EDA Using R

Packages Required

  1. tidyverse : This package consists of 6 core packages out of which the below 3 are most important for this project:
  • ggplot2: Used for creating powerful visualizations
  • dplyr: Used for data manipulation
  • tidyr: Used for data modifications
  1. rpart, rpart.plot and ROCR : These packages are used for building classification and regression models using decision trees. Further, we can visualize the tree structure and evaluate the performance of the models

  2. forecast, tseries and sarima : These packages are used to model the time-series data including the seasonal component in the series if any

library(tidyverse) #used for data manipulation
library(rmarkdown) #used for formatting the markdown file

library(sqldf) #using SQL commands in R

Data Preparation

CustomerData<-read.csv("data/CustomerData.csv",header=TRUE,sep=",")

1.1 Take a look into the data

head(CustomerData)
##        CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 1 3964-QJWTRG-NPN      1        2 Female  20             15 Professional
## 2 0648-AIPJSP-UVM      5        5   Male  22             17        Sales
## 3 5195-TLUDJE-HVO      3        4 Female  67             14        Sales
## 4 4459-VLPQUH-3OL      4        3   Male  23             16        Sales
## 5 8158-SMTQFB-CNO      2        2   Male  26             16        Sales
## 6 9662-FUSYIM-1IV      4        4   Male  64             17      Service
##   UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1         Yes                0      No    31000              11.1   1.200909
## 2          No                0      No    15000              18.6   1.222020
## 3          No               16      No    35000               9.9   0.928620
## 4          No                0      No    20000               5.7   0.022800
## 5          No                1      No    23000               1.7   0.214659
## 6          No               22      No   107000               5.6   1.060584
##   OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1  2.240091         Yes     Unmarried             3          0          0
## 2  1.567980         Yes     Unmarried             2          6          0
## 3  2.536380          No       Married             3          3          2
## 4  1.117200         Yes       Married             5          0          0
## 5  0.176341          No       Married             4          0          0
## 6  4.931416          No     Unmarried             1         11          1
##   NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1          0           0         0         2          Own Domestic    14300
## 2          0           0         1         2          Own  Foreign     6800
## 3          1           0         1         3          Own  Foreign    18800
## 4          0           0         1         3          Own  Foreign     8700
## 5          0           0         0         1        Lease  Foreign    10600
## 6          1           0         1         0           -1       -1    -1000
##   CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1          22               Yes   Yes       Mast          2                5
## 2          29               Yes    No       Visa          4                5
## 3          24               Yes    No       Visa         35                9
## 4          38                No    No       Visa          5               17
## 5          32                No    No       Disc          8                8
## 6          23                No    No       Visa         18               11
##   CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1          816.6              No             5          19.50           34.40
## 2          426.0             Yes            39          26.70          330.60
## 3         1842.2              No            65          85.20         1858.35
## 4         3409.9             Yes            36          18.00          199.45
## 5         2551.0             Yes            21           9.15           74.10
## 6         2282.7              No            28          24.30          264.90
##   EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1             Yes              29.50              126.10         Yes
## 2             Yes              54.85             1975.00         Yes
## 3              No               0.00                0.00         Yes
## 4              No               0.00                0.00         Yes
## 5              No               0.00                0.00         Yes
## 6             Yes              35.50              970.95         Yes
##   WirelessData DataLastMonth DataOverTenure Multiline  VM Pager Internet
## 1           No          0.00           0.00       Yes Yes   Yes       No
## 2          Yes         45.65        1683.55       Yes Yes   Yes        4
## 3           No          0.00           0.00       Yes  No    No       No
## 4           No          0.00           0.00       Yes  No    No        2
## 5          Yes         19.05         410.80        No Yes    No        3
## 6           No          0.00           0.00        No  No   Yes       No
##   CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1       No      Yes         Yes             Yes       No              13     No
## 2      Yes       No         Yes              No      Yes              18    Yes
## 3       No       No          No              No       No              21     No
## 4       No       No          No              No      Yes              26    Yes
## 5      Yes      Yes         Yes             Yes       No              27    Yes
## 6      Yes      Yes         Yes             Yes       No              21     No
##   OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1              Yes            Yes      No             No
## 2              Yes            Yes     Yes            Yes
## 3               No             No      No            Yes
## 4              Yes            Yes      No            Yes
## 5               No            Yes      No             No
## 6               No             No      No             No

1.2 Size of the dataset 1.2.1 How larger is my dataset? How many rows? How many columns?

dim(CustomerData)
## [1] 5000   59

1.2.2 How many columns?

ncol(CustomerData)
## [1] 59

1.2.3 How many rows?

nrow(CustomerData)
## [1] 5000

1.3 Glimpse at the variables

1.3.1 What is the name of my columns?

names(CustomerData)
##  [1] "CustomerID"          "Region"              "TownSize"           
##  [4] "Gender"              "Age"                 "EducationYears"     
##  [7] "JobCategory"         "UnionMember"         "EmploymentLength"   
## [10] "Retired"             "HHIncome"            "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"
#OR

colnames(CustomerData)
##  [1] "CustomerID"          "Region"              "TownSize"           
##  [4] "Gender"              "Age"                 "EducationYears"     
##  [7] "JobCategory"         "UnionMember"         "EmploymentLength"   
## [10] "Retired"             "HHIncome"            "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"

1.3.2 What is the structure of the data

str(CustomerData)
## 'data.frame':    5000 obs. of  59 variables:
##  $ CustomerID         : Factor w/ 5000 levels "0002-GTOKLU-YVY",..: 1980 347 2606 2221 4037 4826 3670 4454 4531 1758 ...
##  $ Region             : int  1 5 3 4 2 4 2 3 2 2 ...
##  $ TownSize           : Factor w/ 6 levels "#NULL!","1","2",..: 3 6 5 4 3 5 6 5 4 3 ...
##  $ Gender             : Factor w/ 3 levels "","Female","Male": 2 3 2 3 3 3 2 2 2 3 ...
##  $ Age                : int  20 22 67 23 26 64 52 44 66 47 ...
##  $ EducationYears     : int  15 17 14 16 16 17 14 16 12 11 ...
##  $ JobCategory        : Factor w/ 7 levels "","Agriculture",..: 5 6 6 6 6 7 5 5 5 4 ...
##  $ UnionMember        : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 1 1 1 ...
##  $ EmploymentLength   : int  0 0 16 0 1 22 10 11 15 19 ...
##  $ Retired            : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 2 1 ...
##  $ HHIncome           : num  31000 15000 35000 20000 23000 107000 77000 97000 16000 84000 ...
##  $ DebtToIncomeRatio  : num  11.1 18.6 9.9 5.7 1.7 5.6 1.9 14.4 2.6 4.1 ...
##  $ CreditDebt         : num  1.2009 1.222 0.9286 0.0228 0.2147 ...
##  $ OtherDebt          : num  2.24 1.568 2.536 1.117 0.176 ...
##  $ LoanDefault        : Factor w/ 2 levels "No","Yes": 2 2 1 2 1 1 1 1 1 1 ...
##  $ MaritalStatus      : Factor w/ 2 levels "Married","Unmarried": 2 2 1 1 1 2 2 1 2 2 ...
##  $ HouseholdSize      : int  3 2 3 5 4 1 1 2 1 2 ...
##  $ NumberPets         : int  0 6 3 0 0 11 2 10 1 1 ...
##  $ NumberCats         : int  0 0 2 0 0 1 0 0 1 1 ...
##  $ NumberDogs         : int  0 0 1 0 0 1 2 2 0 0 ...
##  $ NumberBirds        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ HomeOwner          : int  0 1 1 1 0 1 0 1 1 1 ...
##  $ CarsOwned          : int  2 2 3 3 1 0 2 1 1 4 ...
##  $ CarOwnership       : Factor w/ 3 levels "-1","Lease","Own": 3 3 3 3 2 1 3 3 3 3 ...
##  $ CarBrand           : Factor w/ 3 levels "-1","Domestic",..: 2 3 3 3 3 1 2 2 3 2 ...
##  $ CarValue           : num  14300 6800 18800 8700 10600 -1000 25600 55500 8600 41000 ...
##  $ CommuteTime        : Factor w/ 42 levels "#NULL!","10",..: 14 21 16 30 24 15 24 23 17 21 ...
##  $ PoliticalPartyMem  : Factor w/ 2 levels "No","Yes": 2 2 2 1 1 1 1 1 2 2 ...
##  $ Votes              : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 2 2 2 ...
##  $ CreditCard         : Factor w/ 5 levels "AMEX","Disc",..: 3 5 5 5 2 5 4 1 3 4 ...
##  $ CardTenure         : int  2 4 35 5 8 18 3 25 26 2 ...
##  $ CardItemsMonthly   : int  5 5 9 17 8 11 20 6 12 11 ...
##  $ CardSpendMonth     : num  817 426 1842 3410 2551 ...
##  $ ActiveLifestyle    : Factor w/ 2 levels "No","Yes": 1 2 1 2 2 1 1 1 2 2 ...
##  $ PhoneCoTenure      : int  5 39 65 36 21 28 15 46 53 3 ...
##  $ VoiceLastMonth     : num  19.5 26.7 85.2 18 9.15 ...
##  $ VoiceOverTenure    : Factor w/ 4438 levels "#NULL!","0.90",..: 2414 2366 1232 1367 3889 1923 2862 3524 139 1389 ...
##  $ EquipmentRental    : Factor w/ 2 levels "No","Yes": 2 2 1 1 1 2 1 1 1 1 ...
##  $ EquipmentLastMonth : num  29.5 54.9 0 0 0 ...
##  $ EquipmentOverTenure: num  126 1975 0 0 0 ...
##  $ CallingCard        : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 1 2 2 1 ...
##  $ WirelessData       : Factor w/ 2 levels "No","Yes": 1 2 1 1 2 1 1 1 1 1 ...
##  $ DataLastMonth      : num  0 45.6 0 0 19.1 ...
##  $ DataOverTenure     : num  0 1684 0 0 411 ...
##  $ Multiline          : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 1 1 2 2 1 ...
##  $ VM                 : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 1 ...
##  $ Pager              : Factor w/ 2 levels "No","Yes": 2 2 1 1 1 2 1 1 1 1 ...
##  $ Internet           : Factor w/ 5 levels "2","3","4","No",..: 4 3 4 1 2 4 5 4 4 4 ...
##  $ CallerID           : Factor w/ 2 levels "No","Yes": 1 2 1 1 2 2 1 2 1 1 ...
##  $ CallWait           : Factor w/ 2 levels "No","Yes": 2 1 1 1 2 2 1 2 1 1 ...
##  $ CallForward        : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 2 2 2 1 1 ...
##  $ ThreeWayCalling    : Factor w/ 2 levels "No","Yes": 2 1 1 1 2 2 1 2 1 1 ...
##  $ EBilling           : Factor w/ 2 levels "No","Yes": 1 2 1 2 1 1 1 1 1 1 ...
##  $ TVWatchingHours    : int  13 18 21 26 27 21 19 13 25 21 ...
##  $ OwnsPC             : Factor w/ 2 levels "No","Yes": 1 2 1 2 2 1 2 1 1 1 ...
##  $ OwnsMobileDevice   : Factor w/ 2 levels "No","Yes": 2 2 1 2 1 1 2 1 1 1 ...
##  $ OwnsGameSystem     : Factor w/ 2 levels "No","Yes": 2 2 1 2 2 1 1 1 1 1 ...
##  $ OwnsFax            : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 1 ...
##  $ NewsSubscriber     : Factor w/ 2 levels "No","Yes": 1 2 2 2 1 1 1 2 1 1 ...

1.3.3 How to get the format a column

class(CustomerData[,1])
## [1] "factor"

1.4 Summary statistics of the dataset 1.4.1 Getting the summary of the dataset

summary(CustomerData)
##            CustomerID       Region        TownSize       Gender    
##  0002-GTOKLU-YVY:   1   Min.   :1.000   #NULL!:   2         :  33  
##  0003-RLTRGE-IW2:   1   1st Qu.:2.000   1     :1436   Female:2494  
##  0003-UTGKPR-PRU:   1   Median :3.000   2     :1048   Male  :2473  
##  0008-ZIQQOT-SGB:   1   Mean   :3.001   3     : 907                
##  0012-CIVYLF-839:   1   3rd Qu.:4.000   4     : 857                
##  0014-DOIOFX-LXB:   1   Max.   :5.000   5     : 750                
##  (Other)        :4994                                              
##       Age        EducationYears        JobCategory   UnionMember
##  Min.   :18.00   Min.   : 6.00               :  15   No :4244   
##  1st Qu.:31.00   1st Qu.:12.00   Agriculture : 212   Yes: 756   
##  Median :47.00   Median :14.00   Crafts      : 452              
##  Mean   :47.03   Mean   :14.54   Labor       : 686              
##  3rd Qu.:62.00   3rd Qu.:17.00   Professional:1380              
##  Max.   :79.00   Max.   :23.00   Sales       :1635              
##                                  Service     : 620              
##  EmploymentLength Retired       HHIncome       DebtToIncomeRatio
##  Min.   : 0.00    No :4262   Min.   :   9000   Min.   : 0.000   
##  1st Qu.: 2.00    Yes: 738   1st Qu.:  24000   1st Qu.: 5.100   
##  Median : 7.00               Median :  38000   Median : 8.800   
##  Mean   : 9.73               Mean   :  54760   Mean   : 9.954   
##  3rd Qu.:15.00               3rd Qu.:  67000   3rd Qu.:13.600   
##  Max.   :52.00               Max.   :1073000   Max.   :43.100   
##                                                                 
##    CreditDebt         OtherDebt        LoanDefault   MaritalStatus 
##  Min.   :  0.0000   Min.   :  0.0000   No :3829    Married  :2401  
##  1st Qu.:  0.3855   1st Qu.:  0.9803   Yes:1171    Unmarried:2599  
##  Median :  0.9264   Median :  2.0985                               
##  Mean   :  1.8573   Mean   :  3.6545                               
##  3rd Qu.:  2.0638   3rd Qu.:  4.3148                               
##  Max.   :109.0726   Max.   :141.4591                               
##                                                                    
##  HouseholdSize     NumberPets       NumberCats       NumberDogs    
##  Min.   :1.000   Min.   : 0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.000   1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :2.000   Median : 2.000   Median :0.0000   Median :0.0000  
##  Mean   :2.202   Mean   : 3.067   Mean   :0.5003   Mean   :0.3928  
##  3rd Qu.:3.000   3rd Qu.: 5.000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :9.000   Max.   :21.000   Max.   :6.0000   Max.   :7.0000  
##  NA's   :8       NA's   :6        NA's   :7        NA's   :8       
##   NumberBirds       HomeOwner        CarsOwned     CarOwnership     CarBrand   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   -1   : 497   -1      : 497  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.000   Lease: 799   Domestic:2287  
##  Median :0.0000   Median :1.0000   Median :2.000   Own  :3704   Foreign :2216  
##  Mean   :0.1112   Mean   :0.6296   Mean   :2.131                               
##  3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:3.000                               
##  Max.   :5.0000   Max.   :1.0000   Max.   :8.000                               
##  NA's   :34       NA's   :13                                                   
##     CarValue      CommuteTime   PoliticalPartyMem Votes      CreditCard 
##  Min.   :-1000   24     : 336   No :3093          No :2410   AMEX: 986  
##  1st Qu.: 9200   23     : 335   Yes:1907          Yes:2590   Disc:1344  
##  Median :17000   27     : 331                                Mast:1200  
##  Mean   :23233   25     : 330                                Othe: 223  
##  3rd Qu.:31100   22     : 325                                Visa:1247  
##  Max.   :99600   26     : 311                                           
##                  (Other):3032                                           
##    CardTenure    CardItemsMonthly CardSpendMonth  ActiveLifestyle
##  Min.   : 0.00   Min.   : 0.00    Min.   :    0   No :2670       
##  1st Qu.: 6.00   1st Qu.: 8.00    1st Qu.: 1834   Yes:2330       
##  Median :14.00   Median :10.00    Median : 2764                  
##  Mean   :16.66   Mean   :10.18    Mean   : 3372                  
##  3rd Qu.:26.00   3rd Qu.:12.00    3rd Qu.: 4185                  
##  Max.   :40.00   Max.   :23.00    Max.   :39264                  
##                                                                  
##  PhoneCoTenure  VoiceLastMonth   VoiceOverTenure EquipmentRental
##  Min.   : 0.0   Min.   :  2.70   2.05   :   8    No :3296       
##  1st Qu.:18.0   1st Qu.: 17.10   2.60   :   6    Yes:1704       
##  Median :38.0   Median : 28.65   14.30  :   5                   
##  Mean   :38.2   Mean   : 40.41   16.45  :   5                   
##  3rd Qu.:59.0   3rd Qu.: 49.65   1.40   :   4                   
##  Max.   :72.0   Max.   :539.55   1.85   :   4                   
##                                  (Other):4968                   
##  EquipmentLastMonth EquipmentOverTenure CallingCard WirelessData
##  Min.   :  0.00     Min.   :   0.0      No :1419    No :3656    
##  1st Qu.:  0.00     1st Qu.:   0.0      Yes:3581    Yes:1344    
##  Median :  0.00     Median :   0.0                              
##  Mean   : 12.99     Mean   : 470.2                              
##  3rd Qu.: 30.80     3rd Qu.: 510.2                              
##  Max.   :106.30     Max.   :6525.3                              
##                                                                 
##  DataLastMonth    DataOverTenure     Multiline    VM       Pager     
##  Min.   :  0.00   Min.   :    0.00   No :2558   No :3485   No :3782  
##  1st Qu.:  0.00   1st Qu.:    0.00   Yes:2442   Yes:1515   Yes:1218  
##  Median :  0.00   Median :    0.00                                   
##  Mean   : 10.70   Mean   :  421.99                                   
##  3rd Qu.: 20.96   3rd Qu.:   89.96                                   
##  Max.   :186.25   Max.   :12858.65                                   
##                                                                      
##  Internet   CallerID   CallWait   CallForward ThreeWayCalling EBilling  
##  2  : 545   No :2624   No :2605   No :2597    No :2610        No :3257  
##  3  : 598   Yes:2376   Yes:2395   Yes:2403    Yes:2390        Yes:1743  
##  4  : 585                                                               
##  No :2498                                                               
##  Yes: 774                                                               
##                                                                         
##                                                                         
##  TVWatchingHours OwnsPC     OwnsMobileDevice OwnsGameSystem OwnsFax   
##  Min.   : 0.00   No :1836   No :2604         No :2626       No :4106  
##  1st Qu.:17.00   Yes:3164   Yes:2396         Yes:2374       Yes: 894  
##  Median :20.00                                                        
##  Mean   :19.64                                                        
##  3rd Qu.:23.00                                                        
##  Max.   :36.00                                                        
##                                                                       
##  NewsSubscriber
##  No :2637      
##  Yes:2363      
##                
##                
##                
##                
## 

1.4.2 Getting some other statistics

#Standard Deviation
sd(CustomerData$Age)
## [1] 17.77034
#Quantiles
quantile(CustomerData$Age)
##   0%  25%  50%  75% 100% 
##   18   31   47   62   79

1.4.3 Getting statistics for multiple columns

apply(CustomerData[,c(5,6,11)], 2, sd) 
##            Age EducationYears       HHIncome 
##      17.770338       3.281083   55377.511154

1.4.4 Summarizing the dataset to aggregate data and calculate various statistical values

#Mean
aggregate(.~Gender, CustomerData, mean) 
##   Gender CustomerID   Region TownSize      Age EducationYears JobCategory
## 1          2626.625 3.375000 4.218750 45.09375       13.62500    5.281250
## 2 Female   2516.975 2.980551 3.690438 46.92788       14.55916    5.120340
## 3   Male   2487.859 3.017213 3.670902 47.26066       14.53975    5.110246
##   UnionMember EmploymentLength  Retired HHIncome DebtToIncomeRatio CreditDebt
## 1    1.062500         9.531250 1.125000 43562.50         13.734375   1.684107
## 2    1.151135         9.643031 1.140600 54381.28          9.967990   1.818785
## 3    1.152869         9.900000 1.155738 55605.33          9.892664   1.910504
##   OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1  4.623205    1.281250      1.500000      2.375000   1.906250  0.4375000
## 2  3.546985    1.232172      1.518639      2.243922   3.175446  0.5129660
## 3  3.766094    1.233607      1.520492      2.155738   2.965574  0.4905738
##   NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1  0.2500000  0.00000000 0.6250000  2.562500     2.750000 2.375000 20012.50
## 2  0.3829011  0.12520259 0.6333063  2.139789     2.645867 2.352107 23115.60
## 3  0.4040984  0.09959016 0.6290984  2.108607     2.632377 2.333197 23461.84
##   CommuteTime PoliticalPartyMem    Votes CreditCard CardTenure CardItemsMonthly
## 1    17.68750          1.312500 1.500000   3.125000   14.65625          9.25000
## 2    17.42828          1.384117 1.500000   2.985008   16.46272         10.12763
## 3    17.34836          1.379918 1.536066   2.768852   16.93975         10.23975
##   CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1       2393.588        1.593750      37.18750       41.13281        1927.469
## 2       3224.937        1.475284      38.03566       39.37202        2212.532
## 3       3537.625        1.453279      38.43402       41.54717        2214.435
##   EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1        1.343750           12.19219            390.2406    1.625000
## 2        1.346840           13.09801            467.7458    1.711102
## 3        1.333607           12.88115            473.7890    1.720902
##   WirelessData DataLastMonth DataOverTenure Multiline       VM    Pager
## 1     1.187500       6.97500       240.4828  1.343750 1.250000 1.125000
## 2     1.267018      10.38349       409.6659  1.481361 1.301053 1.239465
## 3     1.271721      11.11086       439.5887  1.498361 1.305328 1.249590
##   Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 1 3.687500 1.406250 1.531250    1.406250        1.468750 1.281250
## 2 3.465559 1.456240 1.465559    1.472853        1.468801 1.359400
## 3 3.466393 1.496311 1.490984    1.489754        1.485246 1.338115
##   TVWatchingHours   OwnsPC OwnsMobileDevice OwnsGameSystem  OwnsFax
## 1        20.78125 1.468750         1.500000       1.437500 1.156250
## 2        19.61062 1.631280         1.469206       1.476094 1.182739
## 3        19.65574 1.636885         1.488934       1.474180 1.175000
##   NewsSubscriber
## 1       1.437500
## 2       1.461507
## 3       1.484426
#Std. Deviation
aggregate(.~Gender, CustomerData, sd)
##   Gender CustomerID   Region TownSize      Age EducationYears JobCategory
## 1          1313.017 1.263635 1.601096 17.70431       3.616717    1.250403
## 2 Female   1434.558 1.425500 1.429819 17.74132       3.294513    1.304984
## 3   Male   1452.206 1.416137 1.420972 17.80884       3.269634    1.336611
##   UnionMember EmploymentLength   Retired HHIncome DebtToIncomeRatio CreditDebt
## 1   0.2459347        10.658888 0.3360108 33944.87          8.249051   2.790234
## 2   0.3582525         9.653597 0.3476786 50498.87          6.491034   2.906208
## 3   0.3599348         9.752400 0.3626808 60531.37          6.292995   3.899551
##   OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1  6.106568   0.4568034     0.5080005      1.601411   2.998488  0.8007053
## 2  4.553509   0.4223036     0.4997537      1.438252   3.430769  0.8791106
## 3  6.155443   0.4232115     0.4996823      1.336837   3.400981  0.8440961
##   NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership  CarBrand CarValue
## 1  0.5679618   0.0000000 0.4918694  1.543718    0.5679618 0.6090712 16495.66
## 2  0.7944779   0.5266749 0.4819995  1.303665    0.6513022 0.6508449 21028.28
## 3  0.8006657   0.4682628 0.4831452  1.313852    0.6633504 0.6555378 21631.71
##   CommuteTime PoliticalPartyMem     Votes CreditCard CardTenure
## 1    5.844421         0.4709291 0.5080005   1.385408   10.50840
## 2    6.001564         0.4864843 0.5001013   1.431937   11.90170
## 3    5.857047         0.4854657 0.4987998   1.450231   12.16583
##   CardItemsMonthly CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 1         3.398292       1310.899       0.4989909      21.67865       37.04573
## 2         3.419750       2321.157       0.4994899      22.65831       36.61488
## 3         3.371901       2589.466       0.4979144      22.69309       40.21021
##   VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 1        1195.770       0.4825587           17.91682            917.6471
## 2        1288.189       0.4760606           19.05465            898.3427
## 3        1271.001       0.4715977           19.42142            928.8496
##   CallingCard WirelessData DataLastMonth DataOverTenure Multiline        VM
## 1   0.4918694    0.3965578      16.38938       885.4337 0.4825587 0.4399413
## 2   0.4533422    0.4424914      18.98478       950.5515 0.4997537 0.4588089
## 3   0.4486479    0.4449382      20.70989      1056.9149 0.5000998 0.4606406
##       Pager  Internet  CallerID  CallWait CallForward ThreeWayCalling  EBilling
## 1 0.3360108 0.9651174 0.4989909 0.5070073   0.4989909       0.5070073 0.4568034
## 2 0.4268436 1.2036414 0.4981823 0.4989135   0.4993636       0.4991268 0.4799219
## 3 0.4328645 1.2130972 0.5000889 0.5000212   0.4999975       0.4998847 0.4731648
##   TVWatchingHours    OwnsPC OwnsMobileDevice OwnsGameSystem   OwnsFax
## 1        5.374578 0.5070073        0.5080005      0.5040161 0.3689020
## 2        5.152667 0.4825555        0.4991520      0.4995294 0.3865308
## 3        5.158370 0.4809961        0.4999800      0.4994353 0.3800450
##   NewsSubscriber
## 1      0.5040161
## 2      0.4986171
## 3      0.4998598

1.4.5 One-way counting

table(CustomerData$Gender)
## 
##        Female   Male 
##     33   2494   2473

1.4.6 Two way counting table

table(CustomerData$Gender,CustomerData$UnionMember)
##         
##            No  Yes
##            31    2
##   Female 2115  379
##   Male   2098  375

EDA using Visualizations

2.1.1 Single Histogram

hist(CustomerData$Age, col="yellow", breaks=20)

2.1.2 Histogram combined with density curve

hist(CustomerData$Age, prob=T, col="yellow", breaks=20, main="Histogram and Density of Age", xlim=c(min(CustomerData$Age)-1,max(CustomerData$Age)+1), xlab="Age")
lines(density(CustomerData$Age), col="red", lwd=2)

# Add a vertical line that indicates the average of Sepal Length
abline(v=mean(CustomerData$Age), col="blue", lty=2, lwd=1.5)

  • You can change the color of the histogram, the density curve and the vertical line
  • In addition to that, you can set the range of your x-axis by varying values in xlim
  • Further, you can use median or other aggregations to plot the vertical line

2.1.3 Plotting multiple bar charts

avg<- apply(CustomerData[,c(5,6)], 2, mean)
barplot(avg, ylab = "Average")

2.1.4 Plotting multiple bar charts for same variable split by another variable

counts <- table(CustomerData$UnionMember,CustomerData$Gender)
barplot(counts, main="Union Members by Gender",
  xlab="Gender", col=c("darkblue","yellow"),
  legend = rownames(counts), beside=TRUE)

2.2 Finding the outliers

2.2.1 Single box plot

boxplot(CustomerData$Age)

  • The center line represents the median and the two ends of the box represent the 25th and 75th percentiles or 1st and 3rd Quantile
  • The outer lines represent 1.5 x IQR (Inter Quantile Range is the width of the box)

2.2.2 Plotting multiple box plots in same graph

boxplot(CustomerData[,c(5,6,9)], notch=T, col=c("blue", "yellow","red"))

2.2.3 Box plot of single variable with groups

boxplot(CustomerData[,'HouseholdSize']~CustomerData[,'Gender'], notch=T, ylab="Household Size", col="blue")

2.3.1 Scatter plot to observe the relation between two variables

plot(CustomerData$Age, CustomerData$HouseholdSize, xlab = "Age", ylab = "HH Size", main = "Household Size vs Age")

2.3.2 Scatter plot of multiple variables

pairs(CustomerData[,c(5,6,11)])

2.4 Plotting multiple graphs in same window

# set arrangement of multiple plots. 2,2 will allow us to plot 4 graphs in a window
par(mfrow=c(2,2))
# set margins
par(mar=c(4.5, 4.2, 3, 1.5)) 

#Graph1
hist(CustomerData$Age, xlab = "Age", cex.lab=1.5, col = "yellow")

#Graph2
hist(CustomerData$HHIncome, xlab = "Household Income", col = "red")

#Graph3 (pch allows us to change shapes)
plot(CustomerData$Age, CustomerData$HouseholdSize, xlab = "Age", ylab = "Household Size", main= "Household Size vs Age", pch=17)

#Graph4
boxplot(CustomerData[,c(5,6)], notch=T, col=c("red", "blue"))

Tidyverse for EDA

Row Manipulations

3.1 Filtering data

3.1.1 Method 1 : Using subset() function

subset(x = CustomerData, subset = Age > 25 & HHIncome > 400000)
##           CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 18   0649-TBFJFL-QU4      5        2   Male  63             14        Labor
## 755  5071-YMPEFZ-4BK      3        5   Male  63             17  Agriculture
## 990  8162-PHLLNH-12V      5        1 Female  68             15        Labor
## 1103 8402-SILWTV-4YR      4        4   Male  58             19      Service
## 2062 8607-AMZELA-S5B      5        1 Female  57             18  Agriculture
## 2080 6879-SZBXXQ-ERC      4        4 Female  58             16      Service
## 2193 2329-EIXEIO-VD3      5        5   Male  52             18        Labor
## 2347 2435-DERRXC-V3A      5        1 Female  70             19        Labor
## 3069 9069-XTCDOO-RZV      4        3   Male  57             21        Sales
## 3213 6308-REILUL-K6N      3        1   Male  54             22 Professional
## 3624 9204-WXRZIL-7QG      5        3   Male  70             16        Labor
## 4917 4490-YKVPRY-KYA      5        4   Male  58             21 Professional
## 4950 2885-KFFQPU-BNO      4        4   Male  56             17       Crafts
##      UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18           Yes               29      No   424000              10.7  13.111352
## 755           No               29      No   515000               3.9   2.289690
## 990          Yes               31      No   411000               8.3  10.506804
## 1103          No               20      No  1073000              19.7 109.072596
## 2062          No               23      No   472000               1.2   1.376352
## 2080          No               20      No   409000               6.7   6.987765
## 2193          No               24      No   995000              21.0  67.490850
## 2347          No               37      No   418000              13.9  14.351194
## 3069          No               11      No   780000              13.1  35.252100
## 3213          No               11      No   642000               4.6  11.251692
## 3624          No               35      No   526000              10.2  31.279116
## 4917          No                9      No   437000              14.9  48.704524
## 4950          No               19      No   575000               5.2   4.215900
##       OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18    32.256648          No       Married             2          0          0
## 755   17.795310          No       Married             2          9          0
## 990   23.606196          No       Married             2          2          2
## 1103 102.308404         Yes       Married             2          8          0
## 2062   4.287648          No     Unmarried             1          0          0
## 2080  20.415235          No     Unmarried             4          4          1
## 2193 141.459150         Yes     Unmarried             1          1          0
## 2347  43.750806         Yes     Unmarried             1          0          0
## 3069  66.927900         Yes       Married             2          0          0
## 3213  18.280308          No       Married             2          2          0
## 3624  22.372884         Yes     Unmarried             1          1          1
## 4917  16.408476         Yes       Married             3          4          0
## 4950  25.684100         Yes     Unmarried             1          7          1
##      NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18            0           0         1         3          Own Domestic    88600
## 755           0           0         1         2          Own  Foreign    88500
## 990           0           0         1         2          Own  Foreign    91300
## 1103          2           0         1         4          Own Domestic    77600
## 2062          0           0         1         2          Own Domestic    88000
## 2080          2           1         1         1          Own  Foreign    93200
## 2193          1           0         1         3          Own Domestic    99600
## 2347          0           0         1         2          Own  Foreign    97300
## 3069          0           0         1         2          Own  Foreign    93100
## 3213          2           0         1         1          Own  Foreign    86300
## 3624          0           0         1         2          Own  Foreign    92200
## 4917          0           0         1         2          Own  Foreign    92300
## 4950          0           0         1         1          Own  Foreign    93600
##      CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18            29                No   Yes       Mast         36               10
## 755           20                No    No       Disc         36                8
## 990           13               Yes    No       Visa         33                6
## 1103          32               Yes   Yes       Disc         37               13
## 2062          19               Yes    No       Disc         17               10
## 2080          24               Yes   Yes       Mast         17               14
## 2193          31                No   Yes       AMEX         19               12
## 2347          25               Yes   Yes       Disc         14               13
## 3069          35                No   Yes       Disc         33                9
## 3213          25                No   Yes       Disc         21               10
## 3624          29                No   Yes       AMEX         40                7
## 4917          19                No   Yes       Mast         22                8
## 4950          33                No    No       AMEX         23                8
##      CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18           4957.5              No            70         104.40
## 755          3230.4             Yes            67          72.30
## 990          1541.8              No            66         120.30
## 1103        29693.9             Yes            72         140.70
## 2062         4239.4              No            22          53.10
## 2080        12952.9              No            48          20.40
## 2193        16039.1             Yes            57          39.60
## 2347         8788.6              No            31          17.70
## 3069         3739.2              No            68         114.00
## 3213         5136.8              No            46          27.45
## 3624        10907.9             Yes            72         104.55
## 4917         2082.2              No            53          51.15
## 4950         5140.4              No            50          40.20
##      VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18           2540.15              No                0.0                0.00
## 755          1590.70              No                0.0                0.00
## 990          2613.15             Yes               42.9             2845.75
## 1103         3393.10              No                0.0                0.00
## 2062          328.70              No                0.0                0.00
## 2080          331.30              No                0.0                0.00
## 2193          761.45              No                0.0                0.00
## 2347          196.35              No                0.0                0.00
## 3069         2582.40              No                0.0                0.00
## 3213          438.80             Yes               83.9             3886.10
## 3624         2405.90             Yes               46.7             3244.45
## 4917          913.40             Yes               64.7             3332.05
## 4950          643.85             Yes               48.1             2455.90
##      CallingCard WirelessData DataLastMonth DataOverTenure Multiline  VM Pager
## 18           Yes           No          0.00           0.00       Yes Yes    No
## 755          Yes           No          0.00           0.00       Yes Yes    No
## 990          Yes           No          0.00           0.00       Yes  No    No
## 1103         Yes          Yes         44.90        3174.75       Yes  No   Yes
## 2062         Yes           No          0.00           0.00        No Yes    No
## 2080          No           No          0.00           0.00        No  No    No
## 2193         Yes          Yes         40.75        2113.45       Yes Yes   Yes
## 2347         Yes           No          0.00           0.00       Yes  No    No
## 3069         Yes          Yes         93.80        6273.95       Yes Yes   Yes
## 3213         Yes          Yes        104.25        4603.15       Yes Yes   Yes
## 3624         Yes          Yes         53.05        3634.70       Yes Yes   Yes
## 4917         Yes          Yes         51.60        2701.50       Yes Yes   Yes
## 4950          No          Yes         33.15        1612.40        No Yes   Yes
##      Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18         No      Yes       No         Yes             Yes      Yes
## 755       Yes       No      Yes         Yes             Yes       No
## 990         3       No       No         Yes              No       No
## 1103        4       No      Yes          No             Yes       No
## 2062      Yes      Yes      Yes         Yes             Yes       No
## 2080       No      Yes      Yes         Yes             Yes       No
## 2193        3      Yes      Yes         Yes             Yes      Yes
## 2347        4       No      Yes          No             Yes       No
## 3069       No      Yes      Yes         Yes             Yes       No
## 3213        4      Yes      Yes         Yes             Yes      Yes
## 3624      Yes      Yes      Yes         Yes             Yes       No
## 4917      Yes      Yes      Yes         Yes             Yes      Yes
## 4950        4      Yes      Yes          No             Yes      Yes
##      TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18                24     No               No             No      No
## 755               25    Yes              Yes            Yes      No
## 990               11    Yes               No            Yes     Yes
## 1103              28    Yes              Yes             No      No
## 2062              24    Yes              Yes            Yes     Yes
## 2080              28     No              Yes            Yes      No
## 2193              22    Yes              Yes             No     Yes
## 2347              27    Yes               No             No      No
## 3069              18     No              Yes             No     Yes
## 3213              18    Yes              Yes            Yes     Yes
## 3624              17    Yes               No             No      No
## 4917              23    Yes              Yes            Yes     Yes
## 4950              11    Yes              Yes            Yes     Yes
##      NewsSubscriber
## 18              Yes
## 755             Yes
## 990             Yes
## 1103            Yes
## 2062             No
## 2080             No
## 2193             No
## 2347             No
## 3069            Yes
## 3213             No
## 3624            Yes
## 4917            Yes
## 4950             No
# OR

subset(CustomerData, Age > 25 & HHIncome > 400000)
##           CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 18   0649-TBFJFL-QU4      5        2   Male  63             14        Labor
## 755  5071-YMPEFZ-4BK      3        5   Male  63             17  Agriculture
## 990  8162-PHLLNH-12V      5        1 Female  68             15        Labor
## 1103 8402-SILWTV-4YR      4        4   Male  58             19      Service
## 2062 8607-AMZELA-S5B      5        1 Female  57             18  Agriculture
## 2080 6879-SZBXXQ-ERC      4        4 Female  58             16      Service
## 2193 2329-EIXEIO-VD3      5        5   Male  52             18        Labor
## 2347 2435-DERRXC-V3A      5        1 Female  70             19        Labor
## 3069 9069-XTCDOO-RZV      4        3   Male  57             21        Sales
## 3213 6308-REILUL-K6N      3        1   Male  54             22 Professional
## 3624 9204-WXRZIL-7QG      5        3   Male  70             16        Labor
## 4917 4490-YKVPRY-KYA      5        4   Male  58             21 Professional
## 4950 2885-KFFQPU-BNO      4        4   Male  56             17       Crafts
##      UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18           Yes               29      No   424000              10.7  13.111352
## 755           No               29      No   515000               3.9   2.289690
## 990          Yes               31      No   411000               8.3  10.506804
## 1103          No               20      No  1073000              19.7 109.072596
## 2062          No               23      No   472000               1.2   1.376352
## 2080          No               20      No   409000               6.7   6.987765
## 2193          No               24      No   995000              21.0  67.490850
## 2347          No               37      No   418000              13.9  14.351194
## 3069          No               11      No   780000              13.1  35.252100
## 3213          No               11      No   642000               4.6  11.251692
## 3624          No               35      No   526000              10.2  31.279116
## 4917          No                9      No   437000              14.9  48.704524
## 4950          No               19      No   575000               5.2   4.215900
##       OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18    32.256648          No       Married             2          0          0
## 755   17.795310          No       Married             2          9          0
## 990   23.606196          No       Married             2          2          2
## 1103 102.308404         Yes       Married             2          8          0
## 2062   4.287648          No     Unmarried             1          0          0
## 2080  20.415235          No     Unmarried             4          4          1
## 2193 141.459150         Yes     Unmarried             1          1          0
## 2347  43.750806         Yes     Unmarried             1          0          0
## 3069  66.927900         Yes       Married             2          0          0
## 3213  18.280308          No       Married             2          2          0
## 3624  22.372884         Yes     Unmarried             1          1          1
## 4917  16.408476         Yes       Married             3          4          0
## 4950  25.684100         Yes     Unmarried             1          7          1
##      NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18            0           0         1         3          Own Domestic    88600
## 755           0           0         1         2          Own  Foreign    88500
## 990           0           0         1         2          Own  Foreign    91300
## 1103          2           0         1         4          Own Domestic    77600
## 2062          0           0         1         2          Own Domestic    88000
## 2080          2           1         1         1          Own  Foreign    93200
## 2193          1           0         1         3          Own Domestic    99600
## 2347          0           0         1         2          Own  Foreign    97300
## 3069          0           0         1         2          Own  Foreign    93100
## 3213          2           0         1         1          Own  Foreign    86300
## 3624          0           0         1         2          Own  Foreign    92200
## 4917          0           0         1         2          Own  Foreign    92300
## 4950          0           0         1         1          Own  Foreign    93600
##      CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18            29                No   Yes       Mast         36               10
## 755           20                No    No       Disc         36                8
## 990           13               Yes    No       Visa         33                6
## 1103          32               Yes   Yes       Disc         37               13
## 2062          19               Yes    No       Disc         17               10
## 2080          24               Yes   Yes       Mast         17               14
## 2193          31                No   Yes       AMEX         19               12
## 2347          25               Yes   Yes       Disc         14               13
## 3069          35                No   Yes       Disc         33                9
## 3213          25                No   Yes       Disc         21               10
## 3624          29                No   Yes       AMEX         40                7
## 4917          19                No   Yes       Mast         22                8
## 4950          33                No    No       AMEX         23                8
##      CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18           4957.5              No            70         104.40
## 755          3230.4             Yes            67          72.30
## 990          1541.8              No            66         120.30
## 1103        29693.9             Yes            72         140.70
## 2062         4239.4              No            22          53.10
## 2080        12952.9              No            48          20.40
## 2193        16039.1             Yes            57          39.60
## 2347         8788.6              No            31          17.70
## 3069         3739.2              No            68         114.00
## 3213         5136.8              No            46          27.45
## 3624        10907.9             Yes            72         104.55
## 4917         2082.2              No            53          51.15
## 4950         5140.4              No            50          40.20
##      VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18           2540.15              No                0.0                0.00
## 755          1590.70              No                0.0                0.00
## 990          2613.15             Yes               42.9             2845.75
## 1103         3393.10              No                0.0                0.00
## 2062          328.70              No                0.0                0.00
## 2080          331.30              No                0.0                0.00
## 2193          761.45              No                0.0                0.00
## 2347          196.35              No                0.0                0.00
## 3069         2582.40              No                0.0                0.00
## 3213          438.80             Yes               83.9             3886.10
## 3624         2405.90             Yes               46.7             3244.45
## 4917          913.40             Yes               64.7             3332.05
## 4950          643.85             Yes               48.1             2455.90
##      CallingCard WirelessData DataLastMonth DataOverTenure Multiline  VM Pager
## 18           Yes           No          0.00           0.00       Yes Yes    No
## 755          Yes           No          0.00           0.00       Yes Yes    No
## 990          Yes           No          0.00           0.00       Yes  No    No
## 1103         Yes          Yes         44.90        3174.75       Yes  No   Yes
## 2062         Yes           No          0.00           0.00        No Yes    No
## 2080          No           No          0.00           0.00        No  No    No
## 2193         Yes          Yes         40.75        2113.45       Yes Yes   Yes
## 2347         Yes           No          0.00           0.00       Yes  No    No
## 3069         Yes          Yes         93.80        6273.95       Yes Yes   Yes
## 3213         Yes          Yes        104.25        4603.15       Yes Yes   Yes
## 3624         Yes          Yes         53.05        3634.70       Yes Yes   Yes
## 4917         Yes          Yes         51.60        2701.50       Yes Yes   Yes
## 4950          No          Yes         33.15        1612.40        No Yes   Yes
##      Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18         No      Yes       No         Yes             Yes      Yes
## 755       Yes       No      Yes         Yes             Yes       No
## 990         3       No       No         Yes              No       No
## 1103        4       No      Yes          No             Yes       No
## 2062      Yes      Yes      Yes         Yes             Yes       No
## 2080       No      Yes      Yes         Yes             Yes       No
## 2193        3      Yes      Yes         Yes             Yes      Yes
## 2347        4       No      Yes          No             Yes       No
## 3069       No      Yes      Yes         Yes             Yes       No
## 3213        4      Yes      Yes         Yes             Yes      Yes
## 3624      Yes      Yes      Yes         Yes             Yes       No
## 4917      Yes      Yes      Yes         Yes             Yes      Yes
## 4950        4      Yes      Yes          No             Yes      Yes
##      TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18                24     No               No             No      No
## 755               25    Yes              Yes            Yes      No
## 990               11    Yes               No            Yes     Yes
## 1103              28    Yes              Yes             No      No
## 2062              24    Yes              Yes            Yes     Yes
## 2080              28     No              Yes            Yes      No
## 2193              22    Yes              Yes             No     Yes
## 2347              27    Yes               No             No      No
## 3069              18     No              Yes             No     Yes
## 3213              18    Yes              Yes            Yes     Yes
## 3624              17    Yes               No             No      No
## 4917              23    Yes              Yes            Yes     Yes
## 4950              11    Yes              Yes            Yes     Yes
##      NewsSubscriber
## 18              Yes
## 755             Yes
## 990             Yes
## 1103            Yes
## 2062             No
## 2080             No
## 2193             No
## 2347             No
## 3069            Yes
## 3213             No
## 3624            Yes
## 4917            Yes
## 4950             No
# OR

CustomerData[(CustomerData$Age > 25 & CustomerData$HHIncome > 400000), ]
##           CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 18   0649-TBFJFL-QU4      5        2   Male  63             14        Labor
## 755  5071-YMPEFZ-4BK      3        5   Male  63             17  Agriculture
## 990  8162-PHLLNH-12V      5        1 Female  68             15        Labor
## 1103 8402-SILWTV-4YR      4        4   Male  58             19      Service
## 2062 8607-AMZELA-S5B      5        1 Female  57             18  Agriculture
## 2080 6879-SZBXXQ-ERC      4        4 Female  58             16      Service
## 2193 2329-EIXEIO-VD3      5        5   Male  52             18        Labor
## 2347 2435-DERRXC-V3A      5        1 Female  70             19        Labor
## 3069 9069-XTCDOO-RZV      4        3   Male  57             21        Sales
## 3213 6308-REILUL-K6N      3        1   Male  54             22 Professional
## 3624 9204-WXRZIL-7QG      5        3   Male  70             16        Labor
## 4917 4490-YKVPRY-KYA      5        4   Male  58             21 Professional
## 4950 2885-KFFQPU-BNO      4        4   Male  56             17       Crafts
##      UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 18           Yes               29      No   424000              10.7  13.111352
## 755           No               29      No   515000               3.9   2.289690
## 990          Yes               31      No   411000               8.3  10.506804
## 1103          No               20      No  1073000              19.7 109.072596
## 2062          No               23      No   472000               1.2   1.376352
## 2080          No               20      No   409000               6.7   6.987765
## 2193          No               24      No   995000              21.0  67.490850
## 2347          No               37      No   418000              13.9  14.351194
## 3069          No               11      No   780000              13.1  35.252100
## 3213          No               11      No   642000               4.6  11.251692
## 3624          No               35      No   526000              10.2  31.279116
## 4917          No                9      No   437000              14.9  48.704524
## 4950          No               19      No   575000               5.2   4.215900
##       OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 18    32.256648          No       Married             2          0          0
## 755   17.795310          No       Married             2          9          0
## 990   23.606196          No       Married             2          2          2
## 1103 102.308404         Yes       Married             2          8          0
## 2062   4.287648          No     Unmarried             1          0          0
## 2080  20.415235          No     Unmarried             4          4          1
## 2193 141.459150         Yes     Unmarried             1          1          0
## 2347  43.750806         Yes     Unmarried             1          0          0
## 3069  66.927900         Yes       Married             2          0          0
## 3213  18.280308          No       Married             2          2          0
## 3624  22.372884         Yes     Unmarried             1          1          1
## 4917  16.408476         Yes       Married             3          4          0
## 4950  25.684100         Yes     Unmarried             1          7          1
##      NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 18            0           0         1         3          Own Domestic    88600
## 755           0           0         1         2          Own  Foreign    88500
## 990           0           0         1         2          Own  Foreign    91300
## 1103          2           0         1         4          Own Domestic    77600
## 2062          0           0         1         2          Own Domestic    88000
## 2080          2           1         1         1          Own  Foreign    93200
## 2193          1           0         1         3          Own Domestic    99600
## 2347          0           0         1         2          Own  Foreign    97300
## 3069          0           0         1         2          Own  Foreign    93100
## 3213          2           0         1         1          Own  Foreign    86300
## 3624          0           0         1         2          Own  Foreign    92200
## 4917          0           0         1         2          Own  Foreign    92300
## 4950          0           0         1         1          Own  Foreign    93600
##      CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 18            29                No   Yes       Mast         36               10
## 755           20                No    No       Disc         36                8
## 990           13               Yes    No       Visa         33                6
## 1103          32               Yes   Yes       Disc         37               13
## 2062          19               Yes    No       Disc         17               10
## 2080          24               Yes   Yes       Mast         17               14
## 2193          31                No   Yes       AMEX         19               12
## 2347          25               Yes   Yes       Disc         14               13
## 3069          35                No   Yes       Disc         33                9
## 3213          25                No   Yes       Disc         21               10
## 3624          29                No   Yes       AMEX         40                7
## 4917          19                No   Yes       Mast         22                8
## 4950          33                No    No       AMEX         23                8
##      CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth
## 18           4957.5              No            70         104.40
## 755          3230.4             Yes            67          72.30
## 990          1541.8              No            66         120.30
## 1103        29693.9             Yes            72         140.70
## 2062         4239.4              No            22          53.10
## 2080        12952.9              No            48          20.40
## 2193        16039.1             Yes            57          39.60
## 2347         8788.6              No            31          17.70
## 3069         3739.2              No            68         114.00
## 3213         5136.8              No            46          27.45
## 3624        10907.9             Yes            72         104.55
## 4917         2082.2              No            53          51.15
## 4950         5140.4              No            50          40.20
##      VoiceOverTenure EquipmentRental EquipmentLastMonth EquipmentOverTenure
## 18           2540.15              No                0.0                0.00
## 755          1590.70              No                0.0                0.00
## 990          2613.15             Yes               42.9             2845.75
## 1103         3393.10              No                0.0                0.00
## 2062          328.70              No                0.0                0.00
## 2080          331.30              No                0.0                0.00
## 2193          761.45              No                0.0                0.00
## 2347          196.35              No                0.0                0.00
## 3069         2582.40              No                0.0                0.00
## 3213          438.80             Yes               83.9             3886.10
## 3624         2405.90             Yes               46.7             3244.45
## 4917          913.40             Yes               64.7             3332.05
## 4950          643.85             Yes               48.1             2455.90
##      CallingCard WirelessData DataLastMonth DataOverTenure Multiline  VM Pager
## 18           Yes           No          0.00           0.00       Yes Yes    No
## 755          Yes           No          0.00           0.00       Yes Yes    No
## 990          Yes           No          0.00           0.00       Yes  No    No
## 1103         Yes          Yes         44.90        3174.75       Yes  No   Yes
## 2062         Yes           No          0.00           0.00        No Yes    No
## 2080          No           No          0.00           0.00        No  No    No
## 2193         Yes          Yes         40.75        2113.45       Yes Yes   Yes
## 2347         Yes           No          0.00           0.00       Yes  No    No
## 3069         Yes          Yes         93.80        6273.95       Yes Yes   Yes
## 3213         Yes          Yes        104.25        4603.15       Yes Yes   Yes
## 3624         Yes          Yes         53.05        3634.70       Yes Yes   Yes
## 4917         Yes          Yes         51.60        2701.50       Yes Yes   Yes
## 4950          No          Yes         33.15        1612.40        No Yes   Yes
##      Internet CallerID CallWait CallForward ThreeWayCalling EBilling
## 18         No      Yes       No         Yes             Yes      Yes
## 755       Yes       No      Yes         Yes             Yes       No
## 990         3       No       No         Yes              No       No
## 1103        4       No      Yes          No             Yes       No
## 2062      Yes      Yes      Yes         Yes             Yes       No
## 2080       No      Yes      Yes         Yes             Yes       No
## 2193        3      Yes      Yes         Yes             Yes      Yes
## 2347        4       No      Yes          No             Yes       No
## 3069       No      Yes      Yes         Yes             Yes       No
## 3213        4      Yes      Yes         Yes             Yes      Yes
## 3624      Yes      Yes      Yes         Yes             Yes       No
## 4917      Yes      Yes      Yes         Yes             Yes      Yes
## 4950        4      Yes      Yes          No             Yes      Yes
##      TVWatchingHours OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax
## 18                24     No               No             No      No
## 755               25    Yes              Yes            Yes      No
## 990               11    Yes               No            Yes     Yes
## 1103              28    Yes              Yes             No      No
## 2062              24    Yes              Yes            Yes     Yes
## 2080              28     No              Yes            Yes      No
## 2193              22    Yes              Yes             No     Yes
## 2347              27    Yes               No             No      No
## 3069              18     No              Yes             No     Yes
## 3213              18    Yes              Yes            Yes     Yes
## 3624              17    Yes               No             No      No
## 4917              23    Yes              Yes            Yes     Yes
## 4950              11    Yes              Yes            Yes     Yes
##      NewsSubscriber
## 18              Yes
## 755             Yes
## 990             Yes
## 1103            Yes
## 2062             No
## 2080             No
## 2193             No
## 2347             No
## 3069            Yes
## 3213             No
## 3624            Yes
## 4917            Yes
## 4950             No

3.1.2 Method 2 : Using SQL to filter data

sqldf('select * from CustomerData where `Age` > 25 and `HHIncome` > 400000')
##         CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 1  0649-TBFJFL-QU4      5        2   Male  63             14        Labor
## 2  5071-YMPEFZ-4BK      3        5   Male  63             17  Agriculture
## 3  8162-PHLLNH-12V      5        1 Female  68             15        Labor
## 4  8402-SILWTV-4YR      4        4   Male  58             19      Service
## 5  8607-AMZELA-S5B      5        1 Female  57             18  Agriculture
## 6  6879-SZBXXQ-ERC      4        4 Female  58             16      Service
## 7  2329-EIXEIO-VD3      5        5   Male  52             18        Labor
## 8  2435-DERRXC-V3A      5        1 Female  70             19        Labor
## 9  9069-XTCDOO-RZV      4        3   Male  57             21        Sales
## 10 6308-REILUL-K6N      3        1   Male  54             22 Professional
## 11 9204-WXRZIL-7QG      5        3   Male  70             16        Labor
## 12 4490-YKVPRY-KYA      5        4   Male  58             21 Professional
## 13 2885-KFFQPU-BNO      4        4   Male  56             17       Crafts
##    UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1          Yes               29      No   424000              10.7  13.111352
## 2           No               29      No   515000               3.9   2.289690
## 3          Yes               31      No   411000               8.3  10.506804
## 4           No               20      No  1073000              19.7 109.072596
## 5           No               23      No   472000               1.2   1.376352
## 6           No               20      No   409000               6.7   6.987765
## 7           No               24      No   995000              21.0  67.490850
## 8           No               37      No   418000              13.9  14.351194
## 9           No               11      No   780000              13.1  35.252100
## 10          No               11      No   642000               4.6  11.251692
## 11          No               35      No   526000              10.2  31.279116
## 12          No                9      No   437000              14.9  48.704524
## 13          No               19      No   575000               5.2   4.215900
##     OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1   32.256648          No       Married             2          0          0
## 2   17.795310          No       Married             2          9          0
## 3   23.606196          No       Married             2          2          2
## 4  102.308404         Yes       Married             2          8          0
## 5    4.287648          No     Unmarried             1          0          0
## 6   20.415235          No     Unmarried             4          4          1
## 7  141.459150         Yes     Unmarried             1          1          0
## 8   43.750806         Yes     Unmarried             1          0          0
## 9   66.927900         Yes       Married             2          0          0
## 10  18.280308          No       Married             2          2          0
## 11  22.372884         Yes     Unmarried             1          1          1
## 12  16.408476         Yes       Married             3          4          0
## 13  25.684100         Yes     Unmarried             1          7          1
##    NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1           0           0         1         3          Own Domestic    88600
## 2           0           0         1         2          Own  Foreign    88500
## 3           0           0         1         2          Own  Foreign    91300
## 4           2           0         1         4          Own Domestic    77600
## 5           0           0         1         2          Own Domestic    88000
## 6           2           1         1         1          Own  Foreign    93200
## 7           1           0         1         3          Own Domestic    99600
## 8           0           0         1         2          Own  Foreign    97300
## 9           0           0         1         2          Own  Foreign    93100
## 10          2           0         1         1          Own  Foreign    86300
## 11          0           0         1         2          Own  Foreign    92200
## 12          0           0         1         2          Own  Foreign    92300
## 13          0           0         1         1          Own  Foreign    93600
##    CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1           29                No   Yes       Mast         36               10
## 2           20                No    No       Disc         36                8
## 3           13               Yes    No       Visa         33                6
## 4           32               Yes   Yes       Disc         37               13
## 5           19               Yes    No       Disc         17               10
## 6           24               Yes   Yes       Mast         17               14
## 7           31                No   Yes       AMEX         19               12
## 8           25               Yes   Yes       Disc         14               13
## 9           35                No   Yes       Disc         33                9
## 10          25                No   Yes       Disc         21               10
## 11          29                No   Yes       AMEX         40                7
## 12          19                No   Yes       Mast         22                8
## 13          33                No    No       AMEX         23                8
##    CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1          4957.5              No            70         104.40         2540.15
## 2          3230.4             Yes            67          72.30         1590.70
## 3          1541.8              No            66         120.30         2613.15
## 4         29693.9             Yes            72         140.70         3393.10
## 5          4239.4              No            22          53.10          328.70
## 6         12952.9              No            48          20.40          331.30
## 7         16039.1             Yes            57          39.60          761.45
## 8          8788.6              No            31          17.70          196.35
## 9          3739.2              No            68         114.00         2582.40
## 10         5136.8              No            46          27.45          438.80
## 11        10907.9             Yes            72         104.55         2405.90
## 12         2082.2              No            53          51.15          913.40
## 13         5140.4              No            50          40.20          643.85
##    EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1               No                0.0                0.00         Yes
## 2               No                0.0                0.00         Yes
## 3              Yes               42.9             2845.75         Yes
## 4               No                0.0                0.00         Yes
## 5               No                0.0                0.00         Yes
## 6               No                0.0                0.00          No
## 7               No                0.0                0.00         Yes
## 8               No                0.0                0.00         Yes
## 9               No                0.0                0.00         Yes
## 10             Yes               83.9             3886.10         Yes
## 11             Yes               46.7             3244.45         Yes
## 12             Yes               64.7             3332.05         Yes
## 13             Yes               48.1             2455.90          No
##    WirelessData DataLastMonth DataOverTenure Multiline  VM Pager Internet
## 1            No          0.00           0.00       Yes Yes    No       No
## 2            No          0.00           0.00       Yes Yes    No      Yes
## 3            No          0.00           0.00       Yes  No    No        3
## 4           Yes         44.90        3174.75       Yes  No   Yes        4
## 5            No          0.00           0.00        No Yes    No      Yes
## 6            No          0.00           0.00        No  No    No       No
## 7           Yes         40.75        2113.45       Yes Yes   Yes        3
## 8            No          0.00           0.00       Yes  No    No        4
## 9           Yes         93.80        6273.95       Yes Yes   Yes       No
## 10          Yes        104.25        4603.15       Yes Yes   Yes        4
## 11          Yes         53.05        3634.70       Yes Yes   Yes      Yes
## 12          Yes         51.60        2701.50       Yes Yes   Yes      Yes
## 13          Yes         33.15        1612.40        No Yes   Yes        4
##    CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours
## 1       Yes       No         Yes             Yes      Yes              24
## 2        No      Yes         Yes             Yes       No              25
## 3        No       No         Yes              No       No              11
## 4        No      Yes          No             Yes       No              28
## 5       Yes      Yes         Yes             Yes       No              24
## 6       Yes      Yes         Yes             Yes       No              28
## 7       Yes      Yes         Yes             Yes      Yes              22
## 8        No      Yes          No             Yes       No              27
## 9       Yes      Yes         Yes             Yes       No              18
## 10      Yes      Yes         Yes             Yes      Yes              18
## 11      Yes      Yes         Yes             Yes       No              17
## 12      Yes      Yes         Yes             Yes      Yes              23
## 13      Yes      Yes          No             Yes      Yes              11
##    OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1      No               No             No      No            Yes
## 2     Yes              Yes            Yes      No            Yes
## 3     Yes               No            Yes     Yes            Yes
## 4     Yes              Yes             No      No            Yes
## 5     Yes              Yes            Yes     Yes             No
## 6      No              Yes            Yes      No             No
## 7     Yes              Yes             No     Yes             No
## 8     Yes               No             No      No             No
## 9      No              Yes             No     Yes            Yes
## 10    Yes              Yes            Yes     Yes             No
## 11    Yes               No             No      No            Yes
## 12    Yes              Yes            Yes     Yes            Yes
## 13    Yes              Yes            Yes     Yes             No

3.1.3 Method 3 : Using filter() function

CustomerData1 <- filter(CustomerData, Age>25 & HHIncome>400000)
CustomerData2 <- filter(CustomerData1, Gender=="Female", EducationYears<=20 | UnionMember=="Yes")

3.2.1 Random subsetting of data

# Randomly sampling 90% data
CustomerDataSample1 <- CustomerData[sample(x = nrow(CustomerData), size = nrow(CustomerData)*0.90),]

# OR

CustomerDataSample2 <- sample_frac(CustomerData, 0.9)

# To sample fixed number of rows
CustomerDataSample3 <- sample_n(CustomerData, 1000)

3.2.2 Randomly splitting data into two groups

index <- sample(nrow(CustomerData),nrow(CustomerData)*0.90)
CustomerData.train = CustomerData[index,]
CustomerData.test = CustomerData[-index,]

3.3 Sorting data Here we are extracting the first 5 rows. This can be modified based on the requirements

CustomerData[order(CustomerData$Age, decreasing = TRUE)[1:5], ] 
##          CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 172 8214-NVCQAC-3HH      2        2   Male  79             12       Crafts
## 176 8931-XMXDFT-RXL      1        1 Female  79              7  Agriculture
## 185 1734-EAYBEZ-PZ0      2        1   Male  79             16 Professional
## 227 4092-XAPMSL-F1S      1        1 Female  79             12 Professional
## 312 2175-VGCTPF-370      4        4   Male  79             12        Sales
##     UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 172          No               39     Yes    47000               7.9   1.095335
## 176          No               45     Yes    20000              19.2   1.409280
## 185          No               15     Yes    26000              18.1   2.301234
## 227          No               13     Yes    10000               6.8   0.060520
## 312          No                6     Yes     9000               3.8   0.166896
##     OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 172  2.617665          No       Married             2          0          0
## 176  2.430720          No     Unmarried             1          2          0
## 185  2.404766          No     Unmarried             1          0          0
## 227  0.619480          No       Married             2          4          3
## 312  0.175104          No       Married             2          1          0
##     NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 172          0           0         1         1        Lease  Foreign    19300
## 176          0           0         1         1        Lease  Foreign    10000
## 185          0           0         0         4        Lease Domestic    11500
## 227          1           0         0         1          Own  Foreign     4200
## 312          1           0         0         3        Lease Domestic     3800
##     CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 172          26                No    No       Disc         39               10
## 176          22                No   Yes       Visa         39                9
## 185          21               Yes    No       AMEX         29               14
## 227          27               Yes    No       Mast         19               14
## 312          27               Yes   Yes       Mast         15                5
##     CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 172         4017.7             Yes            71          57.45         1313.45
## 176         1228.1              No            72          54.75         1307.20
## 185         2316.3              No            67          54.15         1144.85
## 227         2363.9             Yes            45          44.25          687.25
## 312          653.6              No            34          16.50          225.70
##     EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 172              No                  0                   0         Yes
## 176              No                  0                   0         Yes
## 185              No                  0                   0         Yes
## 227              No                  0                   0          No
## 312              No                  0                   0         Yes
##     WirelessData DataLastMonth DataOverTenure Multiline  VM Pager Internet
## 172          Yes         35.65         2467.8        No Yes    No       No
## 176           No          0.00            0.0       Yes  No    No       No
## 185           No          0.00            0.0       Yes  No    No       No
## 227           No          0.00            0.0        No  No    No       No
## 312           No          0.00            0.0        No  No    No       No
##     CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours
## 172      Yes      Yes         Yes             Yes       No              20
## 176      Yes       No         Yes             Yes       No              10
## 185       No       No          No              No       No              25
## 227       No       No          No              No       No              15
## 312       No      Yes         Yes             Yes       No               0
##     OwnsPC OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 172     No               No             No     Yes            Yes
## 176     No               No             No      No            Yes
## 185    Yes               No             No      No            Yes
## 227     No               No             No      No             No
## 312     No               No             No      No             No
# OR

arrange(CustomerData, desc(Age))[1:5, ] #Descending
##        CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 1 8214-NVCQAC-3HH      2        2   Male  79             12       Crafts
## 2 8931-XMXDFT-RXL      1        1 Female  79              7  Agriculture
## 3 1734-EAYBEZ-PZ0      2        1   Male  79             16 Professional
## 4 4092-XAPMSL-F1S      1        1 Female  79             12 Professional
## 5 2175-VGCTPF-370      4        4   Male  79             12        Sales
##   UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1          No               39     Yes    47000               7.9   1.095335
## 2          No               45     Yes    20000              19.2   1.409280
## 3          No               15     Yes    26000              18.1   2.301234
## 4          No               13     Yes    10000               6.8   0.060520
## 5          No                6     Yes     9000               3.8   0.166896
##   OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1  2.617665          No       Married             2          0          0
## 2  2.430720          No     Unmarried             1          2          0
## 3  2.404766          No     Unmarried             1          0          0
## 4  0.619480          No       Married             2          4          3
## 5  0.175104          No       Married             2          1          0
##   NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1          0           0         1         1        Lease  Foreign    19300
## 2          0           0         1         1        Lease  Foreign    10000
## 3          0           0         0         4        Lease Domestic    11500
## 4          1           0         0         1          Own  Foreign     4200
## 5          1           0         0         3        Lease Domestic     3800
##   CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1          26                No    No       Disc         39               10
## 2          22                No   Yes       Visa         39                9
## 3          21               Yes    No       AMEX         29               14
## 4          27               Yes    No       Mast         19               14
## 5          27               Yes   Yes       Mast         15                5
##   CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1         4017.7             Yes            71          57.45         1313.45
## 2         1228.1              No            72          54.75         1307.20
## 3         2316.3              No            67          54.15         1144.85
## 4         2363.9             Yes            45          44.25          687.25
## 5          653.6              No            34          16.50          225.70
##   EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1              No                  0                   0         Yes
## 2              No                  0                   0         Yes
## 3              No                  0                   0         Yes
## 4              No                  0                   0          No
## 5              No                  0                   0         Yes
##   WirelessData DataLastMonth DataOverTenure Multiline  VM Pager Internet
## 1          Yes         35.65         2467.8        No Yes    No       No
## 2           No          0.00            0.0       Yes  No    No       No
## 3           No          0.00            0.0       Yes  No    No       No
## 4           No          0.00            0.0        No  No    No       No
## 5           No          0.00            0.0        No  No    No       No
##   CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1      Yes      Yes         Yes             Yes       No              20     No
## 2      Yes       No         Yes             Yes       No              10     No
## 3       No       No          No              No       No              25    Yes
## 4       No       No          No              No       No              15     No
## 5       No      Yes         Yes             Yes       No               0     No
##   OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1               No             No     Yes            Yes
## 2               No             No      No            Yes
## 3               No             No      No            Yes
## 4               No             No      No             No
## 5               No             No      No             No
# OR 

arrange(CustomerData, Age)[1:5, ] #Ascending
##        CustomerID Region TownSize Gender Age EducationYears  JobCategory
## 1 9723-VUGZBJ-ZQA      3        3   Male  18             13      Service
## 2 3754-JJTSIX-HW4      5        5 Female  18             13 Professional
## 3 1103-KTXUJS-ZPH      3        1 Female  18             13      Service
## 4 2736-QDRAAN-VAI      5        5 Female  18             13        Sales
## 5 1163-JCDRWZ-Q3K      4        2   Male  18             13 Professional
##   UnionMember EmploymentLength Retired HHIncome DebtToIncomeRatio CreditDebt
## 1          No                0      No    15000              10.9   0.516660
## 2          No                0      No    19000               4.1   0.101270
## 3          No                0      No    15000               4.9   0.210210
## 4          No                0      No    21000               4.5   0.179550
## 5          No                0      No    19000              22.2   3.766674
##   OtherDebt LoanDefault MaritalStatus HouseholdSize NumberPets NumberCats
## 1  1.118340         Yes     Unmarried             1          0          0
## 2  0.677730          No       Married             6          2          0
## 3  0.524790          No       Married             4          1          1
## 4  0.765450         Yes       Married             4          2          2
## 5  0.451326         Yes       Married             5          0          0
##   NumberDogs NumberBirds HomeOwner CarsOwned CarOwnership CarBrand CarValue
## 1          0           0         0         3        Lease Domestic     6100
## 2          1           0         0         5          Own  Foreign     8700
## 3          0           0         1         2        Lease Domestic     9100
## 4          0           0         1         3          Own Domestic    13400
## 5          0           0         1         4          Own Domestic    10600
##   CommuteTime PoliticalPartyMem Votes CreditCard CardTenure CardItemsMonthly
## 1          30                No   Yes       Visa          1                7
## 2          24               Yes    No       Othe          0               14
## 3          17               Yes   Yes       Mast          0               14
## 4          44               Yes   Yes       Disc          0               12
## 5          25               Yes    No       Mast          0                7
##   CardSpendMonth ActiveLifestyle PhoneCoTenure VoiceLastMonth VoiceOverTenure
## 1          563.2             Yes             2          12.15            7.20
## 2         2242.5              No             6          40.05           75.25
## 3         2318.1              No             2          42.30           28.65
## 4         3884.1              No             7          12.60           28.20
## 5         1240.2              No             7          13.95           31.90
##   EquipmentRental EquipmentLastMonth EquipmentOverTenure CallingCard
## 1              No               0.00                 0.0          No
## 2              No               0.00                 0.0          No
## 3             Yes              30.55                26.1         Yes
## 4              No               0.00                 0.0         Yes
## 5             Yes              29.75               186.3          No
##   WirelessData DataLastMonth DataOverTenure Multiline  VM Pager Internet
## 1           No             0              0        No  No    No       No
## 2           No             0              0        No  No    No       No
## 3           No             0              0       Yes  No    No        3
## 4           No             0              0        No  No   Yes       No
## 5           No             0              0       Yes Yes    No      Yes
##   CallerID CallWait CallForward ThreeWayCalling EBilling TVWatchingHours OwnsPC
## 1       No       No          No              No       No              24     No
## 2       No       No          No              No      Yes              35     No
## 3       No       No          No              No      Yes              14    Yes
## 4      Yes      Yes         Yes             Yes       No              20     No
## 5       No       No          No              No       No              21    Yes
##   OwnsMobileDevice OwnsGameSystem OwnsFax NewsSubscriber
## 1              Yes            Yes      No             No
## 2               No            Yes      No             No
## 3              Yes            Yes      No            Yes
## 4               No             No      No             No
## 5              Yes            Yes      No             No
# Sorting using multiple columns

CustomerData_sort<- arrange(CustomerData, Age, desc(HHIncome))[1:5,]

Column Manipulations

3.4 Variable details 3.4.1 Extracting column names

names(CustomerData)
##  [1] "CustomerID"          "Region"              "TownSize"           
##  [4] "Gender"              "Age"                 "EducationYears"     
##  [7] "JobCategory"         "UnionMember"         "EmploymentLength"   
## [10] "Retired"             "HHIncome"            "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"

3.4.2 Selecting columns

CustomerData[, c("Age", "HHIncome")]
##      Age HHIncome
## 1     20    31000
## 2     22    15000
## 3     67    35000
## 4     23    20000
## 5     26    23000
## 6     64   107000
## 7     52    77000
## 8     44    97000
## 9     66    16000
## 10    47    84000
## 11    59    47000
## 12    33    19000
## 13    44    73000
## 14    58    63000
## 15    72    17000
## 16    66    23000
## 17    57   171000
## 18    63   424000
## 19    28    23000
## 20    78    22000
## 21    61    35000
## 22    70    28000
## 23    61    12000
## 24    37    29000
## 25    39   130000
## 26    73    69000
## 27    26    24000
## 28    24    29000
## 29    77    11000
## 30    36    30000
## 31    55    80000
## 32    60    51000
## 33    59    30000
## 34    28    17000
## 35    53   141000
## 36    36    45000
## 37    47   137000
## 38    75    10000
## 39    49    73000
## 40    59    63000
## 41    55    50000
## 42    25    50000
## 43    78    28000
## 44    48    23000
## 45    47    75000
## 46    75    28000
## 47    43    33000
## 48    45    44000
## 49    21    31000
## 50    53   284000
## 51    30    49000
## 52    58    15000
## 53    35    17000
## 54    48    83000
## 55    57    82000
## 56    61    62000
## 57    56   138000
## 58    29    35000
## 59    68    35000
## 60    22    20000
## 61    46    25000
## 62    24    33000
## 63    78    32000
## 64    73    16000
## 65    26    64000
## 66    44    31000
## 67    30    18000
## 68    44    41000
## 69    21    22000
## 70    62    14000
## 71    33    82000
## 72    65    91000
## 73    38    74000
## 74    34    46000
## 75    78    14000
## 76    47    68000
## 77    60   101000
## 78    61   121000
## 79    77    19000
## 80    21    30000
## 81    31    43000
## 82    74    18000
## 83    27    42000
## 84    64   327000
## 85    72    30000
## 86    66    96000
## 87    55   143000
## 88    20    25000
## 89    59    68000
## 90    69    78000
## 91    43    38000
## 92    62    56000
## 93    32    65000
## 94    78    17000
## 95    64    62000
## 96    75    11000
## 97    74   108000
## 98    20    19000
## 99    65    26000
## 100   66    21000
## 101   45    82000
## 102   44    60000
## 103   59   100000
## 104   38    81000
## 105   65    34000
## 106   26    23000
## 107   70   107000
## 108   65    66000
## 109   61   107000
## 110   63    69000
## 111   70   224000
## 112   64    28000
## 113   56    31000
## 114   43    32000
## 115   53    82000
## 116   36    54000
## 117   52    42000
## 118   44    58000
## 119   48    73000
## 120   60    36000
## 121   67    51000
## 122   77    27000
## 123   72    36000
## 124   44    59000
## 125   75    41000
## 126   78    59000
## 127   55   128000
## 128   29    54000
## 129   43    44000
## 130   18    15000
## 131   28    17000
## 132   70    59000
## 133   43    57000
## 134   56    29000
## 135   66    12000
## 136   73     9000
## 137   26    85000
## 138   54    25000
## 139   39    48000
## 140   24    29000
## 141   26    64000
## 142   19    13000
## 143   60   131000
## 144   24    10000
## 145   31    27000
## 146   61    11000
## 147   24    51000
## 148   66    57000
## 149   50    54000
## 150   64    98000
## 151   46    28000
## 152   29    69000
## 153   69   149000
## 154   60   155000
## 155   50    49000
## 156   73    17000
## 157   68    31000
## 158   57    39000
## 159   29   156000
## 160   63    17000
## 161   49    60000
## 162   51   122000
## 163   22    32000
## 164   51    43000
## 165   53   142000
## 166   75   123000
## 167   30    32000
## 168   65    14000
## 169   35    17000
## 170   58    58000
## 171   30    39000
## 172   79    47000
## 173   62    49000
## 174   27    29000
## 175   34    51000
## 176   79    20000
## 177   68    74000
## 178   37   193000
## 179   52    94000
## 180   23    21000
## 181   57   121000
## 182   40    24000
## 183   66    53000
## 184   61    56000
## 185   79    26000
## 186   75    19000
## 187   35    47000
## 188   22    19000
## 189   73   164000
## 190   23    16000
## 191   19    23000
## 192   77    13000
## 193   51    74000
## 194   56   129000
## 195   46    56000
## 196   69    59000
## 197   38    36000
## 198   52    96000
## 199   67    22000
## 200   28    43000
## 201   36    29000
## 202   39    28000
## 203   55    29000
## 204   65    18000
## 205   73    14000
## 206   34    36000
## 207   67   152000
## 208   54    84000
## 209   31    32000
## 210   66    22000
## 211   51   143000
## 212   35    22000
## 213   47    50000
## 214   65    42000
## 215   23    13000
## 216   34    55000
## 217   78    23000
## 218   68    15000
## 219   47    45000
## 220   33    20000
## 221   36    48000
## 222   32    42000
## 223   64    35000
## 224   54    38000
## 225   62    66000
## 226   18    19000
## 227   79    10000
## 228   70    21000
## 229   42   114000
## 230   69    41000
## 231   24    23000
## 232   26    21000
## 233   61   110000
## 234   36    29000
## 235   68   102000
## 236   35    22000
## 237   55    42000
## 238   49    36000
## 239   20    19000
## 240   25    31000
## 241   47    66000
## 242   66    23000
## 243   18    15000
## 244   25    21000
## 245   68   237000
## 246   61    32000
## 247   49   208000
## 248   26    82000
## 249   62   182000
## 250   20    17000
## 251   74    62000
## 252   30    30000
## 253   64    18000
## 254   22    20000
## 255   30   109000
## 256   66    88000
## 257   42    46000
## 258   27    22000
## 259   45    58000
## 260   75    28000
## 261   43   127000
## 262   35    51000
## 263   31    29000
## 264   70   141000
## 265   22    20000
## 266   69    64000
## 267   42    30000
## 268   57    19000
## 269   43    22000
## 270   56    79000
## 271   65    55000
## 272   66   350000
## 273   42    81000
## 274   78    17000
## 275   24    30000
## 276   68    10000
## 277   23    26000
## 278   22    23000
## 279   52    50000
## 280   26    21000
## 281   32    22000
## 282   49    60000
## 283   55   101000
## 284   42    65000
## 285   65    32000
## 286   19    25000
## 287   39    34000
## 288   25    37000
## 289   23    31000
## 290   30    19000
## 291   50    59000
## 292   49    37000
## 293   32    30000
## 294   45    83000
## 295   34    31000
## 296   19    43000
## 297   22    19000
## 298   30    64000
## 299   46    24000
## 300   51    24000
## 301   52    33000
## 302   27    17000
## 303   38    37000
## 304   18    21000
## 305   21    29000
## 306   42    34000
## 307   68    15000
## 308   56    43000
## 309   31    78000
## 310   18    19000
## 311   32    29000
## 312   79     9000
## 313   64    66000
## 314   53    32000
## 315   40    42000
## 316   39    50000
## 317   49    50000
## 318   75    74000
## 319   29    20000
## 320   32    36000
## 321   23    64000
## 322   79     9000
## 323   74    16000
## 324   38    76000
## 325   44    66000
## 326   68    11000
## 327   19    13000
## 328   28    55000
## 329   65    28000
## 330   60   191000
## 331   29    71000
## 332   72    17000
## 333   48    27000
## 334   33    53000
## 335   26    37000
## 336   75    21000
## 337   29    47000
## 338   30    30000
## 339   74     9000
## 340   24    18000
## 341   64    69000
## 342   74    51000
## 343   61    35000
## 344   20    28000
## 345   64   143000
## 346   66    80000
## 347   59    18000
## 348   54    41000
## 349   55    32000
## 350   71   310000
## 351   55   182000
## 352   44   154000
## 353   63    49000
## 354   61   143000
## 355   32    25000
## 356   19    19000
## 357   41    31000
## 358   68    10000
## 359   18    19000
## 360   54    83000
## 361   52   165000
## 362   70   117000
## 363   43    43000
## 364   77    58000
## 365   52    27000
## 366   30    40000
## 367   55   143000
## 368   54   118000
## 369   31    18000
## 370   60    20000
## 371   49    31000
## 372   39    36000
## 373   25    13000
## 374   74    11000
## 375   46    43000
## 376   33    25000
## 377   26    36000
## 378   62    11000
## 379   22    36000
## 380   43    42000
## 381   62    48000
## 382   51    31000
## 383   37    16000
## 384   57    47000
## 385   75    14000
## 386   68    47000
## 387   55   181000
## 388   39    92000
## 389   31    33000
## 390   74    13000
## 391   72    43000
## 392   31    34000
## 393   71   193000
## 394   27    33000
## 395   58    54000
## 396   42   117000
## 397   60    73000
## 398   44    33000
## 399   70   102000
## 400   67   103000
## 401   49    36000
## 402   44    64000
## 403   27    30000
## 404   54    74000
## 405   52    81000
## 406   26    37000
## 407   45    63000
## 408   20    23000
## 409   62    20000
## 410   25    24000
## 411   34    37000
## 412   60    33000
## 413   62    45000
## 414   56    54000
## 415   39    71000
## 416   35    51000
## 417   30    26000
## 418   27    70000
## 419   60    30000
## 420   61   105000
## 421   55   259000
## 422   26    40000
## 423   71    25000
## 424   66    49000
## 425   36    55000
## 426   67    65000
## 427   54    24000
## 428   66     9000
## 429   27    22000
## 430   33    98000
## 431   26    30000
## 432   37    57000
## 433   61    28000
## 434   75    63000
## 435   46    53000
## 436   36    29000
## 437   51    56000
## 438   55   208000
## 439   58    15000
## 440   38    55000
## 441   40   101000
## 442   26    19000
## 443   21    19000
## 444   19    32000
## 445   32    19000
## 446   42    78000
## 447   55    91000
## 448   59    78000
## 449   25    45000
## 450   57   293000
## 451   47    29000
## 452   28    25000
## 453   61    61000
## 454   48    94000
## 455   46    37000
## 456   35    38000
## 457   52    27000
## 458   67    57000
## 459   29    24000
## 460   49    44000
## 461   41    95000
## 462   66    32000
## 463   19    17000
## 464   44    32000
## 465   52    41000
## 466   50   207000
## 467   61   339000
## 468   71    59000
## 469   79    11000
## 470   41    24000
## 471   39   145000
## 472   50    60000
## 473   57    25000
## 474   63    91000
## 475   55    54000
## 476   72    50000
## 477   57    96000
## 478   74    66000
## 479   69   105000
## 480   37   147000
## 481   28    39000
## 482   35    53000
## 483   68   144000
## 484   42    22000
## 485   51    66000
## 486   27    14000
## 487   34    32000
## 488   20    24000
## 489   70    10000
## 490   67    38000
## 491   41    43000
## 492   76    15000
## 493   68    12000
## 494   40   107000
## 495   77    10000
## 496   74    19000
## 497   54    33000
## 498   36    41000
## 499   64   236000
## 500   23    44000
## 501   21    17000
## 502   53    94000
## 503   68    57000
## 504   57    70000
## 505   28    19000
## 506   55    68000
## 507   59   184000
## 508   47    54000
## 509   54    80000
## 510   43    60000
## 511   63     9000
## 512   40    43000
## 513   22    18000
## 514   33    38000
## 515   58    27000
## 516   51    35000
## 517   61    96000
## 518   33    53000
## 519   57    29000
## 520   76    20000
## 521   37    52000
## 522   65   296000
## 523   45    41000
## 524   56    20000
## 525   46    33000
## 526   75    12000
## 527   68    23000
## 528   65    21000
## 529   27    16000
## 530   68   108000
## 531   65   167000
## 532   56    20000
## 533   37    26000
## 534   53    49000
## 535   72    17000
## 536   58    19000
## 537   39    46000
## 538   39    83000
## 539   73    26000
## 540   51    46000
## 541   37    41000
## 542   18    13000
## 543   36    81000
## 544   65    31000
## 545   75   107000
## 546   33    32000
## 547   57    25000
## 548   54   125000
## 549   43    44000
## 550   31   137000
## 551   33    49000
## 552   20    28000
## 553   65    60000
## 554   62   186000
## 555   39    49000
## 556   36    34000
## 557   25    32000
## 558   43    28000
## 559   26    24000
## 560   20    27000
## 561   49    38000
## 562   22    17000
## 563   48    90000
## 564   74    26000
## 565   55   112000
## 566   58    70000
## 567   49   197000
## 568   23    15000
## 569   52    98000
## 570   36   116000
## 571   32    40000
## 572   45   190000
## 573   29    25000
## 574   49   240000
## 575   56    74000
## 576   68    17000
## 577   44    54000
## 578   57    73000
## 579   19    12000
## 580   51    23000
## 581   53   190000
## 582   69    72000
## 583   63    31000
## 584   36    47000
## 585   38    23000
## 586   63    52000
## 587   78    20000
## 588   44    23000
## 589   47   136000
## 590   37    39000
## 591   37    22000
## 592   68    36000
## 593   29    13000
## 594   51    68000
## 595   54    95000
## 596   55    75000
## 597   63   304000
## 598   75    14000
## 599   35    46000
## 600   28    39000
## 601   59     9000
## 602   36    96000
## 603   37    72000
## 604   18    18000
## 605   73     9000
## 606   67    28000
## 607   18    14000
## 608   76    17000
## 609   43    49000
## 610   42    25000
## 611   20    19000
## 612   63   183000
## 613   50   112000
## 614   70    54000
## 615   19    19000
## 616   25    21000
## 617   49    47000
## 618   55    58000
## 619   45   140000
## 620   76    14000
## 621   27    24000
## 622   51   203000
## 623   59    79000
## 624   32    62000
## 625   46    30000
## 626   75    22000
## 627   28    15000
## 628   76    20000
## 629   57    75000
## 630   24    35000
## 631   77    41000
## 632   69    14000
## 633   68    32000
## 634   61    25000
## 635   36    21000
## 636   33    35000
## 637   55    95000
## 638   64    72000
## 639   35    50000
## 640   44    72000
## 641   41    39000
## 642   51    91000
## 643   59   182000
## 644   50    84000
## 645   33    29000
## 646   31    23000
## 647   59    76000
## 648   67   388000
## 649   60   106000
## 650   33    23000
## 651   28    42000
## 652   69   165000
## 653   59   147000
## 654   20    18000
## 655   18    28000
## 656   74     9000
## 657   26    29000
## 658   32    54000
## 659   28    25000
## 660   60   218000
## 661   18    17000
## 662   19    17000
## 663   32   122000
## 664   31    23000
## 665   20    43000
## 666   45    25000
## 667   79     9000
## 668   61    58000
## 669   48   297000
## 670   20    26000
## 671   26    45000
## 672   23    22000
## 673   48    26000
## 674   56    80000
## 675   30    71000
## 676   35    34000
## 677   41    65000
## 678   24    19000
## 679   49    23000
## 680   52    85000
## 681   33    54000
## 682   45    37000
## 683   26    36000
## 684   31    18000
## 685   26    17000
## 686   76    20000
## 687   66    68000
## 688   33   149000
## 689   18    16000
## 690   72    46000
## 691   42    97000
## 692   42    95000
## 693   51    54000
## 694   34    37000
## 695   35    33000
## 696   40   120000
## 697   58    45000
## 698   54   197000
## 699   60    78000
## 700   66   148000
## 701   35    35000
## 702   41    58000
## 703   21    44000
## 704   18    19000
## 705   42    89000
## 706   71    97000
## 707   38    41000
## 708   69    16000
## 709   35    43000
## 710   29    35000
## 711   23    16000
## 712   62    84000
## 713   48    46000
## 714   33    39000
## 715   38    24000
## 716   68    54000
## 717   42    59000
## 718   78    10000
## 719   68    47000
## 720   25    14000
## 721   61   108000
## 722   47    36000
## 723   60    60000
## 724   40    33000
## 725   39    73000
## 726   52    70000
## 727   54    42000
## 728   48    34000
## 729   46   204000
## 730   26    16000
## 731   55    43000
## 732   38    18000
## 733   26    19000
## 734   79     9000
## 735   18    23000
## 736   73    18000
## 737   67    14000
## 738   53    44000
## 739   67     9000
## 740   79     9000
## 741   36    41000
## 742   26    42000
## 743   52    67000
## 744   64    25000
## 745   21    40000
## 746   30    28000
## 747   37    42000
## 748   69    58000
## 749   32    39000
## 750   75    46000
## 751   73    13000
## 752   51    62000
## 753   40    55000
## 754   36    26000
## 755   63   515000
## 756   41    39000
## 757   42    40000
## 758   52    59000
## 759   35    77000
## 760   32    15000
## 761   18    19000
## 762   28    22000
## 763   68    41000
## 764   20    16000
## 765   41    97000
## 766   24    18000
## 767   41    45000
## 768   23    13000
## 769   60    27000
## 770   58    45000
## 771   21    39000
## 772   49    76000
## 773   32    46000
## 774   42    73000
## 775   19    20000
## 776   25    36000
## 777   62   131000
## 778   25    40000
## 779   40    63000
## 780   49    73000
## 781   23    61000
## 782   68    24000
## 783   52    41000
## 784   27    25000
## 785   26    15000
## 786   22    20000
## 787   19    29000
## 788   46    62000
## 789   38    34000
## 790   34    22000
## 791   76    36000
## 792   21    24000
## 793   28    18000
## 794   40    28000
## 795   42    78000
## 796   51    40000
## 797   65    14000
## 798   47    78000
## 799   35    48000
## 800   55    99000
## 801   47    80000
## 802   77    29000
## 803   25    32000
## 804   30    24000
## 805   60    41000
## 806   64    83000
## 807   25    17000
## 808   24    22000
## 809   18    16000
## 810   52    33000
## 811   48    29000
## 812   51    84000
## 813   27    20000
## 814   54    41000
## 815   56   113000
## 816   36    42000
## 817   65    76000
## 818   46    91000
## 819   72    38000
## 820   66   167000
## 821   65   143000
## 822   79    27000
## 823   74    21000
## 824   42    57000
## 825   21    20000
## 826   65    11000
## 827   76    22000
## 828   40    30000
## 829   24    19000
## 830   78    25000
## 831   35    59000
## 832   45    51000
## 833   68    16000
## 834   68    74000
## 835   31    56000
## 836   43    32000
## 837   78    17000
## 838   42    39000
## 839   70    38000
## 840   47    34000
## 841   55    25000
## 842   18    15000
## 843   23    21000
## 844   26    30000
## 845   25    27000
## 846   26    23000
## 847   73    25000
## 848   63    59000
## 849   57    19000
## 850   24    19000
## 851   76    40000
## 852   65   172000
## 853   54    85000
## 854   19    25000
## 855   26    24000
## 856   22    20000
## 857   45    51000
## 858   66    36000
## 859   74    20000
## 860   49    45000
## 861   37    60000
## 862   25    22000
## 863   43   134000
## 864   51    33000
## 865   44    35000
## 866   63   130000
## 867   21    38000
## 868   19    24000
## 869   50    34000
## 870   48   226000
## 871   67    96000
## 872   30    16000
## 873   36    37000
## 874   63    33000
## 875   24    29000
## 876   79    24000
## 877   24    24000
## 878   20    32000
## 879   63    30000
## 880   63    42000
## 881   35    24000
## 882   29    20000
## 883   39    43000
## 884   55    79000
## 885   38    59000
## 886   48    36000
## 887   36    56000
## 888   79    18000
## 889   71    39000
## 890   26    52000
## 891   37    24000
## 892   51    42000
## 893   62    64000
## 894   28    61000
## 895   53   141000
## 896   62    60000
## 897   32    32000
## 898   50    86000
## 899   25    13000
## 900   70   150000
## 901   67   126000
## 902   22    22000
## 903   45    56000
## 904   59   118000
## 905   29    33000
## 906   68    57000
## 907   36    65000
## 908   34    64000
## 909   79    11000
## 910   49    38000
## 911   18    13000
## 912   20    24000
## 913   63    34000
## 914   67   114000
## 915   73     9000
## 916   64   116000
## 917   38   105000
## 918   26    18000
## 919   69    46000
## 920   34    52000
## 921   43    62000
## 922   47    73000
## 923   32    27000
## 924   48   212000
## 925   34    49000
## 926   33    48000
## 927   71     9000
## 928   47   111000
## 929   45    58000
## 930   71    54000
## 931   41    55000
## 932   65    29000
## 933   76     9000
## 934   67    39000
## 935   63    10000
## 936   53    25000
## 937   41    40000
## 938   77    66000
## 939   43    58000
## 940   66   109000
## 941   47    48000
## 942   63    76000
## 943   75    22000
## 944   37    35000
## 945   54    77000
## 946   27    23000
## 947   34   107000
## 948   28    56000
## 949   78    23000
## 950   66    64000
## 951   68    89000
## 952   23    60000
## 953   46    44000
## 954   41    63000
## 955   49   150000
## 956   68    13000
## 957   39    51000
## 958   23    39000
## 959   57    31000
## 960   20    13000
## 961   55   146000
## 962   48   121000
## 963   51    31000
## 964   27    44000
## 965   76    10000
## 966   30    27000
## 967   67    34000
## 968   42    92000
## 969   24    25000
## 970   42    38000
## 971   67    95000
## 972   40    63000
## 973   62    32000
## 974   19    13000
## 975   33    65000
## 976   47   148000
## 977   27    44000
## 978   30    17000
## 979   47    72000
## 980   71    53000
## 981   48   186000
## 982   59    29000
## 983   41    93000
## 984   36    60000
## 985   46    42000
## 986   38    85000
## 987   77    49000
## 988   23    26000
## 989   71    12000
## 990   68   411000
## 991   68    80000
## 992   63   136000
## 993   69    91000
## 994   45    81000
## 995   19    21000
## 996   68    75000
## 997   65    73000
## 998   77    17000
## 999   52    41000
## 1000  59    22000
## 1001  36    22000
## 1002  33    28000
## 1003  34    27000
## 1004  20    18000
## 1005  30    40000
## 1006  61   102000
## 1007  36    53000
## 1008  28    25000
## 1009  26    23000
## 1010  36    33000
## 1011  31    68000
## 1012  31    66000
## 1013  55    49000
## 1014  66    34000
## 1015  47   111000
## 1016  61    56000
## 1017  74    19000
## 1018  61   180000
## 1019  59    64000
## 1020  29    20000
## 1021  64    29000
## 1022  66    27000
## 1023  40    31000
## 1024  43    32000
## 1025  75    68000
## 1026  54    20000
## 1027  40    29000
## 1028  18    17000
## 1029  62    29000
## 1030  66    13000
## 1031  70    21000
## 1032  18    24000
## 1033  36    99000
## 1034  29    22000
## 1035  58   242000
## 1036  51    52000
## 1037  31    34000
## 1038  68     9000
## 1039  47    64000
## 1040  24    24000
## 1041  72    11000
## 1042  57    70000
## 1043  44    49000
## 1044  31    24000
## 1045  20    19000
## 1046  53    68000
## 1047  78    48000
## 1048  25    49000
## 1049  48    41000
## 1050  56    28000
## 1051  32    47000
## 1052  31    37000
## 1053  21    20000
## 1054  19    14000
## 1055  36    73000
## 1056  36    43000
## 1057  49    19000
## 1058  32    34000
## 1059  30    36000
## 1060  39   119000
## 1061  35    98000
## 1062  57    62000
## 1063  21    21000
## 1064  47    32000
## 1065  66    35000
## 1066  48    51000
## 1067  44    62000
## 1068  63    69000
## 1069  24    25000
## 1070  28    29000
## 1071  23    24000
## 1072  29    43000
## 1073  50    80000
## 1074  52    65000
## 1075  43    43000
## 1076  49    32000
## 1077  43    60000
## 1078  70    87000
## 1079  24    58000
## 1080  66    43000
## 1081  20    20000
## 1082  31    30000
## 1083  53    35000
## 1084  34   111000
## 1085  34    26000
## 1086  27    30000
## 1087  60    12000
## 1088  43    44000
## 1089  31    30000
## 1090  70    61000
## 1091  61    12000
## 1092  45   134000
## 1093  40    46000
## 1094  68    11000
## 1095  74    11000
## 1096  54    33000
## 1097  27    19000
## 1098  65    10000
## 1099  54    58000
## 1100  28    40000
## 1101  45    47000
## 1102  36    48000
## 1103  58  1073000
## 1104  70   240000
## 1105  18    28000
## 1106  74    35000
## 1107  20    28000
## 1108  70    32000
## 1109  42    44000
## 1110  21    16000
## 1111  74    39000
## 1112  69   115000
## 1113  45    47000
## 1114  58    31000
## 1115  75    35000
## 1116  66    38000
## 1117  18    16000
## 1118  66    80000
## 1119  32    53000
## 1120  76     9000
## 1121  43    49000
## 1122  44    54000
## 1123  18    14000
## 1124  76    42000
## 1125  48    25000
## 1126  35    36000
## 1127  30    30000
## 1128  32    37000
## 1129  64    30000
## 1130  53    53000
## 1131  61    49000
## 1132  30    30000
## 1133  25    26000
## 1134  24    24000
## 1135  78    23000
## 1136  44    50000
## 1137  26    41000
## 1138  19    18000
## 1139  35    51000
## 1140  53    51000
## 1141  37    37000
## 1142  36    29000
## 1143  69    68000
## 1144  78    10000
## 1145  54   109000
## 1146  64   158000
## 1147  40    47000
## 1148  73   259000
## 1149  45    52000
## 1150  74    22000
## 1151  34    41000
## 1152  55    22000
## 1153  65   224000
## 1154  60    34000
## 1155  50   103000
## 1156  25    30000
## 1157  54    37000
## 1158  32    27000
## 1159  24    16000
## 1160  55    26000
## 1161  43    89000
## 1162  20    28000
## 1163  66    56000
## 1164  23    25000
## 1165  69    40000
## 1166  37    29000
## 1167  29    48000
## 1168  53    67000
## 1169  57    77000
## 1170  68    93000
## 1171  46    26000
## 1172  73    20000
## 1173  35    87000
## 1174  21    14000
## 1175  27    44000
## 1176  79    18000
## 1177  18    17000
## 1178  40    29000
## 1179  78    76000
## 1180  51    84000
## 1181  58    21000
## 1182  49    67000
## 1183  56   122000
## 1184  72    27000
## 1185  40    46000
## 1186  57    78000
## 1187  34    30000
## 1188  20    33000
## 1189  63   179000
## 1190  48    80000
## 1191  18    17000
## 1192  23    18000
## 1193  54   280000
## 1194  64    42000
## 1195  56    32000
## 1196  68    45000
## 1197  66    13000
## 1198  49    55000
## 1199  37    20000
## 1200  24    33000
## 1201  56    59000
## 1202  71    12000
## 1203  52    58000
## 1204  72    84000
## 1205  44    62000
## 1206  61    27000
## 1207  36    63000
## 1208  31    56000
## 1209  57   202000
## 1210  33    29000
## 1211  25    35000
## 1212  44    29000
## 1213  49   138000
## 1214  57   145000
## 1215  21    21000
## 1216  27    17000
## 1217  23    14000
## 1218  67    10000
## 1219  67    24000
## 1220  30   127000
## 1221  61    22000
## 1222  46    27000
## 1223  36    71000
## 1224  53   130000
## 1225  21    20000
## 1226  37    56000
## 1227  26    48000
## 1228  55    60000
## 1229  22    19000
## 1230  42    72000
## 1231  48    56000
## 1232  34    58000
## 1233  60   106000
## 1234  23    22000
## 1235  27    21000
## 1236  43    41000
## 1237  46    45000
## 1238  75   346000
## 1239  43    34000
## 1240  61    68000
## 1241  35    25000
## 1242  48    25000
## 1243  79    19000
## 1244  35    44000
## 1245  53    81000
## 1246  55    48000
## 1247  35    39000
## 1248  37    19000
## 1249  70    16000
## 1250  63    68000
## 1251  58    35000
## 1252  74    38000
## 1253  34    29000
## 1254  54   113000
## 1255  71    37000
## 1256  71    34000
## 1257  69    46000
## 1258  29    32000
## 1259  51    36000
## 1260  69    73000
## 1261  21    20000
## 1262  55    55000
## 1263  51   187000
## 1264  64    32000
## 1265  33    28000
## 1266  24    16000
## 1267  49   146000
## 1268  33    30000
## 1269  56    45000
## 1270  45    56000
## 1271  35    60000
## 1272  19    18000
## 1273  54    24000
## 1274  25    26000
## 1275  61    55000
## 1276  33    33000
## 1277  27    78000
## 1278  18    20000
## 1279  22    19000
## 1280  22    25000
## 1281  24    47000
## 1282  77     9000
## 1283  18    14000
## 1284  44    60000
## 1285  42    21000
## 1286  39    54000
## 1287  24    32000
## 1288  74    12000
## 1289  39    67000
## 1290  25    19000
## 1291  42    40000
## 1292  32    21000
## 1293  76   179000
## 1294  28    17000
## 1295  31    21000
## 1296  28    28000
## 1297  31    28000
## 1298  56   170000
## 1299  61   129000
## 1300  46    29000
## 1301  18    28000
## 1302  48    46000
## 1303  28    77000
## 1304  28    70000
## 1305  50    31000
## 1306  66    48000
## 1307  43    30000
## 1308  79    98000
## 1309  44    57000
## 1310  71   137000
## 1311  31    56000
## 1312  60   142000
## 1313  24    20000
## 1314  23    15000
## 1315  70    49000
## 1316  29    32000
## 1317  18    22000
## 1318  53    74000
## 1319  39    38000
## 1320  62    47000
## 1321  55   112000
## 1322  78    19000
## 1323  34    29000
## 1324  78    12000
## 1325  21    21000
## 1326  24    18000
## 1327  21    31000
## 1328  42    79000
## 1329  38   113000
## 1330  62   160000
## 1331  53    83000
## 1332  63    14000
## 1333  54    97000
## 1334  59    46000
## 1335  57   111000
## 1336  68    37000
## 1337  26    43000
## 1338  46    33000
## 1339  37   102000
## 1340  42    42000
## 1341  48    92000
## 1342  27    33000
## 1343  28    27000
## 1344  48    23000
## 1345  40    27000
## 1346  56    32000
## 1347  60    44000
## 1348  61    42000
## 1349  34    50000
## 1350  75    15000
## 1351  25    22000
## 1352  31    40000
## 1353  40    71000
## 1354  66    88000
## 1355  31    23000
## 1356  21    29000
## 1357  67    11000
## 1358  30    23000
## 1359  64    69000
## 1360  53    83000
## 1361  19    21000
## 1362  69    60000
## 1363  71    20000
## 1364  25    29000
## 1365  75    48000
## 1366  39    38000
## 1367  41    37000
## 1368  76    68000
## 1369  53    88000
## 1370  21    44000
## 1371  54    90000
## 1372  47    29000
## 1373  50    35000
## 1374  48    91000
## 1375  69    29000
## 1376  29    24000
## 1377  35    49000
## 1378  22    20000
## 1379  51    68000
## 1380  69    72000
## 1381  34    29000
## 1382  47    74000
## 1383  77    10000
## 1384  37    35000
## 1385  75    68000
## 1386  52    33000
## 1387  25    16000
## 1388  46    63000
## 1389  59   159000
## 1390  33    37000
## 1391  61    34000
## 1392  75    15000
## 1393  35    30000
## 1394  41    42000
## 1395  37    28000
## 1396  57    31000
## 1397  39    53000
## 1398  60    59000
## 1399  21    29000
## 1400  22    21000
## 1401  65    41000
## 1402  72    29000
## 1403  42    92000
## 1404  56    26000
## 1405  46    59000
## 1406  74    18000
## 1407  29    16000
## 1408  25    22000
## 1409  18    16000
## 1410  69     9000
## 1411  71   209000
## 1412  42    30000
## 1413  27    72000
## 1414  18    24000
## 1415  40   138000
## 1416  24    15000
## 1417  54   108000
## 1418  63    87000
## 1419  24    42000
## 1420  35    25000
## 1421  24    20000
## 1422  36    23000
## 1423  45    57000
## 1424  45    32000
## 1425  52   140000
## 1426  53   106000
## 1427  33    23000
## 1428  53   103000
## 1429  42    45000
## 1430  25    23000
## 1431  69   115000
## 1432  77    53000
## 1433  49    66000
## 1434  70    74000
## 1435  72   261000
## 1436  60    88000
## 1437  76    11000
## 1438  38    54000
## 1439  22    20000
## 1440  31    30000
## 1441  30    23000
## 1442  75    22000
## 1443  27    89000
## 1444  63    44000
## 1445  73    25000
## 1446  22    35000
## 1447  27    34000
## 1448  72    12000
## 1449  44    35000
## 1450  24    21000
## 1451  77    90000
## 1452  19    17000
## 1453  47    46000
## 1454  48    36000
## 1455  34    47000
## 1456  59    32000
## 1457  68   148000
## 1458  28    37000
## 1459  41    33000
## 1460  69    48000
## 1461  43    93000
## 1462  28    39000
## 1463  21    40000
## 1464  19    13000
## 1465  38    52000
## 1466  23    22000
## 1467  72   137000
## 1468  48   134000
## 1469  50    91000
## 1470  63    77000
## 1471  79    12000
## 1472  61    46000
## 1473  51    36000
## 1474  35    29000
## 1475  31    31000
## 1476  44    41000
## 1477  31   156000
## 1478  63    37000
## 1479  52    41000
## 1480  39    37000
## 1481  64    52000
## 1482  35    19000
## 1483  22    20000
## 1484  21    16000
## 1485  24    30000
## 1486  34    45000
## 1487  61    22000
## 1488  62    68000
## 1489  68    69000
## 1490  78    28000
## 1491  39    64000
## 1492  40    44000
## 1493  51    27000
## 1494  63    14000
## 1495  78    16000
## 1496  53    61000
## 1497  52   119000
## 1498  52    67000
## 1499  42    91000
## 1500  48   117000
## 1501  69    18000
## 1502  51    57000
## 1503  53    40000
## 1504  56    48000
## 1505  37    81000
## 1506  18    25000
## 1507  52    85000
## 1508  21    20000
## 1509  64   133000
## 1510  23    28000
## 1511  40    33000
## 1512  72    88000
## 1513  51    52000
## 1514  74    11000
## 1515  73   130000
## 1516  26    37000
## 1517  38    33000
## 1518  25    40000
## 1519  26    19000
## 1520  22    44000
## 1521  70     9000
## 1522  44   123000
## 1523  57    54000
## 1524  29   137000
## 1525  29    35000
## 1526  45    38000
## 1527  51   218000
## 1528  64    35000
## 1529  28    33000
## 1530  77    21000
## 1531  66    11000
## 1532  23    14000
## 1533  44    91000
## 1534  75    20000
## 1535  56   102000
## 1536  35    66000
## 1537  24    44000
## 1538  35    44000
## 1539  59    67000
## 1540  33    20000
## 1541  56    38000
## 1542  56    76000
## 1543  39    49000
## 1544  41    40000
## 1545  21    27000
## 1546  51    70000
## 1547  37    38000
## 1548  29    38000
## 1549  78    15000
## 1550  41    40000
## 1551  46    44000
## 1552  43    73000
## 1553  71    10000
## 1554  19    17000
## 1555  79    13000
## 1556  74   167000
## 1557  44    43000
## 1558  42    80000
## 1559  35    29000
## 1560  42    55000
## 1561  48   116000
## 1562  55     9000
## 1563  60    75000
## 1564  52    70000
## 1565  55    89000
## 1566  35    34000
## 1567  64    10000
## 1568  27    38000
## 1569  79    10000
## 1570  42    92000
## 1571  57   234000
## 1572  27    27000
## 1573  26    16000
## 1574  76    16000
## 1575  27    29000
## 1576  66   179000
## 1577  19    18000
## 1578  36    29000
## 1579  39    80000
## 1580  63    10000
## 1581  30    28000
## 1582  59    67000
## 1583  45    68000
## 1584  20    30000
## 1585  33    28000
## 1586  73    44000
## 1587  24    19000
## 1588  70   179000
## 1589  73    12000
## 1590  29    29000
## 1591  57   166000
## 1592  51    40000
## 1593  76    18000
## 1594  53    27000
## 1595  78    17000
## 1596  48    36000
## 1597  65     9000
## 1598  54   168000
## 1599  41    37000
## 1600  61    80000
## 1601  21    18000
## 1602  65   115000
## 1603  31    28000
## 1604  18    15000
## 1605  53    59000
## 1606  79    10000
## 1607  34    65000
## 1608  63   109000
## 1609  51    99000
## 1610  32    49000
## 1611  36    27000
## 1612  60    22000
## 1613  45    35000
## 1614  47    90000
## 1615  72    25000
## 1616  48    24000
## 1617  35    81000
## 1618  71   295000
## 1619  34    24000
## 1620  79    14000
## 1621  56    26000
## 1622  65    70000
## 1623  54    58000
## 1624  31    25000
## 1625  64    58000
## 1626  37    51000
## 1627  48    68000
## 1628  68    18000
## 1629  20    24000
## 1630  43    45000
## 1631  45   112000
## 1632  26    19000
## 1633  28    23000
## 1634  68    37000
## 1635  19    29000
## 1636  63    15000
## 1637  71    93000
## 1638  30    49000
## 1639  46    84000
## 1640  33    31000
## 1641  59    36000
## 1642  18    23000
## 1643  23    18000
## 1644  66    51000
## 1645  56    47000
## 1646  31    18000
## 1647  50    93000
## 1648  23    18000
## 1649  19    16000
## 1650  55    29000
## 1651  21    14000
## 1652  29    18000
## 1653  34    31000
## 1654  58    82000
## 1655  41    33000
## 1656  66   293000
## 1657  30    76000
## 1658  61    38000
## 1659  18    13000
## 1660  33    37000
## 1661  64    51000
## 1662  27    17000
## 1663  56    84000
## 1664  32    81000
## 1665  29    22000
## 1666  56    63000
## 1667  76    13000
## 1668  60   113000
## 1669  67    86000
## 1670  28    38000
## 1671  21    18000
## 1672  36    17000
## 1673  28    54000
## 1674  55    69000
## 1675  35    20000
## 1676  34    30000
## 1677  69    35000
## 1678  46    28000
## 1679  29    55000
## 1680  63    21000
## 1681  59    54000
## 1682  71    14000
## 1683  39   210000
## 1684  32    62000
## 1685  33    16000
## 1686  18    44000
## 1687  56    90000
## 1688  28    20000
## 1689  44    67000
## 1690  22    24000
## 1691  79    12000
## 1692  70    13000
## 1693  24    14000
## 1694  71    12000
## 1695  28    45000
## 1696  55    61000
## 1697  62   185000
## 1698  55    69000
## 1699  34    66000
## 1700  74    11000
## 1701  40    53000
## 1702  60    37000
## 1703  49    49000
## 1704  78    13000
## 1705  23    15000
## 1706  58   118000
## 1707  53   252000
## 1708  45   112000
## 1709  51    64000
## 1710  21    30000
## 1711  50    90000
## 1712  63    61000
## 1713  26    29000
## 1714  31    38000
## 1715  59    50000
## 1716  28    30000
## 1717  32    33000
## 1718  49    27000
## 1719  25    21000
## 1720  38    77000
## 1721  48    41000
## 1722  61    61000
## 1723  44    31000
## 1724  18    15000
## 1725  37    42000
## 1726  50    29000
## 1727  73    39000
## 1728  60    89000
## 1729  38    71000
## 1730  24    21000
## 1731  48   300000
## 1732  20    26000
## 1733  44    41000
## 1734  42    47000
## 1735  55    79000
## 1736  40    62000
## 1737  65    34000
## 1738  50    61000
## 1739  71   123000
## 1740  58   112000
## 1741  50    64000
## 1742  75    10000
## 1743  56    63000
## 1744  61    75000
## 1745  19    21000
## 1746  37    46000
## 1747  40    61000
## 1748  78    32000
## 1749  28    20000
## 1750  54    36000
## 1751  64    50000
## 1752  73    51000
## 1753  75     9000
## 1754  35    25000
## 1755  66    64000
## 1756  38    28000
## 1757  37    60000
## 1758  22    23000
## 1759  23    43000
## 1760  65    84000
## 1761  70    13000
## 1762  36    35000
## 1763  62    64000
## 1764  61    13000
## 1765  61    13000
## 1766  63   174000
## 1767  45    27000
## 1768  53    24000
## 1769  19    20000
## 1770  78    26000
## 1771  68   313000
## 1772  64    31000
## 1773  68    41000
## 1774  59    87000
## 1775  44    37000
## 1776  26    28000
## 1777  73   188000
## 1778  39    23000
## 1779  28    75000
## 1780  35    38000
## 1781  37    74000
## 1782  41    57000
## 1783  39   133000
## 1784  57    79000
## 1785  77    25000
## 1786  68     9000
## 1787  54    45000
## 1788  41    94000
## 1789  57    23000
## 1790  39   156000
## 1791  25    37000
## 1792  53    21000
## 1793  62    72000
## 1794  35    34000
## 1795  26    30000
## 1796  60   142000
## 1797  68    89000
## 1798  23    18000
## 1799  53    91000
## 1800  44    43000
## 1801  63    66000
## 1802  68    67000
## 1803  32    34000
## 1804  22    17000
## 1805  44    41000
## 1806  67    11000
## 1807  42    33000
## 1808  76    29000
## 1809  29    52000
## 1810  58   226000
## 1811  29    34000
## 1812  37    53000
## 1813  52    60000
## 1814  30    39000
## 1815  26   100000
## 1816  65    20000
## 1817  77     9000
## 1818  69   117000
## 1819  71    24000
## 1820  24    15000
## 1821  50    32000
## 1822  60    69000
## 1823  37    82000
## 1824  47    32000
## 1825  42    32000
## 1826  33    48000
## 1827  42    54000
## 1828  62    76000
## 1829  34    36000
## 1830  77    14000
## 1831  77    60000
## 1832  58    48000
## 1833  40    25000
## 1834  57    48000
## 1835  21    18000
## 1836  77    14000
## 1837  64    11000
## 1838  19    12000
## 1839  64    25000
## 1840  32    69000
## 1841  59    29000
## 1842  20    22000
## 1843  39    33000
## 1844  58    69000
## 1845  28    64000
## 1846  52   173000
## 1847  20    15000
## 1848  34    21000
## 1849  46    26000
## 1850  48    38000
## 1851  51    62000
## 1852  55   117000
## 1853  33    22000
## 1854  51    60000
## 1855  37    28000
## 1856  33    47000
## 1857  66   123000
## 1858  57    33000
## 1859  35    23000
## 1860  36    36000
## 1861  46    58000
## 1862  57    33000
## 1863  48   107000
## 1864  57    43000
## 1865  73   123000
## 1866  22    17000
## 1867  77    11000
## 1868  21    15000
## 1869  49    80000
## 1870  19    32000
## 1871  41    31000
## 1872  55    67000
## 1873  38   119000
## 1874  26    18000
## 1875  27    34000
## 1876  47   185000
## 1877  50    38000
## 1878  27    42000
## 1879  48    46000
## 1880  46    30000
## 1881  22    16000
## 1882  37    87000
## 1883  68    84000
## 1884  55   109000
## 1885  56    60000
## 1886  38    37000
## 1887  26    35000
## 1888  38    57000
## 1889  66    18000
## 1890  47   164000
## 1891  77    15000
## 1892  49    63000
## 1893  76     9000
## 1894  49    67000
## 1895  79    14000
## 1896  18    11000
## 1897  60     9000
## 1898  69    73000
## 1899  76    42000
## 1900  60    81000
## 1901  62   123000
## 1902  66   111000
## 1903  27    46000
## 1904  73    12000
## 1905  79    13000
## 1906  18    16000
## 1907  35    35000
## 1908  19    28000
## 1909  36    46000
## 1910  44    34000
## 1911  37    39000
## 1912  39    57000
## 1913  58    16000
## 1914  29    38000
## 1915  71    22000
## 1916  36    36000
## 1917  69    40000
## 1918  63    74000
## 1919  66    13000
## 1920  78    15000
## 1921  46    80000
## 1922  44    38000
## 1923  63    55000
## 1924  69    72000
## 1925  63    33000
## 1926  55   129000
## 1927  49    42000
## 1928  56    48000
## 1929  65    53000
## 1930  65   144000
## 1931  53    35000
## 1932  25    94000
## 1933  76    17000
## 1934  62    65000
## 1935  43    42000
## 1936  28    37000
## 1937  23    21000
## 1938  48    33000
## 1939  63    71000
## 1940  66    32000
## 1941  27   135000
## 1942  56   142000
## 1943  42    56000
## 1944  35    25000
## 1945  53    73000
## 1946  46   131000
## 1947  55    89000
## 1948  60    48000
## 1949  29    22000
## 1950  65     9000
## 1951  49    73000
## 1952  45    67000
## 1953  66    25000
## 1954  18    14000
## 1955  61   123000
## 1956  79    57000
## 1957  50    85000
## 1958  70   324000
## 1959  46    88000
## 1960  28    20000
## 1961  46    90000
## 1962  52   128000
## 1963  35    60000
## 1964  53   368000
## 1965  58    32000
## 1966  75    16000
## 1967  35    42000
## 1968  43    51000
## 1969  62    75000
## 1970  60    52000
## 1971  78     9000
## 1972  72    10000
## 1973  64    42000
## 1974  40    61000
## 1975  48    25000
## 1976  30    90000
## 1977  29    42000
## 1978  68   110000
## 1979  63    97000
## 1980  62   131000
## 1981  57    54000
## 1982  32    40000
## 1983  23    47000
## 1984  58    44000
## 1985  35    34000
## 1986  58    46000
## 1987  71    53000
## 1988  21    20000
## 1989  34    29000
## 1990  79    12000
## 1991  18    15000
## 1992  72    10000
## 1993  46    47000
## 1994  37    22000
## 1995  72    58000
## 1996  37    28000
## 1997  69   106000
## 1998  64    10000
## 1999  32    29000
## 2000  67   128000
## 2001  25    53000
## 2002  65    21000
## 2003  54    51000
## 2004  55    47000
## 2005  79    28000
## 2006  68    33000
## 2007  62    43000
## 2008  72    11000
## 2009  72    82000
## 2010  50    47000
## 2011  21    20000
## 2012  79    12000
## 2013  37    28000
## 2014  31   118000
## 2015  68    10000
## 2016  44   144000
## 2017  29    25000
## 2018  24    61000
## 2019  77    13000
## 2020  25    17000
## 2021  44    38000
## 2022  65    36000
## 2023  49    35000
## 2024  29    18000
## 2025  21    16000
## 2026  29   199000
## 2027  24    28000
## 2028  27    43000
## 2029  67    81000
## 2030  33    47000
## 2031  32    40000
## 2032  20    28000
## 2033  25    25000
## 2034  45    30000
## 2035  53   104000
## 2036  25    25000
## 2037  40    54000
## 2038  56   109000
## 2039  76    14000
## 2040  36    30000
## 2041  24    97000
## 2042  43    46000
## 2043  65    16000
## 2044  71    63000
## 2045  46    56000
## 2046  72    67000
## 2047  18    17000
## 2048  25    50000
## 2049  42    40000
## 2050  51    29000
## 2051  28    19000
## 2052  47    88000
## 2053  43    92000
## 2054  38    41000
## 2055  30    36000
## 2056  43    26000
## 2057  73   127000
## 2058  66    52000
## 2059  66    71000
## 2060  60    82000
## 2061  78    16000
## 2062  57   472000
## 2063  67    92000
## 2064  25    23000
## 2065  76    51000
## 2066  67    47000
## 2067  50    54000
## 2068  77    20000
## 2069  21    15000
## 2070  21    21000
## 2071  76     9000
## 2072  46   171000
## 2073  37    34000
## 2074  21    23000
## 2075  73     9000
## 2076  58    79000
## 2077  59    20000
## 2078  37    24000
## 2079  22    13000
## 2080  58   409000
## 2081  76    12000
## 2082  33    52000
## 2083  37    58000
## 2084  62   106000
## 2085  33    30000
## 2086  53    29000
## 2087  76    25000
## 2088  24    53000
## 2089  52    66000
## 2090  33    30000
## 2091  19    14000
## 2092  51    69000
## 2093  30   104000
## 2094  53    66000
## 2095  32    69000
## 2096  74    15000
## 2097  54    32000
## 2098  53    28000
## 2099  46    23000
## 2100  61    29000
## 2101  42    62000
## 2102  38    28000
## 2103  46    27000
## 2104  70    21000
## 2105  63   170000
## 2106  30    41000
## 2107  50    24000
## 2108  76    17000
## 2109  54   133000
## 2110  37    44000
## 2111  74    16000
## 2112  37    49000
## 2113  61   118000
## 2114  79    16000
## 2115  38    49000
## 2116  61   146000
## 2117  49    58000
## 2118  25    30000
## 2119  35    56000
## 2120  34    49000
## 2121  55    78000
## 2122  52   142000
## 2123  25    20000
## 2124  53    66000
## 2125  69    10000
## 2126  70    91000
## 2127  33    43000
## 2128  36    80000
## 2129  69    33000
## 2130  26    31000
## 2131  50   228000
## 2132  76    13000
## 2133  63   163000
## 2134  47   122000
## 2135  71    84000
## 2136  74    16000
## 2137  56   142000
## 2138  28    25000
## 2139  41    32000
## 2140  45    97000
## 2141  46    32000
## 2142  40    25000
## 2143  34    37000
## 2144  18    16000
## 2145  20    35000
## 2146  53    51000
## 2147  24    34000
## 2148  78    25000
## 2149  33    35000
## 2150  78    13000
## 2151  24    32000
## 2152  26    29000
## 2153  64    13000
## 2154  70    15000
## 2155  57    56000
## 2156  29    25000
## 2157  44    95000
## 2158  50    71000
## 2159  47    24000
## 2160  79    10000
## 2161  22    14000
## 2162  75    33000
## 2163  65    50000
## 2164  69    30000
## 2165  54    94000
## 2166  61    52000
## 2167  55   169000
## 2168  33    73000
## 2169  72    45000
## 2170  67    62000
## 2171  58   127000
## 2172  65    30000
## 2173  52    81000
## 2174  18    15000
## 2175  70    14000
## 2176  52   114000
## 2177  70    49000
## 2178  61    29000
## 2179  19    22000
## 2180  50    87000
## 2181  67   131000
## 2182  64    31000
## 2183  21    20000
## 2184  73    16000
## 2185  32    21000
## 2186  31    22000
## 2187  78    11000
## 2188  42    52000
## 2189  63    44000
## 2190  76    89000
## 2191  68    11000
## 2192  27    35000
## 2193  52   995000
## 2194  27    51000
## 2195  63   168000
## 2196  50    26000
## 2197  48    27000
## 2198  51    84000
## 2199  59   338000
## 2200  32    76000
## 2201  66    11000
## 2202  75    10000
## 2203  51    35000
## 2204  55    74000
## 2205  70    52000
## 2206  47    90000
## 2207  33    49000
## 2208  57    49000
## 2209  60    38000
## 2210  66    71000
## 2211  21    43000
## 2212  75    51000
## 2213  62    65000
## 2214  71   112000
## 2215  43    23000
## 2216  67    20000
## 2217  42    43000
## 2218  77    68000
## 2219  48    74000
## 2220  36    27000
## 2221  70    37000
## 2222  73    95000
## 2223  50    92000
## 2224  21    29000
## 2225  46    46000
## 2226  20    16000
## 2227  50    61000
## 2228  64    46000
## 2229  32    33000
## 2230  44   100000
## 2231  30    46000
## 2232  33    38000
## 2233  75    13000
## 2234  70     9000
## 2235  38    92000
## 2236  20    15000
## 2237  62   111000
## 2238  78    40000
## 2239  34    33000
## 2240  31    52000
## 2241  70    15000
## 2242  24    27000
## 2243  18    11000
## 2244  46    26000
## 2245  65    67000
## 2246  75    18000
## 2247  68    16000
## 2248  42    69000
## 2249  18    15000
## 2250  23    25000
## 2251  31    42000
## 2252  67   132000
## 2253  60    99000
## 2254  45    71000
## 2255  32    34000
## 2256  24    19000
## 2257  20    20000
## 2258  18    16000
## 2259  42    44000
## 2260  46   101000
## 2261  43    43000
## 2262  34    28000
## 2263  50    51000
## 2264  33    75000
## 2265  78    13000
## 2266  61    82000
## 2267  22    30000
## 2268  21    16000
## 2269  29    86000
## 2270  18    18000
## 2271  28    31000
## 2272  28    22000
## 2273  76    11000
## 2274  72    23000
## 2275  52   261000
## 2276  73    53000
## 2277  68    18000
## 2278  58   360000
## 2279  20    21000
## 2280  28    29000
## 2281  18    20000
## 2282  41    73000
## 2283  30    42000
## 2284  23    34000
## 2285  39    42000
## 2286  30    74000
## 2287  70    12000
## 2288  51    60000
## 2289  37    89000
## 2290  29    29000
## 2291  42    29000
## 2292  31    32000
## 2293  55   103000
## 2294  23    39000
## 2295  49   150000
## 2296  21    18000
## 2297  19    19000
## 2298  51    66000
## 2299  28    34000
## 2300  45    38000
## 2301  25    20000
## 2302  76    29000
## 2303  57   111000
## 2304  64    26000
## 2305  37    45000
## 2306  41    74000
## 2307  42    63000
## 2308  71    60000
## 2309  41    45000
## 2310  32    36000
## 2311  34    29000
## 2312  52    52000
## 2313  30    30000
## 2314  33    26000
## 2315  67    45000
## 2316  45    17000
## 2317  57    14000
## 2318  38   115000
## 2319  58    67000
## 2320  60    77000
## 2321  67    30000
## 2322  62    16000
## 2323  60    86000
## 2324  41    56000
## 2325  29    16000
## 2326  51    37000
## 2327  47    60000
## 2328  75    11000
## 2329  36    55000
## 2330  76    28000
## 2331  41    34000
## 2332  61    40000
## 2333  53   100000
## 2334  51    40000
## 2335  57    48000
## 2336  51    58000
## 2337  53    97000
## 2338  21    30000
## 2339  21    25000
## 2340  66    77000
## 2341  40    27000
## 2342  24    35000
## 2343  59    53000
## 2344  60    52000
## 2345  58   129000
## 2346  18    16000
## 2347  70   418000
## 2348  63    11000
## 2349  56    55000
## 2350  46    62000
## 2351  67    18000
## 2352  25    33000
## 2353  40    68000
## 2354  64    44000
## 2355  46    33000
## 2356  24    45000
## 2357  50    68000
## 2358  49   117000
## 2359  26    21000
## 2360  45   148000
## 2361  36    35000
## 2362  72    55000
## 2363  54    32000
## 2364  35    19000
## 2365  50    70000
## 2366  39    30000
## 2367  38    85000
## 2368  66    11000
## 2369  28    21000
## 2370  56    64000
## 2371  69    18000
## 2372  77    21000
## 2373  74    92000
## 2374  78    84000
## 2375  64   106000
## 2376  61    38000
## 2377  42    52000
## 2378  26    20000
## 2379  67   166000
## 2380  72     9000
## 2381  42    44000
## 2382  28   124000
## 2383  71    37000
## 2384  63   109000
## 2385  41    74000
## 2386  63    21000
## 2387  74    10000
## 2388  69    62000
## 2389  57   124000
## 2390  34   132000
## 2391  43    37000
## 2392  57    45000
## 2393  37    31000
## 2394  35    41000
## 2395  39    85000
## 2396  23    28000
## 2397  75    20000
## 2398  61   135000
## 2399  32    66000
## 2400  19    23000
## 2401  27    24000
## 2402  66    59000
## 2403  29    22000
## 2404  20    25000
## 2405  57    31000
## 2406  78    17000
## 2407  73   218000
## 2408  51    85000
## 2409  21    22000
## 2410  48    49000
## 2411  40    28000
## 2412  45    18000
## 2413  61    66000
## 2414  20    20000
## 2415  66   109000
## 2416  37    22000
## 2417  50   133000
## 2418  74    57000
## 2419  32    30000
## 2420  44    38000
## 2421  38    36000
## 2422  23    84000
## 2423  78    33000
## 2424  46    61000
## 2425  74   104000
## 2426  35    34000
## 2427  48    25000
## 2428  39    37000
## 2429  23    16000
## 2430  40    44000
## 2431  35    37000
## 2432  57    73000
## 2433  39    84000
## 2434  34   142000
## 2435  27    62000
## 2436  69    30000
## 2437  66    31000
## 2438  26    28000
## 2439  79     9000
## 2440  77    10000
## 2441  59   300000
## 2442  24    22000
## 2443  23    29000
## 2444  41    30000
## 2445  18    41000
## 2446  69    38000
## 2447  61    16000
## 2448  19    22000
## 2449  48    27000
## 2450  23    16000
## 2451  55    18000
## 2452  24    24000
## 2453  29    67000
## 2454  21    37000
## 2455  18    14000
## 2456  57    40000
## 2457  42    75000
## 2458  57    97000
## 2459  39    24000
## 2460  79    17000
## 2461  65    82000
## 2462  43    54000
## 2463  55    48000
## 2464  37    57000
## 2465  26    41000
## 2466  29    20000
## 2467  34   125000
## 2468  18    18000
## 2469  58    99000
## 2470  18    15000
## 2471  23    28000
## 2472  19    23000
## 2473  63    22000
## 2474  65    37000
## 2475  34    97000
## 2476  46   161000
## 2477  39    22000
## 2478  64   279000
## 2479  45    39000
## 2480  39    42000
## 2481  60    41000
## 2482  35    46000
## 2483  75    95000
## 2484  20    30000
## 2485  38    56000
## 2486  62    38000
## 2487  62    49000
## 2488  19    16000
## 2489  79    14000
## 2490  74   323000
## 2491  43    42000
## 2492  18    13000
## 2493  34    72000
## 2494  22    26000
## 2495  75   138000
## 2496  48    68000
## 2497  35    33000
## 2498  64    53000
## 2499  28    37000
## 2500  54    36000
## 2501  44    47000
## 2502  50   100000
## 2503  22    18000
## 2504  56    99000
## 2505  32    34000
## 2506  46    37000
## 2507  59   257000
## 2508  60    30000
## 2509  76    15000
## 2510  30    27000
## 2511  72    15000
## 2512  48    31000
## 2513  27    72000
## 2514  26    70000
## 2515  61    90000
## 2516  28    29000
## 2517  23    30000
## 2518  42    23000
## 2519  42    40000
## 2520  29    24000
## 2521  56    57000
## 2522  18    15000
## 2523  40    44000
## 2524  30    18000
## 2525  29    32000
## 2526  41    61000
## 2527  24    29000
## 2528  60    86000
## 2529  32    50000
## 2530  45    57000
## 2531  56   150000
## 2532  22    22000
## 2533  38   117000
## 2534  75    18000
## 2535  65    44000
## 2536  49    51000
## 2537  24    12000
## 2538  37    27000
## 2539  75    22000
## 2540  39    19000
## 2541  32    29000
## 2542  24    17000
## 2543  32    23000
## 2544  58    38000
## 2545  27   144000
## 2546  63    52000
## 2547  28    29000
## 2548  58   133000
## 2549  56   140000
## 2550  59    74000
## 2551  75   134000
## 2552  67    11000
## 2553  30    32000
## 2554  40    25000
## 2555  55    29000
## 2556  74    26000
## 2557  36   142000
## 2558  52    35000
## 2559  23    22000
## 2560  18    14000
## 2561  25    27000
## 2562  34   123000
## 2563  20    14000
## 2564  25    15000
## 2565  41    40000
## 2566  23    26000
## 2567  48   140000
## 2568  35    23000
## 2569  72    15000
## 2570  34    36000
## 2571  26    25000
## 2572  69    28000
## 2573  58   149000
## 2574  78    56000
## 2575  56    77000
## 2576  77    26000
## 2577  29    86000
## 2578  31    38000
## 2579  44    46000
## 2580  58   138000
## 2581  25    25000
## 2582  30    48000
## 2583  44    36000
## 2584  77    24000
## 2585  45    36000
## 2586  38    56000
## 2587  34    31000
## 2588  34    29000
## 2589  68    34000
## 2590  39    43000
## 2591  22    31000
## 2592  74     9000
## 2593  64    81000
## 2594  50   120000
## 2595  49    48000
## 2596  53    26000
## 2597  37    70000
## 2598  22    15000
## 2599  61    53000
## 2600  64   113000
## 2601  23    31000
## 2602  28    33000
## 2603  61    98000
## 2604  21    20000
## 2605  36   122000
## 2606  23    22000
## 2607  66   133000
## 2608  18    25000
## 2609  48    80000
## 2610  27    29000
## 2611  25    23000
## 2612  21    22000
## 2613  69    14000
## 2614  55    41000
## 2615  41    48000
## 2616  37    45000
## 2617  53    40000
## 2618  32    83000
## 2619  37    52000
## 2620  75    17000
## 2621  36    63000
## 2622  49    31000
## 2623  27    32000
## 2624  22    32000
## 2625  71    49000
## 2626  25    37000
## 2627  52    69000
## 2628  53    47000
## 2629  47    29000
## 2630  18    15000
## 2631  27    17000
## 2632  27    30000
## 2633  41    59000
## 2634  28    45000
## 2635  77    19000
## 2636  41    81000
## 2637  41    81000
## 2638  46    28000
## 2639  32    59000
## 2640  26    26000
## 2641  34    47000
## 2642  32    24000
## 2643  29    24000
## 2644  31    29000
## 2645  36    78000
## 2646  62    90000
## 2647  59    47000
## 2648  72    31000
## 2649  22    19000
## 2650  30    23000
## 2651  56    28000
## 2652  56    35000
## 2653  66    57000
## 2654  66    10000
## 2655  28    22000
## 2656  55    46000
## 2657  26    22000
## 2658  54   111000
## 2659  54    91000
## 2660  60    46000
## 2661  37    26000
## 2662  20    40000
## 2663  47    84000
## 2664  78     9000
## 2665  46    37000
## 2666  26    18000
## 2667  43    29000
## 2668  28    20000
## 2669  34    64000
## 2670  77    22000
## 2671  31    42000
## 2672  23    22000
## 2673  25    15000
## 2674  76     9000
## 2675  50    84000
## 2676  51   103000
## 2677  35    41000
## 2678  53    54000
## 2679  54    48000
## 2680  37    76000
## 2681  50    26000
## 2682  73    14000
## 2683  79     9000
## 2684  37    30000
## 2685  47    52000
## 2686  66   160000
## 2687  46    37000
## 2688  31    36000
## 2689  19    20000
## 2690  18    17000
## 2691  25    18000
## 2692  69   111000
## 2693  72     9000
## 2694  50    29000
## 2695  36    60000
## 2696  61    26000
## 2697  52    84000
## 2698  37    58000
## 2699  25    38000
## 2700  19    11000
## 2701  27    24000
## 2702  58    11000
## 2703  63   101000
## 2704  50    47000
## 2705  24    14000
## 2706  67   181000
## 2707  23    53000
## 2708  44    24000
## 2709  50    26000
## 2710  34    24000
## 2711  46    68000
## 2712  67    52000
## 2713  32    38000
## 2714  30    41000
## 2715  72    22000
## 2716  62    30000
## 2717  55    87000
## 2718  18    16000
## 2719  66    26000
## 2720  39   112000
## 2721  58    42000
## 2722  56    67000
## 2723  64    18000
## 2724  72   130000
## 2725  26    20000
## 2726  43    20000
## 2727  37    30000
## 2728  20    13000
## 2729  29    25000
## 2730  40    28000
## 2731  19    22000
## 2732  68    23000
## 2733  48    65000
## 2734  57   171000
## 2735  39    52000
## 2736  69    38000
## 2737  68    10000
## 2738  62    53000
## 2739  48    34000
## 2740  44    67000
## 2741  75    55000
## 2742  60    39000
## 2743  36    29000
## 2744  18    20000
## 2745  79    26000
## 2746  46    45000
## 2747  49    53000
## 2748  30    26000
## 2749  29    31000
## 2750  31   215000
## 2751  77    27000
## 2752  26    16000
## 2753  31    42000
## 2754  64   180000
## 2755  32   227000
## 2756  60    12000
## 2757  35    37000
## 2758  18    14000
## 2759  68   186000
## 2760  43    68000
## 2761  19    16000
## 2762  59    36000
## 2763  53    86000
## 2764  48    89000
## 2765  47   106000
## 2766  58    73000
## 2767  25    33000
## 2768  56    55000
## 2769  68    20000
## 2770  66    68000
## 2771  38    33000
## 2772  22    20000
## 2773  77    10000
## 2774  49    59000
## 2775  69    81000
## 2776  19    14000
## 2777  69    23000
## 2778  40    97000
## 2779  51    64000
## 2780  58    62000
## 2781  49    87000
## 2782  36    34000
## 2783  60    93000
## 2784  41    50000
## 2785  52    62000
## 2786  25    34000
## 2787  50   132000
## 2788  69    39000
## 2789  69     9000
## 2790  24    25000
## 2791  37    43000
## 2792  42    66000
## 2793  35    35000
## 2794  36    43000
## 2795  65    66000
## 2796  70    23000
## 2797  73    11000
## 2798  39    24000
## 2799  24    92000
## 2800  25    19000
## 2801  59   143000
## 2802  23    79000
## 2803  30    50000
## 2804  63    93000
## 2805  67    19000
## 2806  38    43000
## 2807  24    34000
## 2808  40    22000
## 2809  18    20000
## 2810  18    18000
## 2811  53   181000
## 2812  70    90000
## 2813  51    33000
## 2814  38   167000
## 2815  33    33000
## 2816  74     9000
## 2817  56   112000
## 2818  66    44000
## 2819  21    18000
## 2820  28    30000
## 2821  41    35000
## 2822  27    22000
## 2823  38    32000
## 2824  18    23000
## 2825  67    68000
## 2826  71   175000
## 2827  37    54000
## 2828  45    55000
## 2829  65    30000
## 2830  22    31000
## 2831  65    95000
## 2832  58    43000
## 2833  62    66000
## 2834  25    32000
## 2835  46   124000
## 2836  46    64000
## 2837  33    28000
## 2838  61    48000
## 2839  71   102000
## 2840  19    36000
## 2841  24    26000
## 2842  23    22000
## 2843  54    35000
## 2844  70    87000
## 2845  19    19000
## 2846  44    22000
## 2847  79    12000
## 2848  62   111000
## 2849  35    53000
## 2850  41    44000
## 2851  69    22000
## 2852  20    42000
## 2853  76    18000
## 2854  65   122000
## 2855  34    31000
## 2856  63   215000
## 2857  65    10000
## 2858  69    73000
## 2859  79    33000
## 2860  34    29000
## 2861  50    23000
## 2862  49   191000
## 2863  58   156000
## 2864  59   137000
## 2865  43    77000
## 2866  25    17000
## 2867  39    35000
## 2868  32    24000
## 2869  70    60000
## 2870  36    56000
## 2871  31    23000
## 2872  23    16000
## 2873  44    34000
## 2874  31    26000
## 2875  45    53000
## 2876  21    21000
## 2877  50    48000
## 2878  38    46000
## 2879  71     9000
## 2880  36    52000
## 2881  76    53000
## 2882  53    61000
## 2883  60    36000
## 2884  76    48000
## 2885  52    48000
## 2886  27    21000
## 2887  55    15000
## 2888  25    36000
## 2889  65    78000
## 2890  72    75000
## 2891  64   273000
## 2892  49    87000
## 2893  18    16000
## 2894  34    25000
## 2895  63    13000
## 2896  41    28000
## 2897  77    54000
## 2898  21    17000
## 2899  37    24000
## 2900  56    24000
## 2901  60    34000
## 2902  42    96000
## 2903  44    82000
## 2904  48    74000
## 2905  71   174000
## 2906  51    89000
## 2907  40    62000
## 2908  34    22000
## 2909  64   193000
## 2910  44    35000
## 2911  22    16000
## 2912  39    75000
## 2913  34    54000
## 2914  38    42000
## 2915  37    28000
## 2916  37    47000
## 2917  55    96000
## 2918  35    32000
## 2919  63    18000
## 2920  47    58000
## 2921  26    41000
## 2922  38    37000
## 2923  40    39000
## 2924  40    49000
## 2925  77   159000
## 2926  30    56000
## 2927  33    55000
## 2928  25    27000
## 2929  27    19000
## 2930  77     9000
## 2931  54    29000
## 2932  79    17000
## 2933  36    29000
## 2934  42   142000
## 2935  67   169000
## 2936  27    27000
## 2937  73    15000
## 2938  63    14000
## 2939  47    43000
## 2940  75    13000
## 2941  63    55000
## 2942  53    36000
## 2943  61    33000
## 2944  31    20000
## 2945  21    15000
## 2946  46    54000
## 2947  47    62000
## 2948  58   125000
## 2949  71   146000
## 2950  25    13000
## 2951  68    19000
## 2952  31    70000
## 2953  54   119000
## 2954  63    45000
## 2955  26    46000
## 2956  35    36000
## 2957  60    73000
## 2958  34    60000
## 2959  25    46000
## 2960  63   237000
## 2961  25    30000
## 2962  30    45000
## 2963  64    46000
## 2964  31    33000
## 2965  60   147000
## 2966  65    42000
## 2967  51    62000
## 2968  46    88000
## 2969  44    30000
## 2970  70   345000
## 2971  75   133000
## 2972  35    35000
## 2973  44    32000
## 2974  30    45000
## 2975  31    18000
## 2976  19    20000
## 2977  55    56000
## 2978  25    20000
## 2979  30    35000
## 2980  18    17000
## 2981  34    48000
## 2982  29    15000
## 2983  20    16000
## 2984  24    28000
## 2985  66    17000
## 2986  54    57000
## 2987  49    44000
## 2988  32    26000
## 2989  27    18000
## 2990  41    87000
## 2991  19    21000
## 2992  47   185000
## 2993  54    42000
## 2994  37    48000
## 2995  45    53000
## 2996  50    97000
## 2997  57    99000
## 2998  18    12000
## 2999  46   113000
## 3000  78     9000
## 3001  28    34000
## 3002  20    14000
## 3003  65    18000
## 3004  57    26000
## 3005  59    46000
## 3006  57    92000
## 3007  19    14000
## 3008  21    34000
## 3009  60   158000
## 3010  46    84000
## 3011  68    51000
## 3012  18    15000
## 3013  31    27000
## 3014  33    32000
## 3015  57    40000
## 3016  18    16000
## 3017  33    38000
## 3018  44    28000
## 3019  63    97000
## 3020  60    52000
## 3021  43    86000
## 3022  68    35000
## 3023  78    15000
## 3024  32    19000
## 3025  48    24000
## 3026  33    55000
## 3027  47   132000
## 3028  21    15000
## 3029  55    31000
## 3030  35    32000
## 3031  66    32000
## 3032  33    33000
## 3033  58   117000
## 3034  56    34000
## 3035  21    17000
## 3036  38    53000
## 3037  22    21000
## 3038  50    70000
## 3039  19    19000
## 3040  66   165000
## 3041  33   120000
## 3042  28    29000
## 3043  60    28000
## 3044  67    70000
## 3045  20    16000
## 3046  22    18000
## 3047  34    41000
## 3048  19    16000
## 3049  43    23000
## 3050  60   115000
## 3051  40    27000
## 3052  37    37000
## 3053  58   197000
## 3054  49    51000
## 3055  35    73000
## 3056  19    18000
## 3057  55    56000
## 3058  47    34000
## 3059  29    26000
## 3060  49    71000
## 3061  52    20000
## 3062  45    42000
## 3063  38    32000
## 3064  42    48000
## 3065  48    36000
## 3066  74   255000
## 3067  77    26000
## 3068  28    25000
## 3069  57   780000
## 3070  68    68000
## 3071  67    55000
## 3072  27    20000
## 3073  54   112000
## 3074  67    63000
## 3075  32    36000
## 3076  30    29000
## 3077  20    16000
## 3078  40    70000
## 3079  19    16000
## 3080  57    44000
## 3081  23    60000
## 3082  60   121000
## 3083  43    33000
## 3084  42    54000
## 3085  38    84000
## 3086  29    25000
## 3087  39    86000
## 3088  62    59000
## 3089  42    30000
## 3090  34    67000
## 3091  67    11000
## 3092  77    86000
## 3093  25    32000
## 3094  35    51000
## 3095  64    61000
## 3096  33    44000
## 3097  28    30000
## 3098  70    49000
## 3099  23    90000
## 3100  67    26000
## 3101  42    45000
## 3102  77    13000
## 3103  55    54000
## 3104  62    74000
## 3105  66    66000
## 3106  45    32000
## 3107  66    34000
## 3108  54   126000
## 3109  50    51000
## 3110  61    15000
## 3111  70    88000
## 3112  39    46000
## 3113  25    12000
## 3114  38    33000
## 3115  48    56000
## 3116  53   196000
## 3117  79    17000
## 3118  73    35000
## 3119  79    15000
## 3120  72    24000
## 3121  24    23000
## 3122  57    12000
## 3123  18    12000
## 3124  54   245000
## 3125  56    81000
## 3126  49    80000
## 3127  31    95000
## 3128  39    40000
## 3129  42    71000
## 3130  53    48000
## 3131  22    28000
## 3132  21    19000
## 3133  21    17000
## 3134  18    23000
## 3135  72    27000
## 3136  73    39000
## 3137  79    14000
## 3138  19    18000
## 3139  52    32000
## 3140  57    88000
## 3141  69    14000
## 3142  24    26000
## 3143  77   160000
## 3144  27    26000
## 3145  70    61000
## 3146  76    12000
## 3147  67   137000
## 3148  30    29000
## 3149  37    38000
## 3150  24    31000
## 3151  34    19000
## 3152  57   105000
## 3153  43    69000
## 3154  24    24000
## 3155  44   184000
## 3156  58   145000
## 3157  24    28000
## 3158  29    43000
## 3159  66    72000
## 3160  31    25000
## 3161  63    31000
## 3162  36    54000
## 3163  38    45000
## 3164  39    32000
## 3165  65    38000
## 3166  43    59000
## 3167  59    34000
## 3168  74    70000
## 3169  59    32000
## 3170  24    14000
## 3171  77    15000
## 3172  24    30000
## 3173  25    25000
## 3174  28    15000
## 3175  18    16000
## 3176  52    36000
## 3177  35    16000
## 3178  64    24000
## 3179  32    21000
## 3180  60    28000
## 3181  59    89000
## 3182  38    34000
## 3183  57    68000
## 3184  28    32000
## 3185  26    31000
## 3186  27    21000
## 3187  69    10000
## 3188  63    90000
## 3189  67    89000
## 3190  40    63000
## 3191  34    38000
## 3192  32    38000
## 3193  63    41000
## 3194  40    19000
## 3195  43    30000
## 3196  66    34000
## 3197  47    39000
## 3198  19    35000
## 3199  41    21000
## 3200  68    17000
## 3201  27    21000
## 3202  78    25000
## 3203  51    54000
## 3204  78    12000
## 3205  42    45000
## 3206  45    28000
## 3207  40    31000
## 3208  67    39000
## 3209  30    25000
## 3210  51   143000
## 3211  57    51000
## 3212  68    10000
## 3213  54   642000
## 3214  51    59000
## 3215  47    59000
## 3216  69    56000
## 3217  38    76000
## 3218  45    19000
## 3219  39    22000
## 3220  47    76000
## 3221  46   110000
## 3222  46    52000
## 3223  51    76000
## 3224  51    36000
## 3225  75    11000
## 3226  41    37000
## 3227  27    24000
## 3228  37    32000
## 3229  35    96000
## 3230  51   151000
## 3231  44    83000
## 3232  46    89000
## 3233  42    42000
## 3234  31    31000
## 3235  51    43000
## 3236  27    23000
## 3237  77    17000
## 3238  54    41000
## 3239  39    92000
## 3240  69    13000
## 3241  29    27000
## 3242  45    37000
## 3243  47    92000
## 3244  32    48000
## 3245  35    72000
## 3246  31    17000
## 3247  68    56000
## 3248  56    82000
## 3249  60    44000
## 3250  40    39000
## 3251  68    36000
## 3252  26    72000
## 3253  65   273000
## 3254  41    91000
## 3255  68    15000
## 3256  63    52000
## 3257  18    14000
## 3258  57    93000
## 3259  51    56000
## 3260  41    68000
## 3261  56   183000
## 3262  39    43000
## 3263  61    40000
## 3264  49    69000
## 3265  61     9000
## 3266  41    54000
## 3267  39    48000
## 3268  67    27000
## 3269  52    47000
## 3270  35    60000
## 3271  33    35000
## 3272  34    51000
## 3273  54    30000
## 3274  75    40000
## 3275  71    68000
## 3276  72    24000
## 3277  52    29000
## 3278  63    37000
## 3279  32    50000
## 3280  24    64000
## 3281  74    51000
## 3282  19    21000
## 3283  74    27000
## 3284  72     9000
## 3285  38    38000
## 3286  75    14000
## 3287  62   157000
## 3288  53    18000
## 3289  51   122000
## 3290  61   232000
## 3291  56    34000
## 3292  23    20000
## 3293  54    62000
## 3294  33    57000
## 3295  50    50000
## 3296  21    52000
## 3297  70    22000
## 3298  62    30000
## 3299  66     9000
## 3300  66    64000
## 3301  31    32000
## 3302  78    38000
## 3303  69    20000
## 3304  33    36000
## 3305  41    46000
## 3306  22    15000
## 3307  28    24000
## 3308  76    21000
## 3309  26    81000
## 3310  49   145000
## 3311  44    24000
## 3312  78    12000
## 3313  44    79000
## 3314  56    12000
## 3315  71    24000
## 3316  22    38000
## 3317  54    30000
## 3318  41   119000
## 3319  20    18000
## 3320  64    10000
## 3321  50    50000
## 3322  33    31000
## 3323  77    48000
## 3324  31    23000
## 3325  66    18000
## 3326  35    26000
## 3327  69    91000
## 3328  78    17000
## 3329  18    29000
## 3330  65    70000
## 3331  24    22000
## 3332  35    32000
## 3333  31   113000
## 3334  22    26000
## 3335  33    91000
## 3336  74    12000
## 3337  22    30000
## 3338  46    75000
## 3339  32    47000
## 3340  34    49000
## 3341  29    30000
## 3342  72    59000
## 3343  20    18000
## 3344  22    15000
## 3345  32    55000
## 3346  59   128000
## 3347  63   103000
## 3348  51    70000
## 3349  69    62000
## 3350  37    53000
## 3351  22    14000
## 3352  46   122000
## 3353  36    26000
## 3354  22    38000
## 3355  68    50000
## 3356  68    12000
## 3357  35   100000
## 3358  36    33000
## 3359  23    18000
## 3360  76    10000
## 3361  27    38000
## 3362  66    34000
## 3363  26    34000
## 3364  73    15000
## 3365  59    38000
## 3366  51   173000
## 3367  36    38000
## 3368  71    10000
## 3369  49    26000
## 3370  69    13000
## 3371  35    26000
## 3372  43    60000
## 3373  59    55000
## 3374  61   211000
## 3375  19    27000
## 3376  19    32000
## 3377  26    25000
## 3378  60   101000
## 3379  32    30000
## 3380  30    32000
## 3381  72    18000
## 3382  23    39000
## 3383  32    81000
## 3384  24    31000
## 3385  78    26000
## 3386  57   220000
## 3387  37   150000
## 3388  25    32000
## 3389  70    58000
## 3390  31    50000
## 3391  68    64000
## 3392  53   174000
## 3393  47    55000
## 3394  22    25000
## 3395  30    67000
## 3396  75    21000
## 3397  44    34000
## 3398  71    11000
## 3399  77    15000
## 3400  68     9000
## 3401  23    43000
## 3402  65    66000
## 3403  24    18000
## 3404  65    13000
## 3405  49    28000
## 3406  26    28000
## 3407  58    84000
## 3408  43    33000
## 3409  69    55000
## 3410  46    84000
## 3411  57    62000
## 3412  34    25000
## 3413  41    21000
## 3414  53   144000
## 3415  57   146000
## 3416  29    46000
## 3417  70    34000
## 3418  68    87000
## 3419  61    12000
## 3420  52   110000
## 3421  18    18000
## 3422  43    36000
## 3423  32    64000
## 3424  56    83000
## 3425  67    22000
## 3426  56   105000
## 3427  54    62000
## 3428  30    30000
## 3429  47    73000
## 3430  28    23000
## 3431  18    24000
## 3432  67   126000
## 3433  76    27000
## 3434  36    38000
## 3435  35    33000
## 3436  39    31000
## 3437  78    49000
## 3438  47   153000
## 3439  73   126000
## 3440  19    33000
## 3441  23    20000
## 3442  56    58000
## 3443  55    43000
## 3444  66   242000
## 3445  71   108000
## 3446  62    27000
## 3447  76    11000
## 3448  53    35000
## 3449  28    52000
## 3450  27    21000
## 3451  73    43000
## 3452  24    23000
## 3453  45   107000
## 3454  24    24000
## 3455  38    49000
## 3456  23    13000
## 3457  30    25000
## 3458  64    70000
## 3459  57    72000
## 3460  52    57000
## 3461  29    34000
## 3462  48    28000
## 3463  54   147000
## 3464  31    30000
## 3465  36    31000
## 3466  20    45000
## 3467  47    53000
## 3468  73    72000
## 3469  70    91000
## 3470  72    16000
## 3471  35    41000
## 3472  18    17000
## 3473  22    31000
## 3474  20    25000
## 3475  73    32000
## 3476  28    56000
## 3477  42    48000
## 3478  37    44000
## 3479  33    43000
## 3480  18    19000
## 3481  60    72000
## 3482  36    17000
## 3483  69    99000
## 3484  21    14000
## 3485  45    88000
## 3486  75    24000
## 3487  54   165000
## 3488  59    61000
## 3489  43    50000
## 3490  31    68000
## 3491  39    85000
## 3492  52    38000
## 3493  29    62000
## 3494  72    30000
## 3495  54    76000
## 3496  21    20000
## 3497  37    61000
## 3498  47    90000
## 3499  43    31000
## 3500  79    16000
## 3501  65    65000
## 3502  24    23000
## 3503  31    17000
## 3504  72    14000
## 3505  73    72000
## 3506  79    17000
## 3507  33    27000
## 3508  22    29000
## 3509  28    22000
## 3510  19    22000
## 3511  38    33000
## 3512  54    47000
## 3513  56    49000
## 3514  74    54000
## 3515  57    75000
## 3516  38    74000
## 3517  50    64000
## 3518  65    27000
## 3519  28    22000
## 3520  22    18000
## 3521  44   139000
## 3522  70   171000
## 3523  30    82000
## 3524  65   171000
## 3525  59   173000
## 3526  57    56000
## 3527  65   221000
## 3528  55    63000
## 3529  18    21000
## 3530  45    36000
## 3531  72    35000
## 3532  60    10000
## 3533  50   163000
## 3534  64    10000
## 3535  41   184000
## 3536  20    15000
## 3537  68    14000
## 3538  78    11000
## 3539  40    31000
## 3540  79    12000
## 3541  20    18000
## 3542  44    66000
## 3543  77     9000
## 3544  49   103000
## 3545  69    19000
## 3546  40    60000
## 3547  52    53000
## 3548  71    12000
## 3549  73    12000
## 3550  24    13000
## 3551  54    46000
## 3552  29    20000
## 3553  20    22000
## 3554  52    60000
## 3555  63    64000
## 3556  70    17000
## 3557  42   110000
## 3558  52   108000
## 3559  52    48000
## 3560  20    17000
## 3561  39    58000
## 3562  48    31000
## 3563  38    29000
## 3564  25    22000
## 3565  45    26000
## 3566  48    22000
## 3567  20    17000
## 3568  59    57000
## 3569  49    86000
## 3570  67    46000
## 3571  32    37000
## 3572  51    41000
## 3573  31    29000
## 3574  26    18000
## 3575  64    39000
## 3576  33    42000
## 3577  48    46000
## 3578  49    59000
## 3579  71    40000
## 3580  67    40000
## 3581  39    68000
## 3582  77     9000
## 3583  20    19000
## 3584  21    40000
## 3585  70    32000
## 3586  75    23000
## 3587  35    59000
## 3588  28    27000
## 3589  24    21000
## 3590  34    23000
## 3591  78    26000
## 3592  78    17000
## 3593  23    37000
## 3594  43    73000
## 3595  75    10000
## 3596  57    44000
## 3597  52    26000
## 3598  18    16000
## 3599  71    12000
## 3600  66    21000
## 3601  34    29000
## 3602  34    21000
## 3603  77    34000
## 3604  28    77000
## 3605  72    65000
## 3606  42    38000
## 3607  53    86000
## 3608  22    19000
## 3609  25    16000
## 3610  22    29000
## 3611  63    31000
## 3612  57    35000
## 3613  39    69000
## 3614  40    36000
## 3615  73    41000
## 3616  47    79000
## 3617  52    34000
## 3618  43    38000
## 3619  74    45000
## 3620  50    51000
## 3621  37    23000
## 3622  55    60000
## 3623  46    59000
## 3624  70   526000
## 3625  75    10000
## 3626  19    21000
## 3627  29    42000
## 3628  58    59000
## 3629  49    55000
## 3630  67    47000
## 3631  37    41000
## 3632  46    33000
## 3633  48    59000
## 3634  78   100000
## 3635  23    24000
## 3636  51    26000
## 3637  21    27000
## 3638  51   181000
## 3639  37    40000
## 3640  27    20000
## 3641  18    18000
## 3642  24    46000
## 3643  38    44000
## 3644  37    46000
## 3645  71    39000
## 3646  51    73000
## 3647  77    22000
## 3648  63    39000
## 3649  51    68000
## 3650  62   283000
## 3651  24    22000
## 3652  40   168000
## 3653  23    15000
## 3654  42    45000
## 3655  21    43000
## 3656  36    69000
## 3657  27    29000
## 3658  43    50000
## 3659  61   252000
## 3660  36    19000
## 3661  51    58000
## 3662  18    16000
## 3663  42    42000
## 3664  57   224000
## 3665  36    60000
## 3666  41    66000
## 3667  75   279000
## 3668  70    17000
## 3669  41    45000
## 3670  77    40000
## 3671  30    19000
## 3672  76    78000
## 3673  57    93000
## 3674  64    22000
## 3675  62    55000
## 3676  60   161000
## 3677  25    25000
## 3678  75    32000
## 3679  22    19000
## 3680  44    58000
## 3681  27    25000
## 3682  47    62000
## 3683  71    22000
## 3684  29    66000
## 3685  23    14000
## 3686  71    31000
## 3687  29    37000
## 3688  57   124000
## 3689  27    29000
## 3690  29    22000
## 3691  79    13000
## 3692  21    23000
## 3693  31    23000
## 3694  57    48000
## 3695  46    25000
## 3696  40    36000
## 3697  20    41000
## 3698  24    25000
## 3699  30    42000
## 3700  60    57000
## 3701  22    22000
## 3702  68    10000
## 3703  40    88000
## 3704  52    67000
## 3705  67    16000
## 3706  45    50000
## 3707  67    57000
## 3708  28    45000
## 3709  41    51000
## 3710  52    82000
## 3711  41    35000
## 3712  18    48000
## 3713  57    82000
## 3714  40    59000
## 3715  50   133000
## 3716  40    36000
## 3717  43    24000
## 3718  21    23000
## 3719  30    45000
## 3720  26    40000
## 3721  34    42000
## 3722  76    34000
## 3723  35    34000
## 3724  62    14000
## 3725  31    25000
## 3726  22    23000
## 3727  62    55000
## 3728  74    79000
## 3729  77    32000
## 3730  61    86000
## 3731  78     9000
## 3732  52   158000
## 3733  31    22000
## 3734  74     9000
## 3735  38    38000
## 3736  21    15000
## 3737  43    45000
## 3738  66    28000
## 3739  46    69000
## 3740  34    35000
## 3741  28    26000
## 3742  71    11000
## 3743  18    15000
## 3744  33    41000
## 3745  64    60000
## 3746  25    22000
## 3747  24    21000
## 3748  57    47000
## 3749  48    45000
## 3750  76    36000
## 3751  59    28000
## 3752  45    65000
## 3753  68    43000
## 3754  50    48000
## 3755  52   185000
## 3756  51    52000
## 3757  33    76000
## 3758  76    39000
## 3759  36    30000
## 3760  47    65000
## 3761  48    24000
## 3762  71   103000
## 3763  63    44000
## 3764  68     9000
## 3765  69    12000
## 3766  39    20000
## 3767  31    31000
## 3768  43    92000
## 3769  32    26000
## 3770  26    32000
## 3771  70    27000
## 3772  47   113000
## 3773  78    35000
## 3774  18    13000
## 3775  62    62000
## 3776  34    23000
## 3777  26    24000
## 3778  37    65000
## 3779  22    19000
## 3780  75     9000
## 3781  30    50000
## 3782  53   192000
## 3783  27    53000
## 3784  40    35000
## 3785  79    56000
## 3786  50   142000
## 3787  32    30000
## 3788  35    19000
## 3789  56    35000
## 3790  24    15000
## 3791  63    31000
## 3792  50    27000
## 3793  62    27000
## 3794  67   193000
## 3795  47    39000
## 3796  36    46000
## 3797  52    79000
## 3798  26    32000
## 3799  30    46000
## 3800  42   202000
## 3801  24    20000
## 3802  48    94000
## 3803  65   142000
## 3804  37    21000
## 3805  41    67000
## 3806  73     9000
## 3807  77    12000
## 3808  79    21000
## 3809  47    76000
## 3810  30    46000
## 3811  26    22000
## 3812  38    34000
## 3813  65    57000
## 3814  22    36000
## 3815  73    14000
## 3816  52    46000
## 3817  61   123000
## 3818  74    36000
## 3819  26    27000
## 3820  62   157000
## 3821  19    16000
## 3822  67    68000
## 3823  42    29000
## 3824  23    61000
## 3825  56   129000
## 3826  70    72000
## 3827  22    21000
## 3828  23    26000
## 3829  37    76000
## 3830  29    46000
## 3831  74    48000
## 3832  35    35000
## 3833  63    47000
## 3834  32    22000
## 3835  28    28000
## 3836  38    65000
## 3837  34    30000
## 3838  64    11000
## 3839  69    11000
## 3840  33    42000
## 3841  70     9000
## 3842  23    26000
## 3843  23    24000
## 3844  47    31000
## 3845  58    77000
## 3846  72    42000
## 3847  37    27000
## 3848  72   191000
## 3849  66    10000
## 3850  52   116000
## 3851  31    15000
## 3852  42    97000
## 3853  25    66000
## 3854  48    46000
## 3855  44    70000
## 3856  49    31000
## 3857  70    66000
## 3858  24    17000
## 3859  47    76000
## 3860  36    97000
## 3861  23    35000
## 3862  33    66000
## 3863  56   157000
## 3864  78    14000
## 3865  49    21000
## 3866  52    38000
## 3867  61    10000
## 3868  21    24000
## 3869  25    19000
## 3870  70     9000
## 3871  63    49000
## 3872  33    31000
## 3873  58    44000
## 3874  76     9000
## 3875  79     9000
## 3876  36    39000
## 3877  43   115000
## 3878  33    36000
## 3879  44    62000
## 3880  71    11000
## 3881  68    11000
## 3882  57    29000
## 3883  41    17000
## 3884  66    18000
## 3885  31    27000
## 3886  61   274000
## 3887  33    40000
## 3888  29    16000
## 3889  35   235000
## 3890  19    23000
## 3891  21    16000
## 3892  42    38000
## 3893  64    90000
## 3894  58    75000
## 3895  43    35000
## 3896  50    25000
## 3897  74    27000
## 3898  28    25000
## 3899  65   125000
## 3900  65    36000
## 3901  58    76000
## 3902  29    45000
## 3903  40    84000
## 3904  28    25000
## 3905  38    31000
## 3906  37    84000
## 3907  42    59000
## 3908  31   152000
## 3909  43   142000
## 3910  48    80000
## 3911  38    26000
## 3912  51   151000
## 3913  36    47000
## 3914  26    31000
## 3915  71    31000
## 3916  54    75000
## 3917  23    23000
## 3918  59    56000
## 3919  44    74000
## 3920  79    18000
## 3921  43   203000
## 3922  59    18000
## 3923  79   159000
## 3924  44    41000
## 3925  35    40000
## 3926  64    52000
## 3927  21    32000
## 3928  49    51000
## 3929  70   128000
## 3930  53    53000
## 3931  29    52000
## 3932  49   108000
## 3933  25    28000
## 3934  32    25000
## 3935  32    43000
## 3936  29    27000
## 3937  20    15000
## 3938  59    40000
## 3939  54    79000
## 3940  67    20000
## 3941  45   141000
## 3942  69    53000
## 3943  53    64000
## 3944  67   110000
## 3945  62    84000
## 3946  37    64000
## 3947  29    25000
## 3948  39    61000
## 3949  45    31000
## 3950  31    61000
## 3951  18    17000
## 3952  62   250000
## 3953  62    55000
## 3954  36    71000
## 3955  52    77000
## 3956  29    24000
## 3957  50    33000
## 3958  40    31000
## 3959  79     9000
## 3960  20    17000
## 3961  63    41000
## 3962  69    15000
## 3963  36    28000
## 3964  70    16000
## 3965  69    96000
## 3966  53    32000
## 3967  75    15000
## 3968  67    30000
## 3969  23    22000
## 3970  65    30000
## 3971  22    34000
## 3972  27    25000
## 3973  35    40000
## 3974  38    45000
## 3975  29    59000
## 3976  22    33000
## 3977  49    46000
## 3978  47    71000
## 3979  71    49000
## 3980  26   125000
## 3981  39    43000
## 3982  70    11000
## 3983  68    43000
## 3984  34    24000
## 3985  56    31000
## 3986  70    95000
## 3987  40    25000
## 3988  44    80000
## 3989  34    29000
## 3990  48    86000
## 3991  20    17000
## 3992  78    12000
## 3993  70    20000
## 3994  27    40000
## 3995  69    29000
## 3996  33    33000
## 3997  63    41000
## 3998  58    42000
## 3999  31    21000
## 4000  28    30000
## 4001  78    56000
## 4002  31    21000
## 4003  31    37000
## 4004  76    16000
## 4005  25    31000
## 4006  36   100000
## 4007  46    67000
## 4008  18    19000
## 4009  30    58000
## 4010  66   396000
## 4011  72    11000
## 4012  56   175000
## 4013  76    20000
## 4014  56   143000
## 4015  22    51000
## 4016  60    79000
## 4017  72    15000
## 4018  45    30000
## 4019  64    11000
## 4020  37    48000
## 4021  23    35000
## 4022  53    48000
## 4023  59   169000
## 4024  41   273000
## 4025  65    10000
## 4026  75    11000
## 4027  25    27000
## 4028  25    24000
## 4029  27    44000
## 4030  38    42000
## 4031  72     9000
## 4032  35    34000
## 4033  52    76000
## 4034  22    33000
## 4035  78    10000
## 4036  52    35000
## 4037  77    35000
## 4038  45   215000
## 4039  79     9000
## 4040  38    59000
## 4041  34    41000
## 4042  68    18000
## 4043  61   115000
## 4044  55   217000
## 4045  37    37000
## 4046  38    32000
## 4047  79    13000
## 4048  50    72000
## 4049  52    80000
## 4050  36    45000
## 4051  79     9000
## 4052  37    39000
## 4053  72    40000
## 4054  21    20000
## 4055  19    27000
## 4056  59    42000
## 4057  57    62000
## 4058  43    88000
## 4059  29    43000
## 4060  54   135000
## 4061  36    47000
## 4062  46    70000
## 4063  72   133000
## 4064  73    21000
## 4065  62    83000
## 4066  74   106000
## 4067  59    17000
## 4068  24    27000
## 4069  31    35000
## 4070  33    82000
## 4071  50    69000
## 4072  54    55000
## 4073  73    16000
## 4074  26    32000
## 4075  30    22000
## 4076  45   105000
## 4077  74    27000
## 4078  56    56000
## 4079  23    18000
## 4080  75    25000
## 4081  69    49000
## 4082  18    16000
## 4083  56   203000
## 4084  57    41000
## 4085  58    90000
## 4086  60    69000
## 4087  30    30000
## 4088  33    34000
## 4089  40    41000
## 4090  49    53000
## 4091  21    21000
## 4092  43    85000
## 4093  31    30000
## 4094  39    49000
## 4095  73    12000
## 4096  77   162000
## 4097  27    38000
## 4098  38    33000
## 4099  22    38000
## 4100  57    66000
## 4101  37    17000
## 4102  18    13000
## 4103  44   112000
## 4104  19    17000
## 4105  22    23000
## 4106  59    33000
## 4107  54    78000
## 4108  24    27000
## 4109  46    32000
## 4110  28    53000
## 4111  47    33000
## 4112  49   181000
## 4113  31    60000
## 4114  32    72000
## 4115  31    68000
## 4116  67    20000
## 4117  25    39000
## 4118  65    11000
## 4119  45    70000
## 4120  61    58000
## 4121  38    21000
## 4122  48    81000
## 4123  30    27000
## 4124  33    32000
## 4125  53    70000
## 4126  37    78000
## 4127  43    59000
## 4128  68    32000
## 4129  37    37000
## 4130  45    27000
## 4131  76     9000
## 4132  24    16000
## 4133  49    85000
## 4134  35    41000
## 4135  22    20000
## 4136  30    90000
## 4137  47    53000
## 4138  51    81000
## 4139  32    35000
## 4140  42    76000
## 4141  21    22000
## 4142  27    37000
## 4143  32    32000
## 4144  53    61000
## 4145  44   119000
## 4146  75    50000
## 4147  33    47000
## 4148  32    81000
## 4149  29    35000
## 4150  61    42000
## 4151  22    23000
## 4152  19    24000
## 4153  37    88000
## 4154  64    64000
## 4155  55    68000
## 4156  34    28000
## 4157  69    15000
## 4158  55    39000
## 4159  62    76000
## 4160  35    57000
## 4161  64    17000
## 4162  62    65000
## 4163  43    47000
## 4164  52    43000
## 4165  77    11000
## 4166  27    46000
## 4167  47    45000
## 4168  41    31000
## 4169  73    26000
## 4170  27    20000
## 4171  31    17000
## 4172  18    15000
## 4173  48    44000
## 4174  43    46000
## 4175  34    44000
## 4176  56    50000
## 4177  36    47000
## 4178  69    71000
## 4179  50   113000
## 4180  32    24000
## 4181  35    65000
## 4182  40    31000
## 4183  55   108000
## 4184  27    28000
## 4185  25    16000
## 4186  47    96000
## 4187  77    21000
## 4188  23    29000
## 4189  19    33000
## 4190  67    61000
## 4191  49   143000
## 4192  70    20000
## 4193  28    24000
## 4194  21    17000
## 4195  57   140000
## 4196  54    80000
## 4197  33    23000
## 4198  67    38000
## 4199  78    20000
## 4200  19    18000
## 4201  20    18000
## 4202  40    96000
## 4203  48    95000
## 4204  51    40000
## 4205  56    43000
## 4206  53    44000
## 4207  25    42000
## 4208  67    22000
## 4209  61   246000
## 4210  24    20000
## 4211  56    66000
## 4212  72    41000
## 4213  22    25000
## 4214  24    15000
## 4215  44    80000
## 4216  23    25000
## 4217  44   121000
## 4218  68    39000
## 4219  64    58000
## 4220  43    52000
## 4221  21    27000
## 4222  44    54000
## 4223  21    20000
## 4224  55   114000
## 4225  20    15000
## 4226  41    38000
## 4227  60    23000
## 4228  71    45000
## 4229  44   120000
## 4230  67    28000
## 4231  18    15000
## 4232  21    17000
## 4233  75    94000
## 4234  28    29000
## 4235  58    62000
## 4236  32    27000
## 4237  19    13000
## 4238  63    36000
## 4239  35    53000
## 4240  59   160000
## 4241  77    23000
## 4242  79     9000
## 4243  76    13000
## 4244  65    11000
## 4245  33    25000
## 4246  27    45000
## 4247  58   146000
## 4248  50    45000
## 4249  64    66000
## 4250  53    84000
## 4251  26    16000
## 4252  44    34000
## 4253  51    95000
## 4254  20    18000
## 4255  50   172000
## 4256  72    52000
## 4257  37    34000
## 4258  73    14000
## 4259  69    12000
## 4260  29    26000
## 4261  54    58000
## 4262  62    42000
## 4263  28    28000
## 4264  73    93000
## 4265  47    64000
## 4266  72     9000
## 4267  56    67000
## 4268  54    51000
## 4269  45    33000
## 4270  19    22000
## 4271  50   118000
## 4272  49   314000
## 4273  66    50000
## 4274  58    50000
## 4275  59    32000
## 4276  20    21000
## 4277  24    28000
## 4278  42    50000
## 4279  79    22000
## 4280  19    41000
## 4281  48    41000
## 4282  74    14000
## 4283  27    91000
## 4284  53    73000
## 4285  72     9000
## 4286  18    20000
## 4287  55   380000
## 4288  46    37000
## 4289  53    41000
## 4290  31    31000
## 4291  19    16000
## 4292  56    78000
## 4293  50   142000
## 4294  26    37000
## 4295  67    92000
## 4296  42    62000
## 4297  35    74000
## 4298  45    85000
## 4299  18    18000
## 4300  38    25000
## 4301  32    33000
## 4302  20    18000
## 4303  77    33000
## 4304  34    28000
## 4305  55   261000
## 4306  56    60000
## 4307  78    68000
## 4308  73    10000
## 4309  44    29000
## 4310  28    19000
## 4311  62   160000
## 4312  73    21000
## 4313  18    15000
## 4314  36   101000
## 4315  39    45000
## 4316  48    96000
## 4317  48    87000
## 4318  18    14000
## 4319  73    77000
## 4320  76    16000
## 4321  72    14000
## 4322  58   140000
## 4323  41    35000
## 4324  50    80000
## 4325  20    18000
## 4326  79     9000
## 4327  52    65000
## 4328  62    32000
## 4329  25    19000
## 4330  29    39000
## 4331  18    19000
## 4332  70   123000
## 4333  18    24000
## 4334  37    33000
## 4335  54    43000
## 4336  28    22000
## 4337  48    50000
## 4338  74   142000
## 4339  54    77000
## 4340  57    85000
## 4341  29    21000
## 4342  37    34000
## 4343  21    22000
## 4344  48    56000
## 4345  43    37000
## 4346  47   144000
## 4347  32    39000
## 4348  27    16000
## 4349  27    23000
## 4350  67   130000
## 4351  30    19000
## 4352  67    28000
## 4353  52   248000
## 4354  73    33000
## 4355  76    23000
## 4356  23    28000
## 4357  62    16000
## 4358  55   130000
## 4359  24    18000
## 4360  20    18000
## 4361  39    35000
## 4362  21    28000
## 4363  77    41000
## 4364  72    18000
## 4365  20    15000
## 4366  62    45000
## 4367  62   112000
## 4368  57   170000
## 4369  20    18000
## 4370  30    28000
## 4371  35    36000
## 4372  69   103000
## 4373  35    51000
## 4374  57    13000
## 4375  71    11000
## 4376  77    10000
## 4377  26    20000
## 4378  23    19000
## 4379  46    37000
## 4380  32    28000
## 4381  64   129000
## 4382  33    25000
## 4383  52    32000
## 4384  25    29000
## 4385  78     9000
## 4386  58   149000
## 4387  21    15000
## 4388  30    37000
## 4389  78    12000
## 4390  79    15000
## 4391  31    22000
## 4392  58    35000
## 4393  48    88000
## 4394  30    65000
## 4395  69    87000
## 4396  52   137000
## 4397  27    33000
## 4398  27    22000
## 4399  45   161000
## 4400  77    14000
## 4401  36    41000
## 4402  69    12000
## 4403  79    10000
## 4404  50   166000
## 4405  37    34000
## 4406  37    85000
## 4407  19    32000
## 4408  56   219000
## 4409  21    21000
## 4410  38    44000
## 4411  64    42000
## 4412  77    13000
## 4413  62   276000
## 4414  39    83000
## 4415  19    17000
## 4416  74    23000
## 4417  39    49000
## 4418  40    83000
## 4419  41    59000
## 4420  25    16000
## 4421  42    31000
## 4422  44    30000
## 4423  32    28000
## 4424  45    92000
## 4425  29    35000
## 4426  34    43000
## 4427  31    37000
## 4428  36    43000
## 4429  55    49000
## 4430  47    31000
## 4431  21    18000
## 4432  63    88000
## 4433  59    39000
## 4434  48    94000
## 4435  76    44000
## 4436  68    31000
## 4437  73    17000
## 4438  55    11000
## 4439  29    53000
## 4440  28    26000
## 4441  57   272000
## 4442  76    13000
## 4443  54   108000
## 4444  25    24000
## 4445  51    73000
## 4446  27    39000
## 4447  64    52000
## 4448  75   106000
## 4449  21    18000
## 4450  57   107000
## 4451  44   106000
## 4452  51    22000
## 4453  36    35000
## 4454  25    19000
## 4455  39    76000
## 4456  35    34000
## 4457  22    21000
## 4458  26    18000
## 4459  55    50000
## 4460  51    66000
## 4461  20    31000
## 4462  39    70000
## 4463  74   121000
## 4464  57    62000
## 4465  56    72000
## 4466  61    11000
## 4467  44    42000
## 4468  48    46000
## 4469  77    23000
## 4470  51    90000
## 4471  54    36000
## 4472  54    40000
## 4473  79    27000
## 4474  43   102000
## 4475  75    32000
## 4476  25    25000
## 4477  70    12000
## 4478  18    17000
## 4479  60   168000
## 4480  46    31000
## 4481  29    30000
## 4482  32    35000
## 4483  63    70000
## 4484  29    31000
## 4485  20    22000
## 4486  36    29000
## 4487  37    36000
## 4488  59   135000
## 4489  64     9000
## 4490  78    24000
## 4491  68    24000
## 4492  77   131000
## 4493  56   296000
## 4494  61     9000
## 4495  30    63000
## 4496  27    53000
## 4497  35    21000
## 4498  60    38000
## 4499  26    21000
## 4500  27    21000
## 4501  36    55000
## 4502  75    11000
## 4503  59    44000
## 4504  34    53000
## 4505  73    14000
## 4506  67    23000
## 4507  63   254000
## 4508  20    15000
## 4509  31    24000
## 4510  51    28000
## 4511  68    58000
## 4512  53    52000
## 4513  26    23000
## 4514  20    22000
## 4515  19    20000
## 4516  23    33000
## 4517  49    59000
## 4518  37    52000
## 4519  44    88000
## 4520  41    52000
## 4521  49   104000
## 4522  33    57000
## 4523  69    26000
## 4524  43    77000
## 4525  51   100000
## 4526  40    33000
## 4527  27    21000
## 4528  64    47000
## 4529  22    24000
## 4530  58     9000
## 4531  60    26000
## 4532  63    66000
## 4533  33    26000
## 4534  63    23000
## 4535  74    27000
## 4536  61    38000
## 4537  45    40000
## 4538  35   160000
## 4539  75    10000
## 4540  48    41000
## 4541  47    92000
## 4542  49    86000
## 4543  51    27000
## 4544  26    17000
## 4545  49   116000
## 4546  63    66000
## 4547  27    24000
## 4548  79    10000
## 4549  49    70000
## 4550  59   257000
## 4551  23    20000
## 4552  23    24000
## 4553  69    16000
## 4554  20    25000
## 4555  61    49000
## 4556  30    28000
## 4557  75   122000
## 4558  70    12000
## 4559  52    98000
## 4560  35    37000
## 4561  78   107000
## 4562  31    46000
## 4563  39    49000
## 4564  29    65000
## 4565  45    54000
## 4566  25    25000
## 4567  40    65000
## 4568  34    24000
## 4569  62    28000
## 4570  33    27000
## 4571  47    76000
## 4572  30    22000
## 4573  47    44000
## 4574  52    64000
## 4575  67    51000
## 4576  70   107000
## 4577  32    25000
## 4578  79    24000
## 4579  55    69000
## 4580  53    42000
## 4581  59    53000
## 4582  57    35000
## 4583  77   108000
## 4584  49    50000
## 4585  79     9000
## 4586  29    59000
## 4587  44    74000
## 4588  73    46000
## 4589  43    29000
## 4590  65    11000
## 4591  55    27000
## 4592  22    23000
## 4593  20    24000
## 4594  60    80000
## 4595  66    10000
## 4596  63   108000
## 4597  29    25000
## 4598  79    22000
## 4599  39    66000
## 4600  60    72000
## 4601  48    67000
## 4602  63    10000
## 4603  20    24000
## 4604  60    31000
## 4605  46    30000
## 4606  21    17000
## 4607  31    32000
## 4608  50    98000
## 4609  41    77000
## 4610  41    44000
## 4611  26    46000
## 4612  53    34000
## 4613  25    23000
## 4614  56    93000
## 4615  74   151000
## 4616  30    34000
## 4617  71   124000
## 4618  68   121000
## 4619  30    25000
## 4620  32    30000
## 4621  39    33000
## 4622  71    33000
## 4623  40    59000
## 4624  77     9000
## 4625  66    34000
## 4626  47    38000
## 4627  79    15000
## 4628  78    16000
## 4629  29    24000
## 4630  25    44000
## 4631  31    25000
## 4632  74    34000
## 4633  53    57000
## 4634  61    93000
## 4635  61    81000
## 4636  57    35000
## 4637  56    28000
## 4638  70    25000
## 4639  77    40000
## 4640  50    39000
## 4641  31    45000
## 4642  28    36000
## 4643  44    50000
## 4644  73   152000
## 4645  58    37000
## 4646  26    55000
## 4647  30    74000
## 4648  77    23000
## 4649  31    24000
## 4650  77    97000
## 4651  32    40000
## 4652  19    24000
## 4653  47    94000
## 4654  47    32000
## 4655  36    31000
## 4656  67   196000
## 4657  20    23000
## 4658  59    79000
## 4659  36    41000
## 4660  32    34000
## 4661  27    58000
## 4662  24    26000
## 4663  46    97000
## 4664  18    14000
## 4665  36    28000
## 4666  49    42000
## 4667  46    65000
## 4668  36    27000
## 4669  25    21000
## 4670  59    54000
## 4671  21    23000
## 4672  63    22000
## 4673  78    10000
## 4674  20    23000
## 4675  57    44000
## 4676  43   113000
## 4677  72    38000
## 4678  32    37000
## 4679  24    15000
## 4680  78    81000
## 4681  54   136000
## 4682  68     9000
## 4683  39    38000
## 4684  33    55000
## 4685  43    54000
## 4686  67    12000
## 4687  31    22000
## 4688  59    39000
## 4689  29    30000
## 4690  35    41000
## 4691  50    31000
## 4692  75     9000
## 4693  34    45000
## 4694  57    67000
## 4695  66    24000
## 4696  71    49000
## 4697  47    24000
## 4698  69    83000
## 4699  47    48000
## 4700  43    81000
## 4701  33   102000
## 4702  18    18000
## 4703  29    55000
## 4704  18    15000
## 4705  36    32000
## 4706  29    39000
## 4707  77    19000
## 4708  65    31000
## 4709  19    24000
## 4710  54    59000
## 4711  55   133000
## 4712  60    85000
## 4713  64   184000
## 4714  47   185000
## 4715  22    14000
## 4716  56    51000
## 4717  63    45000
## 4718  79    46000
## 4719  29    21000
## 4720  59    90000
## 4721  40    39000
## 4722  63   153000
## 4723  45    31000
## 4724  53    35000
## 4725  61    42000
## 4726  78    23000
## 4727  36    46000
## 4728  64    68000
## 4729  65   102000
## 4730  26    34000
## 4731  24    26000
## 4732  58    41000
## 4733  28    19000
## 4734  69   100000
## 4735  75    29000
## 4736  58   113000
## 4737  51    78000
## 4738  74    79000
## 4739  28    61000
## 4740  62   224000
## 4741  33    22000
## 4742  47    31000
## 4743  51   138000
## 4744  52   104000
## 4745  38    41000
## 4746  22    37000
## 4747  42    39000
## 4748  34    40000
## 4749  35    30000
## 4750  23    42000
## 4751  46    42000
## 4752  34    23000
## 4753  35   103000
## 4754  55    41000
## 4755  33    48000
## 4756  41    49000
## 4757  68    20000
## 4758  35    30000
## 4759  63    19000
## 4760  57   236000
## 4761  69    67000
## 4762  31    25000
## 4763  63    14000
## 4764  36    45000
## 4765  24    30000
## 4766  24    19000
## 4767  24    24000
## 4768  48   165000
## 4769  47    51000
## 4770  63    47000
## 4771  60    26000
## 4772  42    20000
## 4773  43    60000
## 4774  67    12000
## 4775  27    69000
## 4776  51    39000
## 4777  67    40000
## 4778  75    52000
## 4779  69    67000
## 4780  63    87000
## 4781  74     9000
## 4782  68    86000
## 4783  56   141000
## 4784  52   121000
## 4785  28    86000
## 4786  46    68000
## 4787  31    40000
## 4788  27    23000
## 4789  30    25000
## 4790  74    11000
## 4791  79    32000
## 4792  51   315000
## 4793  27    33000
## 4794  64    63000
## 4795  38    31000
## 4796  59    31000
## 4797  74    50000
## 4798  18    30000
## 4799  75    30000
## 4800  26    20000
## 4801  75   106000
## 4802  39    69000
## 4803  47    81000
## 4804  41    83000
## 4805  30    14000
## 4806  55   185000
## 4807  51    84000
## 4808  28    21000
## 4809  23    35000
## 4810  50   119000
## 4811  37    29000
## 4812  68    59000
## 4813  67    52000
## 4814  21    25000
## 4815  28    34000
## 4816  58    59000
## 4817  54   145000
## 4818  20    25000
## 4819  55    30000
## 4820  28    19000
## 4821  21    50000
## 4822  48    23000
## 4823  79    22000
## 4824  22    45000
## 4825  78    23000
## 4826  40    37000
## 4827  35    28000
## 4828  77    79000
## 4829  33    23000
## 4830  49    60000
## 4831  32    52000
## 4832  25    24000
## 4833  71    12000
## 4834  36    49000
## 4835  55   162000
## 4836  57    53000
## 4837  51    49000
## 4838  27    22000
## 4839  52   212000
## 4840  64    23000
## 4841  43    33000
## 4842  64   113000
## 4843  32    26000
## 4844  47    22000
## 4845  41    25000
## 4846  29    21000
## 4847  39    64000
## 4848  73   113000
## 4849  37    29000
## 4850  44    79000
## 4851  22    21000
## 4852  79    21000
## 4853  55    38000
## 4854  57    20000
## 4855  53    80000
## 4856  73    26000
## 4857  47   122000
## 4858  38    93000
## 4859  55    56000
## 4860  73    18000
## 4861  18    15000
## 4862  27    25000
## 4863  73    52000
## 4864  30    54000
## 4865  22    36000
## 4866  63    44000
## 4867  54    63000
## 4868  32    21000
## 4869  19    18000
## 4870  29    30000
## 4871  30    30000
## 4872  21    14000
## 4873  27    21000
## 4874  21    17000
## 4875  46    95000
## 4876  33   154000
## 4877  66    63000
## 4878  45    46000
## 4879  62   116000
## 4880  78     9000
## 4881  51    72000
## 4882  33    55000
## 4883  25    18000
## 4884  59    26000
## 4885  18    16000
## 4886  21    33000
## 4887  68    88000
## 4888  32    30000
## 4889  65    93000
## 4890  73    28000
## 4891  60    36000
## 4892  50    89000
## 4893  58    71000
## 4894  56    79000
## 4895  30    50000
## 4896  25    52000
## 4897  71    21000
## 4898  45    58000
## 4899  41   104000
## 4900  42   100000
## 4901  79     9000
## 4902  32    30000
## 4903  41    37000
## 4904  73    34000
## 4905  21    25000
## 4906  70    57000
## 4907  56   106000
## 4908  25    38000
## 4909  63   130000
## 4910  58    80000
## 4911  63    33000
## 4912  44    62000
## 4913  59    62000
## 4914  50    45000
## 4915  43    48000
## 4916  66   144000
## 4917  58   437000
## 4918  59   153000
## 4919  44    71000
## 4920  71    96000
## 4921  64    19000
## 4922  21    22000
## 4923  21    13000
## 4924  58    77000
## 4925  34    21000
## 4926  76    31000
## 4927  75    14000
## 4928  69     9000
## 4929  20    31000
## 4930  26    29000
## 4931  46    63000
## 4932  27    33000
## 4933  35    34000
## 4934  65    14000
## 4935  31    93000
## 4936  37    40000
## 4937  24    20000
## 4938  63   170000
## 4939  33    27000
## 4940  35    23000
## 4941  29    31000
## 4942  72    19000
## 4943  67    74000
## 4944  31    59000
## 4945  75    14000
## 4946  39    60000
## 4947  31    62000
## 4948  56    22000
## 4949  38    88000
## 4950  56   575000
## 4951  49    97000
## 4952  38    88000
## 4953  48    24000
## 4954  39    80000
## 4955  57    31000
## 4956  24    22000
## 4957  54    61000
## 4958  34    29000
## 4959  68    53000
## 4960  57   288000
## 4961  53    77000
## 4962  40    61000
## 4963  23    29000
## 4964  36    46000
## 4965  54    40000
## 4966  73     9000
## 4967  25    16000
## 4968  23    15000
## 4969  26    33000
## 4970  49    56000
## 4971  79     9000
## 4972  71    25000
## 4973  47    45000
## 4974  30    25000
## 4975  37    30000
## 4976  28    18000
## 4977  53    73000
## 4978  41    18000
## 4979  22    17000
## 4980  71    34000
## 4981  33    30000
## 4982  59    45000
## 4983  61    55000
## 4984  58    42000
## 4985  30    30000
## 4986  30    71000
## 4987  22    16000
## 4988  49    25000
## 4989  61    17000
## 4990  79    15000
## 4991  26    89000
## 4992  59    75000
## 4993  55    49000
## 4994  56    60000
## 4995  35    53000
## 4996  68   196000
## 4997  51    83000
## 4998  75   108000
## 4999  47   189000
## 5000  41    77000
# OR

varname <- c("Age", "HHIncome")
CustomerData_select <- select(CustomerData, varname)

# OR

CustomerData_select <- CustomerData[,varname]

3.4.3 Dropping columns

CustomerData_select2 <- select(CustomerData, -Age, -HHIncome)

# OR

varname <- c("Age", "HHIncome")
CustomerData_select2 <- CustomerData[,!names(CustomerData) %in% varname]
names(CustomerData_select2)
##  [1] "CustomerID"          "Region"              "TownSize"           
##  [4] "Gender"              "EducationYears"      "JobCategory"        
##  [7] "UnionMember"         "EmploymentLength"    "Retired"            
## [10] "DebtToIncomeRatio"   "CreditDebt"          "OtherDebt"          
## [13] "LoanDefault"         "MaritalStatus"       "HouseholdSize"      
## [16] "NumberPets"          "NumberCats"          "NumberDogs"         
## [19] "NumberBirds"         "HomeOwner"           "CarsOwned"          
## [22] "CarOwnership"        "CarBrand"            "CarValue"           
## [25] "CommuteTime"         "PoliticalPartyMem"   "Votes"              
## [28] "CreditCard"          "CardTenure"          "CardItemsMonthly"   
## [31] "CardSpendMonth"      "ActiveLifestyle"     "PhoneCoTenure"      
## [34] "VoiceLastMonth"      "VoiceOverTenure"     "EquipmentRental"    
## [37] "EquipmentLastMonth"  "EquipmentOverTenure" "CallingCard"        
## [40] "WirelessData"        "DataLastMonth"       "DataOverTenure"     
## [43] "Multiline"           "VM"                  "Pager"              
## [46] "Internet"            "CallerID"            "CallWait"           
## [49] "CallForward"         "ThreeWayCalling"     "EBilling"           
## [52] "TVWatchingHours"     "OwnsPC"              "OwnsMobileDevice"   
## [55] "OwnsGameSystem"      "OwnsFax"             "NewsSubscriber"

3.4.4 Reordering columns

CustomerData_order2 <- select(CustomerData, Age, HHIncome, everything())

names(CustomerData_order2)
##  [1] "Age"                 "HHIncome"            "CustomerID"         
##  [4] "Region"              "TownSize"            "Gender"             
##  [7] "EducationYears"      "JobCategory"         "UnionMember"        
## [10] "EmploymentLength"    "Retired"             "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"

3.4.5 Renaming variables

CustomerData_rename<- rename(CustomerData, Education=EducationYears, Income=HHIncome)

CustomerData_rename1<-select(CustomerData_rename, Education, Income, everything())

names(CustomerData_rename1)
##  [1] "Education"           "Income"              "CustomerID"         
##  [4] "Region"              "TownSize"            "Gender"             
##  [7] "Age"                 "JobCategory"         "UnionMember"        
## [10] "EmploymentLength"    "Retired"             "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"

3.4.6 Creating new variable

There are multiple ways to create new columns. Using mutate is the simplest while other methods might require multiple steps

CustomerData_newvar<- mutate(CustomerData, Age_Income_Ratio=HHIncome/Age)
names(CustomerData_newvar)
##  [1] "CustomerID"          "Region"              "TownSize"           
##  [4] "Gender"              "Age"                 "EducationYears"     
##  [7] "JobCategory"         "UnionMember"         "EmploymentLength"   
## [10] "Retired"             "HHIncome"            "DebtToIncomeRatio"  
## [13] "CreditDebt"          "OtherDebt"           "LoanDefault"        
## [16] "MaritalStatus"       "HouseholdSize"       "NumberPets"         
## [19] "NumberCats"          "NumberDogs"          "NumberBirds"        
## [22] "HomeOwner"           "CarsOwned"           "CarOwnership"       
## [25] "CarBrand"            "CarValue"            "CommuteTime"        
## [28] "PoliticalPartyMem"   "Votes"               "CreditCard"         
## [31] "CardTenure"          "CardItemsMonthly"    "CardSpendMonth"     
## [34] "ActiveLifestyle"     "PhoneCoTenure"       "VoiceLastMonth"     
## [37] "VoiceOverTenure"     "EquipmentRental"     "EquipmentLastMonth" 
## [40] "EquipmentOverTenure" "CallingCard"         "WirelessData"       
## [43] "DataLastMonth"       "DataOverTenure"      "Multiline"          
## [46] "VM"                  "Pager"               "Internet"           
## [49] "CallerID"            "CallWait"            "CallForward"        
## [52] "ThreeWayCalling"     "EBilling"            "TVWatchingHours"    
## [55] "OwnsPC"              "OwnsMobileDevice"    "OwnsGameSystem"     
## [58] "OwnsFax"             "NewsSubscriber"      "Age_Income_Ratio"

Missing Data Treatment

3.5 Missing data analysis 3.5.1 Getting the number of missing values in the dataset

sum(is.na(CustomerData))
## [1] 76

3.5.2 Getting the missing values for each variable

colSums(is.na(CustomerData))
##          CustomerID              Region            TownSize              Gender 
##                   0                   0                   0                   0 
##                 Age      EducationYears         JobCategory         UnionMember 
##                   0                   0                   0                   0 
##    EmploymentLength             Retired            HHIncome   DebtToIncomeRatio 
##                   0                   0                   0                   0 
##          CreditDebt           OtherDebt         LoanDefault       MaritalStatus 
##                   0                   0                   0                   0 
##       HouseholdSize          NumberPets          NumberCats          NumberDogs 
##                   8                   6                   7                   8 
##         NumberBirds           HomeOwner           CarsOwned        CarOwnership 
##                  34                  13                   0                   0 
##            CarBrand            CarValue         CommuteTime   PoliticalPartyMem 
##                   0                   0                   0                   0 
##               Votes          CreditCard          CardTenure    CardItemsMonthly 
##                   0                   0                   0                   0 
##      CardSpendMonth     ActiveLifestyle       PhoneCoTenure      VoiceLastMonth 
##                   0                   0                   0                   0 
##     VoiceOverTenure     EquipmentRental  EquipmentLastMonth EquipmentOverTenure 
##                   0                   0                   0                   0 
##         CallingCard        WirelessData       DataLastMonth      DataOverTenure 
##                   0                   0                   0                   0 
##           Multiline                  VM               Pager            Internet 
##                   0                   0                   0                   0 
##            CallerID            CallWait         CallForward     ThreeWayCalling 
##                   0                   0                   0                   0 
##            EBilling     TVWatchingHours              OwnsPC    OwnsMobileDevice 
##                   0                   0                   0                   0 
##      OwnsGameSystem             OwnsFax      NewsSubscriber 
##                   0                   0                   0

3.5.3 Removing entries with missing values

CustomerData.Clean<- na.omit(CustomerData)

sum(is.na(CustomerData.Clean))
## [1] 0

3.5.4 Removing entries with missing values for a specific variable

CustomerData.Clean1<-CustomerData[!is.na(CustomerData$NumberPets),]

colSums(is.na(CustomerData.Clean1))
##          CustomerID              Region            TownSize              Gender 
##                   0                   0                   0                   0 
##                 Age      EducationYears         JobCategory         UnionMember 
##                   0                   0                   0                   0 
##    EmploymentLength             Retired            HHIncome   DebtToIncomeRatio 
##                   0                   0                   0                   0 
##          CreditDebt           OtherDebt         LoanDefault       MaritalStatus 
##                   0                   0                   0                   0 
##       HouseholdSize          NumberPets          NumberCats          NumberDogs 
##                   8                   0                   7                   8 
##         NumberBirds           HomeOwner           CarsOwned        CarOwnership 
##                  33                  12                   0                   0 
##            CarBrand            CarValue         CommuteTime   PoliticalPartyMem 
##                   0                   0                   0                   0 
##               Votes          CreditCard          CardTenure    CardItemsMonthly 
##                   0                   0                   0                   0 
##      CardSpendMonth     ActiveLifestyle       PhoneCoTenure      VoiceLastMonth 
##                   0                   0                   0                   0 
##     VoiceOverTenure     EquipmentRental  EquipmentLastMonth EquipmentOverTenure 
##                   0                   0                   0                   0 
##         CallingCard        WirelessData       DataLastMonth      DataOverTenure 
##                   0                   0                   0                   0 
##           Multiline                  VM               Pager            Internet 
##                   0                   0                   0                   0 
##            CallerID            CallWait         CallForward     ThreeWayCalling 
##                   0                   0                   0                   0 
##            EBilling     TVWatchingHours              OwnsPC    OwnsMobileDevice 
##                   0                   0                   0                   0 
##      OwnsGameSystem             OwnsFax      NewsSubscriber 
##                   0                   0                   0