This note came from Matt Dancho’s webpage.
Factor models are used in many financial appplications, suhc as:
Capital Asset Pricing Model (CAPM) is the most popular factor model. Although CAPM does not perform well in empirical testing, it’s important because it provides a starting point of many cost of capital calculations.
## # A tibble: 16,025 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 1990-04-30 1.40 1.42 1.39 1.41 34098400 1.14
## 2 AAPL 1990-05-01 1.42 1.43 1.41 1.42 40902400 1.15
## 3 AAPL 1990-05-02 1.42 1.43 1.40 1.42 33857600 1.15
## 4 AAPL 1990-05-03 1.42 1.44 1.42 1.43 41577200 1.16
## 5 AAPL 1990-05-04 1.43 1.46 1.40 1.43 42383600 1.16
## 6 AAPL 1990-05-07 1.42 1.49 1.42 1.48 33997600 1.21
## 7 AAPL 1990-05-08 1.46 1.5 1.46 1.49 28114800 1.21
## 8 AAPL 1990-05-09 1.49 1.5 1.47 1.50 24309600 1.22
## 9 AAPL 1990-05-10 1.49 1.49 1.45 1.48 44760800 1.20
## 10 AAPL 1990-05-11 1.48 1.53 1.46 1.52 53810400 1.24
## # … with 16,015 more rows
## # A tibble: 766 x 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 1990-04-30 0
## 2 AAPL 1990-05-31 0.0505
## 3 AAPL 1990-06-29 0.0848
## 4 AAPL 1990-07-31 -0.0615
## 5 AAPL 1990-08-31 -0.116
## 6 AAPL 1990-09-28 -0.216
## 7 AAPL 1990-10-31 0.0603
## 8 AAPL 1990-11-30 0.199
## 9 AAPL 1990-12-31 0.170
## 10 AAPL 1991-01-31 0.291
## # … with 756 more rows
## # A tibble: 361 x 2
## date Rb
## <date> <dbl>
## 1 1990-04-30 0
## 2 1990-05-31 0.0926
## 3 1990-06-29 0.00719
## 4 1990-07-31 -0.0521
## 5 1990-08-31 -0.130
## 6 1990-09-28 -0.0963
## 7 1990-10-31 -0.0427
## 8 1990-11-30 0.0888
## 9 1990-12-31 0.0409
## 10 1991-01-31 0.108
## # … with 351 more rows
## # A tibble: 766 x 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 1990-04-30 0 0
## 2 AAPL 1990-05-31 0.0505 0.0926
## 3 AAPL 1990-06-29 0.0848 0.00719
## 4 AAPL 1990-07-31 -0.0615 -0.0521
## 5 AAPL 1990-08-31 -0.116 -0.130
## 6 AAPL 1990-09-28 -0.216 -0.0963
## 7 AAPL 1990-10-31 0.0603 -0.0427
## 8 AAPL 1990-11-30 0.199 0.0888
## 9 AAPL 1990-12-31 0.170 0.0409
## 10 AAPL 1991-01-31 0.291 0.108
## # … with 756 more rows
## # A tibble: 3 x 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.0948 0.0122 0.156 1.08 1.04 1.11 0.543
## 2 GOOG 0.129 0.0116 0.148 1.03 1.06 0.925 0.564
## 3 NFLX 0.286 0.0305 0.434 1.15 1.15 0.746 0.351
## # … with 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
## # A tibble: 15,093 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2000-05-01 4.46 4.47 4.35 4.44 56548800 3.85
## 2 AAPL 2000-05-02 4.40 4.51 4.20 4.21 59108000 3.65
## 3 AAPL 2000-05-03 4.25 4.33 3.99 4.11 122449600 3.57
## 4 AAPL 2000-05-04 4.11 4.12 3.95 3.95 99878800 3.43
## 5 AAPL 2000-05-05 3.96 4.10 3.95 4.04 71019200 3.51
## 6 AAPL 2000-05-08 4.00 4.06 3.93 3.93 46225200 3.41
## 7 AAPL 2000-05-09 3.94 3.97 3.75 3.77 81785200 3.27
## 8 AAPL 2000-05-10 3.72 3.75 3.53 3.55 133772800 3.08
## 9 AAPL 2000-05-11 3.62 3.72 3.54 3.67 124936000 3.19
## 10 AAPL 2000-05-12 3.79 3.95 3.74 3.84 76728400 3.34
## # … with 15,083 more rows
## # A tibble: 720 x 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2000-05-31 -0.324
## 2 AAPL 2000-06-30 0.247
## 3 AAPL 2000-07-31 -0.0298
## 4 AAPL 2000-08-31 0.199
## 5 AAPL 2000-09-29 -0.577
## 6 AAPL 2000-10-31 -0.240
## 7 AAPL 2000-11-30 -0.157
## 8 AAPL 2000-12-29 -0.0985
## 9 AAPL 2001-01-31 0.454
## 10 AAPL 2001-02-28 -0.156
## # … with 710 more rows
Hint: Use NASDAQ Compsite Index as baseline.
## # A tibble: 240 x 2
## date Rb
## <date> <dbl>
## 1 2000-05-31 -0.141
## 2 2000-06-30 0.166
## 3 2000-07-31 -0.0502
## 4 2000-08-31 0.117
## 5 2000-09-29 -0.127
## 6 2000-10-31 -0.0825
## 7 2000-11-30 -0.229
## 8 2000-12-29 -0.0490
## 9 2001-01-31 0.122
## 10 2001-02-28 -0.224
## # … with 230 more rows
## # A tibble: 720 x 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2000-05-31 -0.324 -0.141
## 2 AAPL 2000-06-30 0.247 0.166
## 3 AAPL 2000-07-31 -0.0298 -0.0502
## 4 AAPL 2000-08-31 0.199 0.117
## 5 AAPL 2000-09-29 -0.577 -0.127
## 6 AAPL 2000-10-31 -0.240 -0.0825
## 7 AAPL 2000-11-30 -0.157 -0.229
## 8 AAPL 2000-12-29 -0.0985 -0.0490
## 9 AAPL 2001-01-31 0.454 0.122
## 10 AAPL 2001-02-28 -0.156 -0.224
## # … with 710 more rows
## # A tibble: 3 x 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.199 0.019 0.253 1.19 1.12 1.29 0.641
## 2 MSFT 0.0648 0.0068 0.0851 0.871 0.608 0.992 0.683
## 3 AMZN 0.160 0.0172 0.227 1.34 1.36 1.48 0.619
## # … with 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Apple performed the best according to the Alpha value or the Y-Intercept. They had a alpha of 0.0190 or 1.9% meaning that they performed 1.9% better than the market value. All of these companies performed better than the market: Microsoft by .68% and Amazon by 1.72%. In terms of returns all of these stocks outperformed the market and would be a good investment.
Companies that have a Beta less than 1 are generally less risky and less affected by market movements so microsoft according to the Beta value is the least risky out at a Beta value of 0.8706. Apple has a Beta of 1.1932 and Amazon has a Beta of 1.3403. If you are less of a risk taker the best company to invest in would be Microsoft and Amazon would be the best company if you are willing to take more risk.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.