
## 4496 27 53000
## 4497 35 21000
## 4498 60 38000
## 4499 26 21000
## 4500 27 21000
## 4501 36 55000
## 4502 75 11000
## 4503 59 44000
## 4504 34 53000
## 4505 73 14000
## 4506 67 23000
## 4507 63 254000
## 4508 20 15000
## 4509 31 24000
## 4510 51 28000
## 4511 68 58000
## 4512 53 52000
## 4513 26 23000
## 4514 20 22000
## 4515 19 20000
## 4516 23 33000
## 4517 49 59000
## 4518 37 52000
## 4519 44 88000
## 4520 41 52000
## 4521 49 104000
## 4522 33 57000
## 4523 69 26000
## 4524 43 77000
## 4525 51 100000
## 4526 40 33000
## 4527 27 21000
## 4528 64 47000
## 4529 22 24000
## 4530 58 9000
## 4531 60 26000
## 4532 63 66000
## 4533 33 26000
## 4534 63 23000
## 4535 74 27000
## 4536 61 38000
## 4537 45 40000
## 4538 35 160000
## 4539 75 10000
## 4540 48 41000
## 4541 47 92000
## 4542 49 86000
## 4543 51 27000
## 4544 26 17000
## 4545 49 116000
## 4546 63 66000
## 4547 27 24000
## 4548 79 10000
## 4549 49 70000
## 4550 59 257000
## 4551 23 20000
## 4552 23 24000
## 4553 69 16000
## 4554 20 25000
## 4555 61 49000
## 4556 30 28000
## 4557 75 122000
## 4558 70 12000
## 4559 52 98000
## 4560 35 37000
## 4561 78 107000
## 4562 31 46000
## 4563 39 49000
## 4564 29 65000
## 4565 45 54000
## 4566 25 25000
## 4567 40 65000
## 4568 34 24000
## 4569 62 28000
## 4570 33 27000
## 4571 47 76000
## 4572 30 22000
## 4573 47 44000
## 4574 52 64000
## 4575 67 51000
## 4576 70 107000
## 4577 32 25000
## 4578 79 24000
## 4579 55 69000
## 4580 53 42000
## 4581 59 53000
## 4582 57 35000
## 4583 77 108000
## 4584 49 50000
## 4585 79 9000
## 4586 29 59000
## 4587 44 74000
## 4588 73 46000
## 4589 43 29000
## 4590 65 11000
## 4591 55 27000
## 4592 22 23000
## 4593 20 24000
## 4594 60 80000
## 4595 66 10000
## 4596 63 108000
## 4597 29 25000
## 4598 79 22000
## 4599 39 66000
## 4600 60 72000
## 4601 48 67000
## 4602 63 10000
## 4603 20 24000
## 4604 60 31000
## 4605 46 30000
## 4606 21 17000
## 4607 31 32000
## 4608 50 98000
## 4609 41 77000
## 4610 41 44000
## 4611 26 46000
## 4612 53 34000
## 4613 25 23000
## 4614 56 93000
## 4615 74 151000
## 4616 30 34000
## 4617 71 124000
## 4618 68 121000
## 4619 30 25000
## 4620 32 30000
## 4621 39 33000
## 4622 71 33000
## 4623 40 59000
## 4624 77 9000
## 4625 66 34000
## 4626 47 38000
## 4627 79 15000
## 4628 78 16000
## 4629 29 24000
## 4630 25 44000
## 4631 31 25000
## 4632 74 34000
## 4633 53 57000
## 4634 61 93000
## 4635 61 81000
## 4636 57 35000
## 4637 56 28000
## 4638 70 25000
## 4639 77 40000
## 4640 50 39000
## 4641 31 45000
## 4642 28 36000
## 4643 44 50000
## 4644 73 152000
## 4645 58 37000
## 4646 26 55000
## 4647 30 74000
## 4648 77 23000
## 4649 31 24000
## 4650 77 97000
## 4651 32 40000
## 4652 19 24000
## 4653 47 94000
## 4654 47 32000
## 4655 36 31000
## 4656 67 196000
## 4657 20 23000
## 4658 59 79000
## 4659 36 41000
## 4660 32 34000
## 4661 27 58000
## 4662 24 26000
## 4663 46 97000
## 4664 18 14000
## 4665 36 28000
## 4666 49 42000
## 4667 46 65000
## 4668 36 27000
## 4669 25 21000
## 4670 59 54000
## 4671 21 23000
## 4672 63 22000
## 4673 78 10000
## 4674 20 23000
## 4675 57 44000
## 4676 43 113000
## 4677 72 38000
## 4678 32 37000
## 4679 24 15000
## 4680 78 81000
## 4681 54 136000
## 4682 68 9000
## 4683 39 38000
## 4684 33 55000
## 4685 43 54000
## 4686 67 12000
## 4687 31 22000
## 4688 59 39000
## 4689 29 30000
## 4690 35 41000
## 4691 50 31000
## 4692 75 9000
## 4693 34 45000
## 4694 57 67000
## 4695 66 24000
## 4696 71 49000
## 4697 47 24000
## 4698 69 83000
## 4699 47 48000
## 4700 43 81000
## 4701 33 102000
## 4702 18 18000
## 4703 29 55000
## 4704 18 15000
## 4705 36 32000
## 4706 29 39000
## 4707 77 19000
## 4708 65 31000
## 4709 19 24000
## 4710 54 59000
## 4711 55 133000
## 4712 60 85000
## 4713 64 184000
## 4714 47 185000
## 4715 22 14000
## 4716 56 51000
## 4717 63 45000
## 4718 79 46000
## 4719 29 21000
## 4720 59 90000
## 4721 40 39000
## 4722 63 153000
## 4723 45 31000
## 4724 53 35000
## 4725 61 42000
## 4726 78 23000
## 4727 36 46000
## 4728 64 68000
## 4729 65 102000
## 4730 26 34000
## 4731 24 26000
## 4732 58 41000
## 4733 28 19000
## 4734 69 100000
## 4735 75 29000
## 4736 58 113000
## 4737 51 78000
## 4738 74 79000
## 4739 28 61000
## 4740 62 224000
## 4741 33 22000
## 4742 47 31000
## 4743 51 138000
## 4744 52 104000
## 4745 38 41000
## 4746 22 37000
## 4747 42 39000
## 4748 34 40000
## 4749 35 30000
## 4750 23 42000
## 4751 46 42000
## 4752 34 23000
## 4753 35 103000
## 4754 55 41000
## 4755 33 48000
## 4756 41 49000
## 4757 68 20000
## 4758 35 30000
## 4759 63 19000
## 4760 57 236000
## 4761 69 67000
## 4762 31 25000
## 4763 63 14000
## 4764 36 45000
## 4765 24 30000
## 4766 24 19000
## 4767 24 24000
## 4768 48 165000
## 4769 47 51000
## 4770 63 47000
## 4771 60 26000
## 4772 42 20000
## 4773 43 60000
## 4774 67 12000
## 4775 27 69000
## 4776 51 39000
## 4777 67 40000
## 4778 75 52000
## 4779 69 67000
## 4780 63 87000
## 4781 74 9000
## 4782 68 86000
## 4783 56 141000
## 4784 52 121000
## 4785 28 86000
## 4786 46 68000
## 4787 31 40000
## 4788 27 23000
## 4789 30 25000
## 4790 74 11000
## 4791 79 32000
## 4792 51 315000
## 4793 27 33000
## 4794 64 63000
## 4795 38 31000
## 4796 59 31000
## 4797 74 50000
## 4798 18 30000
## 4799 75 30000
## 4800 26 20000
## 4801 75 106000
## 4802 39 69000
## 4803 47 81000
## 4804 41 83000
## 4805 30 14000
## 4806 55 185000
## 4807 51 84000
## 4808 28 21000
## 4809 23 35000
## 4810 50 119000
## 4811 37 29000
## 4812 68 59000
## 4813 67 52000
## 4814 21 25000
## 4815 28 34000
## 4816 58 59000
## 4817 54 145000
## 4818 20 25000
## 4819 55 30000
## 4820 28 19000
## 4821 21 50000
## 4822 48 23000
## 4823 79 22000
## 4824 22 45000
## 4825 78 23000
## 4826 40 37000
## 4827 35 28000
## 4828 77 79000
## 4829 33 23000
## 4830 49 60000
## 4831 32 52000
## 4832 25 24000
## 4833 71 12000
## 4834 36 49000
## 4835 55 162000
## 4836 57 53000
## 4837 51 49000
## 4838 27 22000
## 4839 52 212000
## 4840 64 23000
## 4841 43 33000
## 4842 64 113000
## 4843 32 26000
## 4844 47 22000
## 4845 41 25000
## 4846 29 21000
## 4847 39 64000
## 4848 73 113000
## 4849 37 29000
## 4850 44 79000
## 4851 22 21000
## 4852 79 21000
## 4853 55 38000
## 4854 57 20000
## 4855 53 80000
## 4856 73 26000
## 4857 47 122000
## 4858 38 93000
## 4859 55 56000
## 4860 73 18000
## 4861 18 15000
## 4862 27 25000
## 4863 73 52000
## 4864 30 54000
## 4865 22 36000
## 4866 63 44000
## 4867 54 63000
## 4868 32 21000
## 4869 19 18000
## 4870 29 30000
## 4871 30 30000
## 4872 21 14000
## 4873 27 21000
## 4874 21 17000
## 4875 46 95000
## 4876 33 154000
## 4877 66 63000
## 4878 45 46000
## 4879 62 116000
## 4880 78 9000
## 4881 51 72000
## 4882 33 55000
## 4883 25 18000
## 4884 59 26000
## 4885 18 16000
## 4886 21 33000
## 4887 68 88000
## 4888 32 30000
## 4889 65 93000
## 4890 73 28000
## 4891 60 36000
## 4892 50 89000
## 4893 58 71000
## 4894 56 79000
## 4895 30 50000
## 4896 25 52000
## 4897 71 21000
## 4898 45 58000
## 4899 41 104000
## 4900 42 100000
## 4901 79 9000
## 4902 32 30000
## 4903 41 37000
## 4904 73 34000
## 4905 21 25000
## 4906 70 57000
## 4907 56 106000
## 4908 25 38000
## 4909 63 130000
## 4910 58 80000
## 4911 63 33000
## 4912 44 62000
## 4913 59 62000
## 4914 50 45000
## 4915 43 48000
## 4916 66 144000
## 4917 58 437000
## 4918 59 153000
## 4919 44 71000
## 4920 71 96000
## 4921 64 19000
## 4922 21 22000
## 4923 21 13000
## 4924 58 77000
## 4925 34 21000
## 4926 76 31000
## 4927 75 14000
## 4928 69 9000
## 4929 20 31000
## 4930 26 29000
## 4931 46 63000
## 4932 27 33000
## 4933 35 34000
## 4934 65 14000
## 4935 31 93000
## 4936 37 40000
## 4937 24 20000
## 4938 63 170000
## 4939 33 27000
## 4940 35 23000
## 4941 29 31000
## 4942 72 19000
## 4943 67 74000
## 4944 31 59000
## 4945 75 14000
## 4946 39 60000
## 4947 31 62000
## 4948 56 22000
## 4949 38 88000
## 4950 56 575000
## 4951 49 97000
## 4952 38 88000
## 4953 48 24000
## 4954 39 80000
## 4955 57 31000
## 4956 24 22000
## 4957 54 61000
## 4958 34 29000
## 4959 68 53000
## 4960 57 288000
## 4961 53 77000
## 4962 40 61000
## 4963 23 29000
## 4964 36 46000
## 4965 54 40000
## 4966 73 9000
## 4967 25 16000
## 4968 23 15000
## 4969 26 33000
## 4970 49 56000
## 4971 79 9000
## 4972 71 25000
## 4973 47 45000
## 4974 30 25000
## 4975 37 30000
## 4976 28 18000
## 4977 53 73000
## 4978 41 18000
## 4979 22 17000
## 4980 71 34000
## 4981 33 30000
## 4982 59 45000
## 4983 61 55000
## 4984 58 42000
## 4985 30 30000
## 4986 30 71000
## 4987 22 16000
## 4988 49 25000
## 4989 61 17000
## 4990 79 15000
## 4991 26 89000
## 4992 59 75000
## 4993 55 49000
## 4994 56 60000
## 4995 35 53000
## 4996 68 196000
## 4997 51 83000
## 4998 75 108000
## 4999 47 189000
## 5000 41 77000
# OR
varname <- c("Age", "HHIncome")
CustomerData_select <- select(CustomerData, varname)
# OR
CustomerData_select <- CustomerData[,varname]
3.4.3 Dropping columns
CustomerData_select2 <- select(CustomerData, -Age, -HHIncome)
# OR
varname <- c("Age", "HHIncome")
CustomerData_select2 <- CustomerData[,!names(CustomerData) %in% varname]
names(CustomerData_select2)
## [1] "CustomerID" "Region" "TownSize"
## [4] "Gender" "EducationYears" "JobCategory"
## [7] "UnionMember" "EmploymentLength" "Retired"
## [10] "DebtToIncomeRatio" "CreditDebt" "OtherDebt"
## [13] "LoanDefault" "MaritalStatus" "HouseholdSize"
## [16] "NumberPets" "NumberCats" "NumberDogs"
## [19] "NumberBirds" "HomeOwner" "CarsOwned"
## [22] "CarOwnership" "CarBrand" "CarValue"
## [25] "CommuteTime" "PoliticalPartyMem" "Votes"
## [28] "CreditCard" "CardTenure" "CardItemsMonthly"
## [31] "CardSpendMonth" "ActiveLifestyle" "PhoneCoTenure"
## [34] "VoiceLastMonth" "VoiceOverTenure" "EquipmentRental"
## [37] "EquipmentLastMonth" "EquipmentOverTenure" "CallingCard"
## [40] "WirelessData" "DataLastMonth" "DataOverTenure"
## [43] "Multiline" "VM" "Pager"
## [46] "Internet" "CallerID" "CallWait"
## [49] "CallForward" "ThreeWayCalling" "EBilling"
## [52] "TVWatchingHours" "OwnsPC" "OwnsMobileDevice"
## [55] "OwnsGameSystem" "OwnsFax" "NewsSubscriber"
3.4.4 Reordering columns
CustomerData_order2 <- select(CustomerData, Age, HHIncome, everything())
names(CustomerData_order2)
## [1] "Age" "HHIncome" "CustomerID"
## [4] "Region" "TownSize" "Gender"
## [7] "EducationYears" "JobCategory" "UnionMember"
## [10] "EmploymentLength" "Retired" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber"
3.4.5 Renaming variables
CustomerData_rename<- rename(CustomerData, Education=EducationYears, Income=HHIncome)
CustomerData_rename1<-select(CustomerData_rename, Education, Income, everything())
names(CustomerData_rename1)
## [1] "Education" "Income" "CustomerID"
## [4] "Region" "TownSize" "Gender"
## [7] "Age" "JobCategory" "UnionMember"
## [10] "EmploymentLength" "Retired" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber"
3.4.6 Creating new variable
There are multiple ways to create new columns. Using mutate is the simplest while other methods might require multiple steps
CustomerData_newvar<- mutate(CustomerData, Age_Income_Ratio=HHIncome/Age)
names(CustomerData_newvar)
## [1] "CustomerID" "Region" "TownSize"
## [4] "Gender" "Age" "EducationYears"
## [7] "JobCategory" "UnionMember" "EmploymentLength"
## [10] "Retired" "HHIncome" "DebtToIncomeRatio"
## [13] "CreditDebt" "OtherDebt" "LoanDefault"
## [16] "MaritalStatus" "HouseholdSize" "NumberPets"
## [19] "NumberCats" "NumberDogs" "NumberBirds"
## [22] "HomeOwner" "CarsOwned" "CarOwnership"
## [25] "CarBrand" "CarValue" "CommuteTime"
## [28] "PoliticalPartyMem" "Votes" "CreditCard"
## [31] "CardTenure" "CardItemsMonthly" "CardSpendMonth"
## [34] "ActiveLifestyle" "PhoneCoTenure" "VoiceLastMonth"
## [37] "VoiceOverTenure" "EquipmentRental" "EquipmentLastMonth"
## [40] "EquipmentOverTenure" "CallingCard" "WirelessData"
## [43] "DataLastMonth" "DataOverTenure" "Multiline"
## [46] "VM" "Pager" "Internet"
## [49] "CallerID" "CallWait" "CallForward"
## [52] "ThreeWayCalling" "EBilling" "TVWatchingHours"
## [55] "OwnsPC" "OwnsMobileDevice" "OwnsGameSystem"
## [58] "OwnsFax" "NewsSubscriber" "Age_Income_Ratio"
3.5 Missing data analysis 3.5.1 Getting the number of missing values in the dataset
sum(is.na(CustomerData))
## [1] 76
3.5.2 Getting the missing values for each variable
colSums(is.na(CustomerData))
## CustomerID Region TownSize Gender
## 0 0 0 0
## Age EducationYears JobCategory UnionMember
## 0 0 0 0
## EmploymentLength Retired HHIncome DebtToIncomeRatio
## 0 0 0 0
## CreditDebt OtherDebt LoanDefault MaritalStatus
## 0 0 0 0
## HouseholdSize NumberPets NumberCats NumberDogs
## 8 6 7 8
## NumberBirds HomeOwner CarsOwned CarOwnership
## 34 13 0 0
## CarBrand CarValue CommuteTime PoliticalPartyMem
## 0 0 0 0
## Votes CreditCard CardTenure CardItemsMonthly
## 0 0 0 0
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 0 0 0 0
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 0 0 0 0
## CallingCard WirelessData DataLastMonth DataOverTenure
## 0 0 0 0
## Multiline VM Pager Internet
## 0 0 0 0
## CallerID CallWait CallForward ThreeWayCalling
## 0 0 0 0
## EBilling TVWatchingHours OwnsPC OwnsMobileDevice
## 0 0 0 0
## OwnsGameSystem OwnsFax NewsSubscriber
## 0 0 0
3.5.3 Removing entries with missing values
CustomerData.Clean<- na.omit(CustomerData)
sum(is.na(CustomerData.Clean))
## [1] 0
3.5.4 Removing entries with missing values for a specific variable
CustomerData.Clean1<-CustomerData[!is.na(CustomerData$NumberPets),]
colSums(is.na(CustomerData.Clean1))
## CustomerID Region TownSize Gender
## 0 0 0 0
## Age EducationYears JobCategory UnionMember
## 0 0 0 0
## EmploymentLength Retired HHIncome DebtToIncomeRatio
## 0 0 0 0
## CreditDebt OtherDebt LoanDefault MaritalStatus
## 0 0 0 0
## HouseholdSize NumberPets NumberCats NumberDogs
## 8 0 7 8
## NumberBirds HomeOwner CarsOwned CarOwnership
## 33 12 0 0
## CarBrand CarValue CommuteTime PoliticalPartyMem
## 0 0 0 0
## Votes CreditCard CardTenure CardItemsMonthly
## 0 0 0 0
## CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 0 0 0 0
## VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 0 0 0 0
## CallingCard WirelessData DataLastMonth DataOverTenure
## 0 0 0 0
## Multiline VM Pager Internet
## 0 0 0 0
## CallerID CallWait CallForward ThreeWayCalling
## 0 0 0 0
## EBilling TVWatchingHours OwnsPC OwnsMobileDevice
## 0 0 0 0
## OwnsGameSystem OwnsFax NewsSubscriber
## 0 0 0