A case study - II
## [1] 88 4
## 'data.frame': 88 obs. of 4 variables:
## $ Name : chr "Al-Madinah School" "Alfriston College" "Ambury Park Centre for Riding Therapy" "Aorere College" ...
## $ Level1: num 61.5 53.9 33.3 39.5 71.2 22.1 50.8 57.3 89.3 59.8 ...
## $ Level2: num 75 44.1 20 50.2 78.9 30.8 34.8 49.8 89.7 65.7 ...
## $ Level3: num 0 0 0 30.6 55.5 26.3 48.9 44.6 88.6 50.4 ...
## Name Level1 Level2 Level3
## 1 Al-Madinah School 61.5 75.0 0.0
## 2 Alfriston College 53.9 44.1 0.0
## 3 Ambury Park Centre for Riding Therapy 33.3 20.0 0.0
## 4 Aorere College 39.5 50.2 30.6
## 5 Auckland Girls' Grammar School 71.2 78.9 55.5
## 6 Auckland Grammar 22.1 30.8 26.3
## values level name
## 1 61.5 Level1 Al-Madinah School
## 2 53.9 Level1 Alfriston College
## 3 33.3 Level1 Ambury Park Centre for Riding Therapy
## 4 39.5 Level1 Aorere College
## 5 71.2 Level1 Auckland Girls' Grammar School
## 6 22.1 Level1 Auckland Grammar
## Level1 Level2 Level3
## 62.26705 61.06818 47.97614
## Level1 Level2 Level3
## 62.26705 61.06818 47.97614
## $Level1
## [1] 62.26705
##
## $Level2
## [1] 61.06818
##
## $Level3
## [1] 47.97614
## level values
## 1 Level1 62.26705
## 2 Level2 61.06818
## 3 Level3 47.97614
Simplify the list apply
## Level1 Level2 Level3
## 62.26705 61.06818 47.97614
## Level1 Level2 Level3
## [1,] 2.8 0.0 0.0
## [2,] 97.4 95.7 95.7
## Level1 Level2 Level3
## [1,] 2.8 0.0 0.0
## [2,] 97.4 95.7 95.7
## $Level1
## [1] 2.8 97.4
##
## $Level2
## [1] 0.0 95.7
##
## $Level3
## [1] 0.0 95.7
## level values.1 values.2
## 1 Level1 2.8 97.4
## 2 Level2 0.0 95.7
## 3 Level3 0.0 95.7
## Level1 Level2 Level3
## [1,] 2.8 0.0 0.0
## [2,] 97.4 95.7 95.7
Splitting
## List of 4
## $ Other : int 51
## $ Private : int [1:99] 255 39 154 73 83 25 95 85 94 729 ...
## $ State : int [1:2144] 318 200 455 86 577 329 637 395 201 267 ...
## $ State Integrated: int [1:327] 438 26 191 560 151 114 126 171 211 57 ...
## [1] "list"
## $Other
## [1] 51
##
## $Private
## [1] 308.798
##
## $State
## [1] 300.6301
##
## $`State Integrated`
## [1] 258.3792
## Other Private State State Integrated
## 51.0000 308.7980 300.6301 258.3792
## $Other
## [1] 51
##
## $Private
## [1] 308.798
##
## $State
## [1] 300.6301
##
## $`State Integrated`
## [1] 258.3792
## Other Private State State Integrated
## 51.0000 308.7980 300.6301 258.3792
## Auth Roll
## 1 Other 51.0000
## 2 Private 308.7980
## 3 State 300.6301
## 4 State Integrated 258.3792
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## # A tibble: 4 x 2
## Auth Roll
## <fct> <dbl>
## 1 Other 51
## 2 Private 309.
## 3 State 301.
## 4 State Integrated 258.