base1<-structure(list(produccion=c(1,2,3,4,5,6,7,8,9,10),costo_total=c(193,226,240,
244,257,260,274,297,350,420)),class="data.frame",
row.names=c(NA,-10L))
base1
## produccion costo_total
## 1 1 193
## 2 2 226
## 3 3 240
## 4 4 244
## 5 5 257
## 6 6 260
## 7 7 274
## 8 8 297
## 9 9 350
## 10 10 420
plot(base1$produccion,base1$costo_total);title("c+ax+bx^2+dx^3")
mod3<-lm(base1$costo_total~base1$produccion+I(base1$produccion^2)+I(base1$produccion^3))
mod3
##
## Call:
## lm(formula = base1$costo_total ~ base1$produccion + I(base1$produccion^2) +
## I(base1$produccion^3))
##
## Coefficients:
## (Intercept) base1$produccion I(base1$produccion^2)
## 141.7667 63.4777 -12.9615
## I(base1$produccion^3)
## 0.9396
summary(mod3)
##
## Call:
## lm(formula = base1$costo_total ~ base1$produccion + I(base1$produccion^2) +
## I(base1$produccion^3))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4263 -0.7416 0.3744 1.4635 4.4350
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 141.76667 6.37532 22.24 5.41e-07 ***
## base1$produccion 63.47766 4.77861 13.28 1.13e-05 ***
## I(base1$produccion^2) -12.96154 0.98566 -13.15 1.19e-05 ***
## I(base1$produccion^3) 0.93959 0.05911 15.90 3.93e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.285 on 6 degrees of freedom
## Multiple R-squared: 0.9983, Adjusted R-squared: 0.9975
## F-statistic: 1202 on 3 and 6 DF, p-value: 1.001e-08
library(ggplot2)
ggplot(base1,aes(x=produccion,y=costo_total))+geom_point()+geom_smooth(method = 'lm',formula = y~x+I(x^2)+I(x^3))+theme_minimal()