1 Backup and data cleaning

First, I’ll create a backup just in case I need to return to the original version of this ds.

Then, I’ll fix names/labels issues

2 Demographics

##  ds$gender     n      percent valid_percent
##          1 13150 5.823738e-01     0.5823996
##          2  9429 4.175819e-01     0.4176004
##         NA     1 4.428698e-05            NA

3 Subsetting the dataset

The new dataset will be named as ds_oregon. This dataset is formed of 16306 children.

##  ds_oregon$gender    n   percent
##                 1 9514 0.5834662
##                 2 6792 0.4165338

Before the analyses, unfortuntaly, SPSS labels and R coding do not get along.

3.1 Creating a proxy for age

3.2 Presenting tables and descriptive results

3.3 plot

3.4 Correlation between ASQ3 domains and ASQSE2

## # A tibble: 8 x 7
## # Groups:   age2 [8]
##   age2  cm_total gm_total fm_total cg_total ps_total     n
##   <fct>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl> <int>
## 1 6       -0.389   -0.206   -0.290   -0.322   -0.315  2127
## 2 12      -0.345   -0.106   -0.332   -0.341   -0.355  2142
## 3 18      -0.468   -0.277   -0.431   -0.421   -0.521  2097
## 4 24      -0.449   -0.341   -0.471   -0.569   -0.554  1771
## 5 30      -0.483   -0.299   -0.425   -0.489   -0.490  1510
## 6 36      -0.605   -0.387   -0.496   -0.579   -0.632  2413
## 7 48      -0.519   -0.376   -0.461   -0.500   -0.550  2545
## 8 60      -0.499   -0.389   -0.437   -0.382   -0.577  1701

3.5 Agreement analysis

##  risk_asq3            0            1          Total
##          0 80.9% (6299) 19.1% (1483) 100.0%  (7782)
##          1 43.8% (2183) 56.2% (2797) 100.0%  (4980)
##      Total 66.5% (8482) 33.5% (4280) 100.0% (12762)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 6299 1483
##          1 2183 2797
##                                           
##                Accuracy : 0.7127          
##                  95% CI : (0.7048, 0.7206)
##     No Information Rate : 0.6646          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.3807          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.6535          
##             Specificity : 0.7426          
##          Pos Pred Value : 0.5616          
##          Neg Pred Value : 0.8094          
##              Prevalence : 0.3354          
##          Detection Rate : 0.2192          
##    Detection Prevalence : 0.3902          
##       Balanced Accuracy : 0.6981          
##                                           
##        'Positive' Class : 1               
## 

3.6 Autism

##  risk_asqse              0           1          Total
##           0  66.7%  (8478)   8.3%  (4)  66.5%  (8482)
##           1  33.3%  (4236)  91.7% (44)  33.5%  (4280)
##       Total 100.0% (12714) 100.0% (48) 100.0% (12762)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 8478    4
##          1 4236   44
##                                           
##                Accuracy : 0.6678          
##                  95% CI : (0.6595, 0.6759)
##     No Information Rate : 0.9962          
##     P-Value [Acc > NIR] : 1               
##                                           
##                   Kappa : 0.013           
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.916667        
##             Specificity : 0.666824        
##          Pos Pred Value : 0.010280        
##          Neg Pred Value : 0.999528        
##              Prevalence : 0.003761        
##          Detection Rate : 0.003448        
##    Detection Prevalence : 0.335371        
##       Balanced Accuracy : 0.791745        
##                                           
##        'Positive' Class : 1               
## 
##  risk_asq3              0           1          Total
##          0  60.6%  (9849)  10.9%  (7)  60.4%  (9856)
##          1  39.4%  (6393)  89.1% (57)  39.6%  (6450)
##      Total 100.0% (16242) 100.0% (64) 100.0% (16306)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 9849    7
##          1 6393   57
##                                       
##                Accuracy : 0.6075      
##                  95% CI : (0.6, 0.615)
##     No Information Rate : 0.9961      
##     P-Value [Acc > NIR] : 1           
##                                       
##                   Kappa : 0.0098      
##                                       
##  Mcnemar's Test P-Value : <2e-16      
##                                       
##             Sensitivity : 0.890625    
##             Specificity : 0.606391    
##          Pos Pred Value : 0.008837    
##          Neg Pred Value : 0.999290    
##              Prevalence : 0.003925    
##          Detection Rate : 0.003496    
##    Detection Prevalence : 0.395560    
##       Balanced Accuracy : 0.748508    
##                                       
##        'Positive' Class : 1           
##