Synopsis

The goal of this data analysis is to explore the NOAA Storm Database and answer the following questions:

###1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health? ###2. Across the United States, which types of events have the greatest economic consequences?

Loading and preprocessing the data

url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
destfile <- "C:/Users/roany/Documents/R_Language/JHU_DataScience/ReproducibleResearch/StormData.csv"
download.file(url, destfile)
data <- read.csv(destfile)

Getting to know the data

head(data)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE  EVTYPE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL TORNADO
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL TORNADO
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL TORNADO
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL TORNADO
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL TORNADO
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL TORNADO
##   BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1         0                                               0         NA
## 2         0                                               0         NA
## 3         0                                               0         NA
## 4         0                                               0         NA
## 5         0                                               0         NA
## 6         0                                               0         NA
##   END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1         0                      14.0   100 3   0          0       15    25.0
## 2         0                       2.0   150 2   0          0        0     2.5
## 3         0                       0.1   123 2   0          0        2    25.0
## 4         0                       0.0   100 2   0          0        2     2.5
## 5         0                       0.0   150 2   0          0        2     2.5
## 6         0                       1.5   177 2   0          0        6     2.5
##   PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1          K       0                                         3040      8812
## 2          K       0                                         3042      8755
## 3          K       0                                         3340      8742
## 4          K       0                                         3458      8626
## 5          K       0                                         3412      8642
## 6          K       0                                         3450      8748
##   LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1       3051       8806              1
## 2          0          0              2
## 3          0          0              3
## 4          0          0              4
## 5          0          0              5
## 6          0          0              6
names(data)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
summary(data)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295
#Variable of interest is event type; so it is good to take a peek of the data
summary(data$EVTYPE)
##                     HAIL                TSTM WIND        THUNDERSTORM WIND 
##                   288661                   219940                    82563 
##                  TORNADO              FLASH FLOOD                    FLOOD 
##                    60652                    54277                    25326 
##       THUNDERSTORM WINDS                HIGH WIND                LIGHTNING 
##                    20843                    20212                    15754 
##               HEAVY SNOW               HEAVY RAIN             WINTER STORM 
##                    15708                    11723                    11433 
##           WINTER WEATHER             FUNNEL CLOUD         MARINE TSTM WIND 
##                     7026                     6839                     6175 
## MARINE THUNDERSTORM WIND               WATERSPOUT              STRONG WIND 
##                     5812                     3796                     3566 
##     URBAN/SML STREAM FLD                 WILDFIRE                 BLIZZARD 
##                     3392                     2761                     2719 
##                  DROUGHT                ICE STORM           EXCESSIVE HEAT 
##                     2488                     2006                     1678 
##               HIGH WINDS         WILD/FOREST FIRE             FROST/FREEZE 
##                     1533                     1457                     1342 
##                DENSE FOG       WINTER WEATHER/MIX           TSTM WIND/HAIL 
##                     1293                     1104                     1028 
##  EXTREME COLD/WIND CHILL                     HEAT                HIGH SURF 
##                     1002                      767                      725 
##           TROPICAL STORM           FLASH FLOODING             EXTREME COLD 
##                      690                      682                      655 
##            COASTAL FLOOD         LAKE-EFFECT SNOW        FLOOD/FLASH FLOOD 
##                      650                      636                      624 
##                LANDSLIDE                     SNOW          COLD/WIND CHILL 
##                      600                      587                      539 
##                      FOG              RIP CURRENT              MARINE HAIL 
##                      538                      470                      442 
##               DUST STORM                AVALANCHE                     WIND 
##                      427                      386                      340 
##             RIP CURRENTS              STORM SURGE            FREEZING RAIN 
##                      304                      261                      250 
##              URBAN FLOOD     HEAVY SURF/HIGH SURF        EXTREME WINDCHILL 
##                      249                      228                      204 
##             STRONG WINDS           DRY MICROBURST    ASTRONOMICAL LOW TIDE 
##                      196                      186                      174 
##                HURRICANE              RIVER FLOOD               LIGHT SNOW 
##                      174                      173                      154 
##         STORM SURGE/TIDE            RECORD WARMTH         COASTAL FLOODING 
##                      148                      146                      143 
##               DUST DEVIL         MARINE HIGH WIND        UNSEASONABLY WARM 
##                      141                      135                      126 
##                 FLOODING   ASTRONOMICAL HIGH TIDE        MODERATE SNOWFALL 
##                      120                      103                      101 
##           URBAN FLOODING               WINTRY MIX        HURRICANE/TYPHOON 
##                       98                       90                       88 
##            FUNNEL CLOUDS               HEAVY SURF              RECORD HEAT 
##                       87                       84                       81 
##                   FREEZE                HEAT WAVE                     COLD 
##                       74                       74                       72 
##              RECORD COLD                      ICE  THUNDERSTORM WINDS HAIL 
##                       64                       61                       61 
##      TROPICAL DEPRESSION                    SLEET         UNSEASONABLY DRY 
##                       60                       59                       56 
##                    FROST              GUSTY WINDS      THUNDERSTORM WINDSS 
##                       53                       53                       51 
##       MARINE STRONG WIND                    OTHER               SMALL HAIL 
##                       48                       48                       47 
##                   FUNNEL             FREEZING FOG             THUNDERSTORM 
##                       46                       45                       45 
##       Temperature record          TSTM WIND (G45)         Coastal Flooding 
##                       43                       39                       38 
##              WATERSPOUTS    MONTHLY PRECIPITATION                    WINDS 
##                       37                       36                       36 
##                  (Other) 
##                     2940
## [1] "from here, we can tell that there are some typos and inconsistent terms for example 'THUNDERSTORM WIND' and 'THUNDERSTORM WINDSS'. So we have to scrub the text data before we can do any analysis."

Data Processing

###1. For the event types

library(tidyverse)
## -- Attaching packages ------------------------------------------------ tidyverse 1.3.0 --
## <U+2713> ggplot2 3.3.0     <U+2713> purrr   0.3.3
## <U+2713> tibble  3.0.0     <U+2713> dplyr   0.8.5
## <U+2713> tidyr   1.0.2     <U+2713> stringr 1.4.0
## <U+2713> readr   1.3.1     <U+2713> forcats 0.5.0
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
###Few things we need to do here. 
###1. Convert the event type into character
data$EVTYPE <- as.character(data$EVTYPE)

###2. Convert the event type into lower case (This is to remove the inconsistencies)
data$EVTYPE <- tolower(data$EVTYPE)

###3. It seems that the records are keyed in using free text. We will have to consolidate some of the categories to make meaningful analysis. We will also override these records and other inconsistent data entries with standardised event types. 

data$EVTYPE[grepl("(thunder|tstm.*)|(thu(n|?).*)|tun.*", data$EVTYPE)] <- "thunderstorm"
data$EVTYPE[grepl("microburst|downburst(\\s?).*", data$EVTYPE)] <- "downbursts"
data$EVTYPE[grepl("gusty|high wind|wind|wnd.*", data$EVTYPE)] <- "high winds"
data$EVTYPE[grepl("funnel|torn(a|d)(d|a)o|landspout|wa(y|?)ter(\\s?)spout|gustnado|downburst|dust|high winds.*", data$EVTYPE)] <- "tornado, whirlwind, and high winds"
data$EVTYPE[grepl("(TROPICAL.STORM|tropical.*)|(hurri|opal)|typhoon|remnants", data$EVTYPE)] <- "tropical cyclone"
data$EVTYPE[grepl("volc", data$EVTYPE)] <- "volcanic eruption"
data$EVTYPE[grepl("ic(e|y)(\\s?)storm|snow(\\s?)storm|winter storm|blizzard.*", data$EVTYPE)] <- "winter storm"
data$EVTYPE[grepl("rip current.*", data$EVTYPE)] <- "rip currents"
data$EVTYPE[grepl("fire|smoke", data$EVTYPE)] <- "firestorm"
data$EVTYPE[grepl("light(n|?)ing.*", data$EVTYPE)] <- "lightning"
data$EVTYPE[grepl("urban|urban(/|?|\\s)sm|flood.*", data$EVTYPE)] <- "flood"
data$EVTYPE[grepl("hail.*", data$EVTYPE)] <- "hail"
data$EVTYPE[grepl("(unseasonably cool|dry)|(unusually cold|snow)|(winter(y|?) weather|mix)|hail", data$EVTYPE)] <- "winter precipitation"
data$EVTYPE[grepl("heat|warm|drought|high temperature|hot.*", data$EVTYPE)] <- "heat and drought"
data$EVTYPE[grepl("frost|cold|freeze|glaze|ice|fog.*", data$EVTYPE)] <- "frost and freeze"
data$EVTYPE[grepl("rain|wet|shower.*", data$EVTYPE)] <- "rain"
data$EVTYPE[grepl("sleet.*|freezing drizzle|freezing spray", data$EVTYPE)] <- "winter precipitation"
data$EVTYPE[grepl("aval*|slide|landslump", data$EVTYPE)] <- "avalance and landslide"
data$EVTYPE[grepl("tsunami|wave|surge|coastal|swell|marine|surf|tide", data$EVTYPE)] <- "tsunami, waves, and tides"

###2. For property and crop damages To find out types of events have the greatest economic consequences, we need to analyse and sum up property damages (PROPDMG) and crop damages (CROPDMG).

We have to also take note of their corresponding units in PROPDMGEXP and CROPDMGEXP, which indicate if the damages are in hundreds, thousands, millions, or billions.

###Let's start with examining what's in PROPDMGEXP and CROPDMGEXP. 
table(data$PROPDMGEXP)
## 
##             -      ?      +      0      1      2      3      4      5      6 
## 465934      1      8      5    216     25     13      4      4     28      4 
##      7      8      B      h      H      K      m      M 
##      5      1     40      1      6 424665      7  11330
table(data$CROPDMGEXP)
## 
##             ?      0      2      B      k      K      m      M 
## 618413      7     19      1      9     21 281832      1   1994
###We can see that there are a mix of numbers and letters in both PROPDMGEXP and CROPDMGEXP. The numbers represent the power of ten (10^The number). We will have to convert the letters to numbers and multiply these numbers with PROPDMG and CROPDMG respectively.
###1. Cleaning the data in PROPDMGEXP
data$PROPDMGEXP <- gsub("[Hh]", "2", data$PROPDMGEXP)
data$PROPDMGEXP <- gsub("[Kk]", "3", data$PROPDMGEXP)
data$PROPDMGEXP <- gsub("[Mm]", "6", data$PROPDMGEXP)
data$PROPDMGEXP <- gsub("[Bb]", "9", data$PROPDMGEXP)
data$PROPDMGEXP <- gsub("\\+", "1", data$PROPDMGEXP)
data$PROPDMGEXP <- gsub("\\?|\\-|\\ ", "0",  data$PROPDMGEXP)
data$PROPDMGEXP <- as.numeric(data$PROPDMGEXP)

###2. Cleaning the data in CROPDMGEXP
data$CROPDMGEXP <- gsub("[Hh]", "2", data$CROPDMGEXP)
data$CROPDMGEXP <- gsub("[Kk]", "3", data$CROPDMGEXP)
data$CROPDMGEXP <- gsub("[Mm]", "6", data$CROPDMGEXP)
data$CROPDMGEXP <- gsub("[Bb]", "9", data$CROPDMGEXP)
data$CROPDMGEXP <- gsub("\\+", "1", data$CROPDMGEXP)
data$CROPDMGEXP <- gsub("\\-|\\?|\\ ", "0", data$CROPDMGEXP)
data$CROPDMGEXP <- as.numeric(data$CROPDMGEXP)

###3. Examine PROPDMGEXP and CROPDMGEXP to see if the data processing is successful.
table(data$PROPDMGEXP)
## 
##      0      1      2      3      4      5      6      7      8      9 
##    225     30     20 424669      4     28  11341      5      1     40
table(data$CROPDMGEXP)
## 
##      0      2      3      6      9 
##     26      1 281853   1995      9

Results

##1. Types of events (as indicated in the EVTYPE variable) that are most harmful with respect to population health.

#From the col names, we can see that the variables of interest are INJURIES and FATALITIES. We shall use these two parameters - sorted first by INJURIES and then FATALITIES - to identify top 10 events that are most harmful to population health.
harmful_events <- data %>% select(EVTYPE, INJURIES, FATALITIES) %>% group_by(EVTYPE) %>% summarise(INJURIES = sum(INJURIES), FATALITIES = sum(FATALITIES)) %>% arrange(desc(INJURIES), desc(FATALITIES))

#top 10 types of harmful events
head(harmful_events,10)
## # A tibble: 10 x 3
##    EVTYPE                             INJURIES FATALITIES
##    <chr>                                 <dbl>      <dbl>
##  1 tornado, whirlwind, and high winds    93944       6363
##  2 thunderstorm                           9545        756
##  3 heat and drought                       9247       3149
##  4 flood                                  8681       1553
##  5 lightning                              5231        817
##  6 winter storm                           4136        406
##  7 winter precipitation                   3148        276
##  8 frost and freeze                       1737        312
##  9 tropical cyclone                       1716        199
## 10 firestorm                              1608         90
#Visualising the data using ggplot with light blue as the number of injuries and light red as the number of fatalities. 
harmful_events %>% head(10) %>% ggplot() + geom_bar(aes(x = reorder(EVTYPE, INJURIES), y = INJURIES, fill = "light blue"), stat = "identity") +  geom_bar(aes(x = reorder(EVTYPE, FATALITIES), y = FATALITIES, fill= "light red"), stat = "identity") + coord_flip() + theme(legend.position = "none") + labs(y = "Number of fatalities and injuries", x = "Event Type", title = "Total people loss in USA by weather events in 1996-2011")

##2. Types of events that have the greatest economic consequences.

#Let's first filter the variables of interest, namely: EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP. 
#We have to remove any NA values, before proceeding with the calculations: 1. calculating property damages (PROPDMG * PROPDMGEXP), 2. calcultaing crop damages (CROPDMG * CROPDMGEXP), and 3. sum the damages. 
events_econs_dmg <- data %>% select(EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP) %>% drop_na() %>% mutate(TOTALPROPDMG = PROPDMG * PROPDMGEXP, TOTALCROPDMG = CROPDMG * CROPDMGEXP, TOTALDMG = TOTALPROPDMG + TOTALCROPDMG) %>% group_by(EVTYPE) %>% summarise(TOTALDMG = sum(TOTALDMG)) %>% arrange(desc(TOTALDMG))

#top 10 types of events with great economic consequences
head(events_econs_dmg,10)
## # A tibble: 10 x 2
##    EVTYPE                             TOTALDMG
##    <chr>                                 <dbl>
##  1 flood                              4923575.
##  2 thunderstorm                       3830725.
##  3 tornado, whirlwind, and high winds 2852939.
##  4 winter precipitation               2528811.
##  5 lightning                           604725.
##  6 winter storm                        304260.
##  7 tropical cyclone                    224874.
##  8 firestorm                           201470.
##  9 rain                                 79560.
## 10 heat and drought                     79539.
#Visualising the data using ggplot
events_econs_dmg %>% head(10) %>% ggplot() + geom_bar(aes(x = reorder(EVTYPE, TOTALDMG), y = TOTALDMG), stat = "identity") + coord_flip() + labs(y = "Size of property and crop loss", x = "Event Type", title = "Total economic loss in USA by weather events in 1996-2011")