Question 1. We will derive a two-state put option value in this problem. Data: S0 = 100; X = 110; 1 + r =1.10. or rate=10% The two possibilities for ST are 130 and 80.
Note: Value of put option when the stock goes up is: 0 Value of put option when the stock goes down is: X-uS0
Hedge Ratio
(0-30)/50
## [1] -0.6
Based on the hedge ratio, there are three shares and five put options
Payoff <- matrix(c(240,390,150,0,390,390),ncol=2,byrow=3)
colnames(Payoff) <- c("Stock Price Down","Stock Price Up")
rownames(Payoff) <- c("3 Shares","5 Puts","Total Pay-off")
Payoff <- as.table(Payoff)
Payoff
## Stock Price Down Stock Price Up
## 3 Shares 240 390
## 5 Puts 150 0
## Total Pay-off 390 390
#Nonrandom Payoff of Portfolio
390
## [1] 390
#Present Discounted Value of Portfolio
(390)/(1+0.10)
## [1] 354.5455
(354.5455-(100*3))/5
## [1] 10.9091
Question 2. Use the Black-Scholes formula to find the value of a call option on the following stock:
Time to expiration 6 months Standard deviation 50% per year Exercise price $50 Stock price $50 Annual interest rate 3% Dividend 0
#Call Option
d1 <- (log(50/50) + (0.03 + 0.5^2/2)*0.5) / (0.5*sqrt(0.5))
d1
## [1] 0.2192031
d2 <- d1 - 0.5*sqrt(0.5)
d2
## [1] -0.1343503
N_d1 <- pnorm(d1)
N_d1
## [1] 0.5867541
N_d2 <- pnorm(d2)
N_d2
## [1] 0.4465628
BlackScholesHedgeRatio <- 50*pnorm(d1) - 50*exp(-.03*0.5)*pnorm(d2)
BlackScholesHedgeRatio
## [1] 7.341987
#Put Option
d1 <- (log(50/50) + (0.03 + 0.5^2/2)*0.5) / (0.5*sqrt(0.5))
d2 <- d1 - 0.5*sqrt(0.5)
value <-(50*exp(-0.03*0.5)*pnorm(-d2) - 50*pnorm(-d1))
value
## [1] 6.597584
Question 3. Find the Black-Scholes value of a put option on the stock in Problem 11 with the same exercise price and expiration as the call option. Formula for Put Call Parity: C+Xexp(-rt)-S=P
#Using Put-Call Parity
7.341987+50*exp(-.03*0.5)-50
## [1] 6.597584
Question 5. Recalculate the value of the call option in Problem 11, successively substituting one of the changes below while keeping the other parameters as in Problem 11:
Consider each scenario independently. Confirm that the option value changes in accordance with the prediction of Table 21.1.
#Call Option (Expiration sate changes to 0.25 or 3 months)
d1 <- (log(50/50) + (0.03 + 0.5^2/2)*0.25) / (0.5*sqrt(0.25))
d1
## [1] 0.155
d2 <- d1 - 0.5*sqrt(0.25)
d2
## [1] -0.095
N_d1 <- pnorm(d1)
N_d1
## [1] 0.5615893
N_d2 <- pnorm(d2)
N_d2
## [1] 0.4621574
BlackScholesHedgeRatio1 <- 50*pnorm(d1) - 50*exp(-.03*0.25)*pnorm(d2)
BlackScholesHedgeRatio1
## [1] 5.144257
#Call Option (Standard Deviation reduced to 25%)
d1 <- (log(50/50) + (0.03 + 0.25^2/2)*0.5) / (0.25*sqrt(0.5))
d1
## [1] 0.1732412
d2 <- d1 - 0.25*sqrt(0.5)
d2
## [1] -0.003535534
N_d1 <- pnorm(d1)
N_d1
## [1] 0.5687691
N_d2 <- pnorm(d2)
N_d2
## [1] 0.4985895
BlackScholesHedgeRatio2 <- 50*pnorm(d1) - 50*exp(-.03*0.5)*pnorm(d2)
BlackScholesHedgeRatio2
## [1] 3.880128
#Call Option (Increase execize price to $55)
d1 <- (log(50/55) + (0.03 + 0.25^2/2)*0.5) / (0.25*sqrt(0.5))
d1
## [1] -0.3659146
d2 <- d1 - 0.25*sqrt(0.5)
d2
## [1] -0.5426913
N_d1 <- pnorm(d1)
N_d1
## [1] 0.3572144
N_d2 <- pnorm(d2)
N_d2
## [1] 0.2936712
BlackScholesHedgeRatio3 <- 50*pnorm(d1) - 55*exp(-.03*0.5)*pnorm(d2)
BlackScholesHedgeRatio3
## [1] 1.949276
#Call Option (Increase Stock Price to 55)
d1 <- (log(55/50) + (0.03 + 0.25^2/2)*0.5) / (0.25*sqrt(0.5))
d1
## [1] 0.712397
d2 <- d1 - 0.25*sqrt(0.5)
d2
## [1] 0.5356203
N_d1 <- pnorm(d1)
N_d1
## [1] 0.7618905
N_d2 <- pnorm(d2)
N_d2
## [1] 0.7038895
BlackScholesHedgeRatio4 <- 55*pnorm(d1) - 50*exp(-.03*0.5)*pnorm(d2)
BlackScholesHedgeRatio4
## [1] 7.233481
#Call Option (Increase Interest Rate to 5%)
d1 <- (log(50/50) + (0.05 + 0.5^2/2)*0.5) / (0.5*sqrt(0.5))
d1
## [1] 0.2474874
d2 <- d1 - 0.5*sqrt(0.5)
d2
## [1] -0.106066
N_d1 <- pnorm(d1)
N_d1
## [1] 0.5977345
N_d2 <- pnorm(d2)
N_d2
## [1] 0.457765
BlackScholesHedgeRatio5 <- 50*pnorm(d1) - 50*exp(-0.05*0.5)*pnorm(d2)
BlackScholesHedgeRatio5
## [1] 7.563587