Los datos
datos<- read.csv("../Datos/casos_confirmados.csv", fileEncoding = "UTF-8")
kable(head(datos, 10))
| 0 |
méxico |
FEMENINO |
75 |
2020-04-09 |
1 |
| 3 |
tamaulipas |
MASCULINO |
22 |
2020-04-06 |
1 |
| 15 |
distrito federal |
MASCULINO |
40 |
2020-03-28 |
1 |
| 16 |
distrito federal |
FEMENINO |
29 |
2020-04-01 |
1 |
| 17 |
yucatán |
MASCULINO |
71 |
2020-04-15 |
1 |
| 22 |
michoacán |
FEMENINO |
29 |
2020-04-23 |
1 |
| 27 |
guerrero |
FEMENINO |
61 |
2020-04-07 |
1 |
| 28 |
distrito federal |
MASCULINO |
33 |
2020-04-08 |
1 |
| 31 |
méxico |
FEMENINO |
77 |
2020-04-08 |
1 |
| 32 |
méxico |
FEMENINO |
84 |
2020-04-02 |
1 |
kable(tail(datos, 10))
| 19215 |
87334 |
michoacán |
MASCULINO |
22 |
2020-04-14 |
1 |
| 19216 |
87344 |
distrito federal |
FEMENINO |
52 |
2020-04-26 |
1 |
| 19217 |
87349 |
tabasco |
MASCULINO |
36 |
2020-04-28 |
1 |
| 19218 |
87353 |
distrito federal |
FEMENINO |
30 |
2020-04-21 |
1 |
| 19219 |
87354 |
tabasco |
FEMENINO |
47 |
2020-04-21 |
1 |
| 19220 |
87356 |
méxico |
FEMENINO |
28 |
2020-04-13 |
1 |
| 19221 |
87358 |
distrito federal |
FEMENINO |
39 |
2020-04-28 |
1 |
| 19222 |
87360 |
méxico |
MASCULINO |
48 |
2020-04-22 |
1 |
| 19223 |
87361 |
tabasco |
MASCULINO |
48 |
2020-04-25 |
1 |
| 19224 |
87365 |
méxico |
FEMENINO |
62 |
2020-04-07 |
1 |
| #### Est |
ructura |
de los datos |
|
|
|
|
str(datos)
## 'data.frame': 19224 obs. of 6 variables:
## $ X : int 0 3 15 16 17 22 27 28 31 32 ...
## $ State : Factor w/ 32 levels "aguascalientes",..: 15 28 9 9 31 16 12 9 15 15 ...
## $ Sex : Factor w/ 2 levels "FEMENINO","MASCULINO": 1 2 2 1 2 1 1 2 1 1 ...
## $ Age : int 75 22 40 29 71 29 61 33 77 84 ...
## $ Date : Factor w/ 66 levels "2020-01-06","2020-01-08",..: 45 42 33 37 51 59 43 44 44 38 ...
## $ Confirmed: int 1 1 1 1 1 1 1 1 1 1 ...
Summary de los datos
summary(datos)
## X State Sex Age
## Min. : 0 distrito federal:5209 FEMENINO : 8039 Min. : 0.00
## 1st Qu.:22523 méxico :3130 MASCULINO:11185 1st Qu.: 35.00
## Median :44009 baja california :1557 Median : 46.00
## Mean :44045 tabasco : 984 Mean : 46.59
## 3rd Qu.:65793 sinaloa : 865 3rd Qu.: 57.00
## Max. :87365 quintana roo : 788 Max. :113.00
## (Other) :6691
## Date Confirmed
## 2020-04-20: 1144 Min. :1
## 2020-04-21: 1100 1st Qu.:1
## 2020-04-24: 1049 Median :1
## 2020-04-22: 1016 Mean :1
## 2020-04-23: 1006 3rd Qu.:1
## 2020-04-17: 937 Max. :1
## (Other) :12972
Obtener la Moda de Edad
sort(table(datos$Age))
##
## 96 98 102 113 97 99 100 94 93 95 92 8 3 5 91 6 7 9 4 10
## 1 1 1 1 2 2 2 3 5 6 7 9 11 11 12 13 14 14 15 15
## 12 14 90 2 88 89 11 16 15 1 85 0 13 86 17 87 83 18 81 82
## 17 17 17 18 18 18 20 21 22 24 25 26 26 27 33 33 41 42 44 52
## 20 80 84 19 79 77 76 78 21 74 75 22 72 73 71 70 23 69 64 24
## 56 56 56 57 74 91 93 94 99 113 114 115 124 130 136 155 161 178 192 196
## 68 25 67 66 63 65 61 62 26 59 60 27 58 28 57 30 32 55 29 54
## 197 215 215 220 249 261 283 287 299 322 322 324 333 336 362 369 372 376 384 393
## 31 56 53 33 34 36 51 40 50 37 42 39 35 48 38 43 41 45 44 52
## 398 402 412 416 417 425 428 429 429 434 436 437 442 450 453 455 456 459 462 465
## 47 49 46
## 466 475 483
mlv(datos$Age)
## [1] 46