setwd("C:/Users/LG/Documents/Dyadic Analysis Book Data")
library(haven)
## Warning: package 'haven' was built under R version 3.5.3
MLMdata <- read_spss("chapter4 table43.sav")
MLMdata
## # A tibble: 20 x 9
## dyad future person sex contrib culture intercep x1 x2
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 75 1 -1 -10 1 1 1 0
## 2 1 90 2 1 -5 1 1 0 1
## 3 2 55 1 -1 0 1 1 1 0
## 4 2 75 2 1 10 1 1 0 1
## 5 3 45 1 -1 -10 1 1 1 0
## 6 3 33 2 1 -15 1 1 0 1
## 7 4 70 1 -1 5 1 1 1 0
## 8 4 75 2 1 15 1 1 0 1
## 9 5 50 1 -1 0 1 1 1 0
## 10 5 40 2 1 -5 1 1 0 1
## 11 6 85 1 -1 -10 -1 1 1 0
## 12 6 90 2 1 20 -1 1 0 1
## 13 7 75 1 -1 -5 -1 1 1 0
## 14 7 80 2 1 0 -1 1 0 1
## 15 8 90 1 -1 5 -1 1 1 0
## 16 8 68 2 1 0 -1 1 0 1
## 17 9 65 1 -1 0 -1 1 1 0
## 18 9 78 2 1 15 -1 1 0 1
## 19 10 88 1 -1 -15 -1 1 1 0
## 20 10 95 2 1 5 -1 1 0 1
#lme
library(nlme)
imlmmodel <- lme(future ~ contrib + culture + contrib:culture,
random = ~1|dyad, data = MLMdata,
correlation = corCompSymm(form=~1|dyad))
summary(imlmmodel)
## Linear mixed-effects model fit by REML
## Data: MLMdata
## AIC BIC logLik
## 156.9258 162.3339 -71.46289
##
## Random effects:
## Formula: ~1 | dyad
## (Intercept) Residual
## StdDev: 13.28266 6.614647
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | dyad
## Parameter estimate(s):
## Rho
## 0
## Fixed effects: future ~ contrib + culture + contrib:culture
## Value Std.Error DF t-value p-value
## (Intercept) 71.83089 4.469636 8 16.070858 0.0000
## contrib 0.84479 0.255653 8 3.304426 0.0108
## culture -9.03282 4.469636 8 -2.020929 0.0779
## contrib:culture 0.48726 0.255653 8 1.905943 0.0931
## Correlation:
## (Intr) contrb cultur
## contrib 0.050
## culture 0.004 0.086
## contrib:culture 0.086 0.587 0.050
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.5738389 -0.5010191 0.1034914 0.3899364 1.4818595
##
## Number of Observations: 20
## Number of Groups: 10
#variance 확인
#sigma : an optional numeric value used as a multiplier for thestandard deviations
#rdig : an optional integer value specifying the number of digitsused to represent correlation estimates
VarCorr(imlmmodel, sigma = imlmmodel$sigma, rdig = 3)
## dyad = pdLogChol(1)
## Variance StdDev
## (Intercept) 176.42915 13.282664
## Residual 43.75355 6.614647
#dummy변수 만들기
#성별이라는 distinguishable 변수를 사용해서 분석하기 때문에 성별을 더미변수로 만듬.
twointer <- cbind(MLMdata$x1, MLMdata$x2)
colnames(twointer) <- c("dummy_w", "dummy_m")
twointer
## dummy_w dummy_m
## [1,] 1 0
## [2,] 0 1
## [3,] 1 0
## [4,] 0 1
## [5,] 1 0
## [6,] 0 1
## [7,] 1 0
## [8,] 0 1
## [9,] 1 0
## [10,] 0 1
## [11,] 1 0
## [12,] 0 1
## [13,] 1 0
## [14,] 0 1
## [15,] 1 0
## [16,] 0 1
## [17,] 1 0
## [18,] 0 1
## [19,] 1 0
## [20,] 0 1
twointerdata <- cbind(MLMdata[1:6],twointer)
twointerdata
## dyad future person sex contrib culture dummy_w dummy_m
## 1 1 75 1 -1 -10 1 1 0
## 2 1 90 2 1 -5 1 0 1
## 3 2 55 1 -1 0 1 1 0
## 4 2 75 2 1 10 1 0 1
## 5 3 45 1 -1 -10 1 1 0
## 6 3 33 2 1 -15 1 0 1
## 7 4 70 1 -1 5 1 1 0
## 8 4 75 2 1 15 1 0 1
## 9 5 50 1 -1 0 1 1 0
## 10 5 40 2 1 -5 1 0 1
## 11 6 85 1 -1 -10 -1 1 0
## 12 6 90 2 1 20 -1 0 1
## 13 7 75 1 -1 -5 -1 1 0
## 14 7 80 2 1 0 -1 0 1
## 15 8 90 1 -1 5 -1 1 0
## 16 8 68 2 1 0 -1 0 1
## 17 9 65 1 -1 0 -1 1 0
## 18 9 78 2 1 15 -1 0 1
## 19 10 88 1 -1 -15 -1 1 0
## 20 10 95 2 1 5 -1 0 1
#correlation 확인
#더미변수 간 상관은 항상 -1임.
cor(twointerdata$dummy_w,twointerdata$dummy_m)
## [1] -1
#lme로 추정하기
library(nlme)
dmlmmodel <- lme(future ~ dummy_w + dummy_m + contrib + culture + contrib:culture -1,
random = ~ -1 + dummy_w + dummy_m|dyad,
data = twointerdata,
correlation = corCompSymm(form=~1|dyad),
weight = varIdent(form = ~1|sex))
summary(dmlmmodel)
## Linear mixed-effects model fit by REML
## Data: twointerdata
## AIC BIC logLik
## 159.4705 167.2591 -68.73527
##
## Random effects:
## Formula: ~-1 + dummy_w + dummy_m | dyad
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## dummy_w 13.160079 dmmy_w
## dummy_m 15.702344 0.872
## Residual 4.086932
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | dyad
## Parameter estimate(s):
## Rho
## 0
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | sex
## Parameter estimates:
## -1 1
## 1 1
## Fixed effects: future ~ dummy_w + dummy_m + contrib + culture + contrib:culture - 1
## Value Std.Error DF t-value p-value
## dummy_w 72.88184 4.497691 7 16.204280 0.0000
## dummy_m 70.69451 5.248280 7 13.470035 0.0000
## contrib 0.88516 0.311349 7 2.842971 0.0249
## culture -9.66655 4.418493 9 -2.187748 0.0565
## contrib:culture 0.45878 0.275408 7 1.665835 0.1397
## Correlation:
## dmmy_w dmmy_m contrb cultur
## dummy_m 0.726
## contrib 0.242 -0.119
## culture 0.011 0.019 0.078
## contrib:culture 0.095 0.076 0.564 0.178
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.77109796 -0.24395895 0.04312602 0.28546209 0.84622291
##
## Number of Observations: 20
## Number of Groups: 10
#더미변수가 random variable이기 때문에 random 함수에 sex를 포함함. random 함수의 group 변수와 correlation의 group 변수가 동일해야함.
# corCompSymm : representing a compound symmetry structure corresponding to uniform correlation
# -> Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups, |이후 dyad는 grouping factor가 들어가는 자리임
# varIdent : representing a constant variance function structure
# varIdent에 form에는 v|g 형태이며, v = variance covariate, g = grouping factor임
# dyad간 상관이 있으니 corCompSymm을 사용하고, 성별간 분산을 다르게 추정할 수 있게 하기 위해서 varIdent를 사용함.
#variance 확인
VarCorr(dmlmmodel, sigma = dmlmmodel$sigma, rdig = 3)
## dyad = pdLogChol(-1 + dummy_w + dummy_m)
## Variance StdDev Corr
## dummy_w 173.18767 13.160079 dmmy_w
## dummy_m 246.56360 15.702344 0.872
## Residual 16.70301 4.086932
#dummy_w, dummy_m의 covariate
#correltaion = covariate/standard deviation
#covariate = correlation * stadnard deviation
#cov(dummy_w, dummy_m) = cor(dummy_w, dummy_m) * sd(dummy_w) * sd(dummy_m)
13.160079*15.702344*0.872
## [1] 180.1936
library(nlme)
pmlmmodel <- lme(future ~ dummy_w + dummy_m + contrib:dummy_w + contrib:dummy_m -1,
random = ~ -1 + dummy_w + dummy_m|dyad,
data = twointerdata,
correlation = corCompSymm(form=~1|dyad),
weight = varIdent(form = ~1|sex))
summary(pmlmmodel)
## Linear mixed-effects model fit by REML
## Data: twointerdata
## AIC BIC logLik
## 167.9316 175.6575 -73.96582
##
## Random effects:
## Formula: ~-1 + dummy_w + dummy_m | dyad
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## dummy_w 16.420695 dmmy_w
## dummy_m 16.430275 0.826
## Residual 4.849573
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | dyad
## Parameter estimate(s):
## Rho
## 0
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | sex
## Parameter estimates:
## -1 1
## 1 1
## Fixed effects: future ~ dummy_w + dummy_m + contrib:dummy_w + contrib:dummy_m - 1
## Value Std.Error DF t-value p-value
## dummy_w 71.65751 5.827890 7 12.295617 0.0000
## dummy_m 69.23726 5.587998 7 12.390352 0.0000
## dummy_w:contrib 0.46438 0.539012 7 0.861534 0.4175
## dummy_m:contrib 0.79068 0.342645 7 2.307587 0.0544
## Correlation:
## dmmy_w dmmy_m dmmy_w:
## dummy_m 0.668
## dummy_w:contrib 0.370 -0.043
## dummy_m:contrib 0.065 -0.245 0.176
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.58827968 -0.30936029 -0.09717406 0.25534017 0.72901009
##
## Number of Observations: 20
## Number of Groups: 10
VarCorr(pmlmmodel, sigma = pmlmmodel$sigma, rdig = 3)
## dyad = pdLogChol(-1 + dummy_w + dummy_m)
## Variance StdDev Corr
## dummy_w 269.63922 16.420695 dmmy_w
## dummy_m 269.95394 16.430275 0.826
## Residual 23.51836 4.849573
#cov
0.826*16.420695*16.430275
## [1] 222.8519
library(nlme)
model1 <- lme(future ~ contrib + culture + contrib:culture, random = ~1|dyad, data = MLMdata, correlation = corCompSymm(form=~1|dyad), method = "ML")
summary(model1)
## Linear mixed-effects model fit by maximum likelihood
## Data: MLMdata
## AIC BIC logLik
## 163.8859 170.856 -74.94294
##
## Random effects:
## Formula: ~1 | dyad
## (Intercept) Residual
## StdDev: 11.49586 6.065927
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | dyad
## Parameter estimate(s):
## Rho
## 0
## Fixed effects: future ~ contrib + culture + contrib:culture
## Value Std.Error DF t-value p-value
## (Intercept) 71.82103 4.355355 8 16.490281 0.0000
## contrib 0.83445 0.258247 8 3.231206 0.0120
## culture -9.04833 4.355355 8 -2.077517 0.0714
## contrib:culture 0.48069 0.258247 8 1.861350 0.0997
## Correlation:
## (Intr) contrb cultur
## contrib 0.051
## culture 0.005 0.089
## contrib:culture 0.089 0.576 0.051
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.7230855 -0.5792601 0.1033656 0.4132005 1.6121334
##
## Number of Observations: 20
## Number of Groups: 10
model2 <- lme(future ~ contrib + culture + contrib:culture + sex + contrib:sex + culture:sex + contrib:culture:sex, random = ~1|dyad, data = MLMdata, correlation = corCompSymm(form=~1|dyad),
weight = varIdent(form = ~1|sex), method = "ML")
summary(model2)
## Linear mixed-effects model fit by maximum likelihood
## Data: MLMdata
## AIC BIC logLik
## 171.8413 183.7901 -73.92063
##
## Random effects:
## Formula: ~1 | dyad
## (Intercept) Residual
## StdDev: 11.56877 2.985059
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | dyad
## Parameter estimate(s):
## Rho
## 0.139964
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | sex
## Parameter estimates:
## -1 1
## 1.000000 2.618752
## Fixed effects: future ~ contrib + culture + contrib:culture + sex + contrib:sex + culture:sex + contrib:culture:sex
## Value Std.Error DF t-value p-value
## (Intercept) 71.22949 5.305882 8 13.424626 0.0000
## contrib 0.92193 0.385782 4 2.389778 0.0752
## culture -8.55800 5.305882 8 -1.612927 0.1454
## sex -1.59781 2.143668 4 -0.745363 0.4975
## contrib:culture 0.34473 0.385782 4 0.893590 0.4220
## contrib:sex 0.06694 0.277351 4 0.241360 0.8211
## culture:sex 1.52632 2.143668 4 0.712015 0.5158
## contrib:culture:sex -0.04794 0.277351 4 -0.172837 0.8712
## Correlation:
## (Intr) contrb cultur sex cntrb:c cntrb:s cltr:s
## contrib 0.081
## culture -0.062 0.133
## sex 0.224 -0.521 -0.114
## contrib:culture 0.133 0.565 0.081 -0.010
## contrib:sex -0.280 -0.274 0.164 0.010 -0.287
## culture:sex -0.114 -0.010 0.224 -0.225 -0.521 0.277
## contrib:culture:sex 0.164 -0.287 -0.280 0.277 -0.274 -0.300 0.010
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.53936408 -0.52451330 0.09766917 0.43683003 1.25314878
##
## Number of Observations: 20
## Number of Groups: 10
anova(model1, model2)
## Model df AIC BIC logLik Test L.Ratio p-value
## model1 1 7 163.8859 170.8560 -74.94294
## model2 2 12 171.8413 183.7901 -73.92063 1 vs 2 2.04461 0.8429
A <- matrix(c(1,0.380,0.351,0.531,0.411,0.313,0.118,0.214,0,
1,0.483,0.386,0.161,0.453,0.080,0.148,0,0,
1,0.385,0.142,0.266,0.092,0.129,0,0,0,
1,0.228,0.245,0.099,0.357,0,0,0,0,
1,0.348,0.323,0.403,0,0,0,0,0,
1,0.381,0.431,0,0,0,0,0,0,
1,0.256,0,0,0,0,0,0,0,
1), 8,8)
A
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0
## [2,] 0.380 1.000 0.000 0.000 0.000 0.000 0.000 0
## [3,] 0.351 0.483 1.000 0.000 0.000 0.000 0.000 0
## [4,] 0.531 0.386 0.385 1.000 0.000 0.000 0.000 0
## [5,] 0.411 0.161 0.142 0.228 1.000 0.000 0.000 0
## [6,] 0.313 0.453 0.266 0.245 0.348 1.000 0.000 0
## [7,] 0.118 0.080 0.092 0.099 0.323 0.381 1.000 0
## [8,] 0.214 0.148 0.129 0.357 0.403 0.431 0.256 1
library(gdata) #상관행렬 upper 또는 lower 채우는 packages
A[upper.tri(A)]<-t(lowerTriangle(A, diag=F, byrow=TRUE))
data <- round(A,3)
data
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1.000 0.380 0.351 0.531 0.411 0.313 0.118 0.214
## [2,] 0.380 1.000 0.483 0.386 0.161 0.453 0.080 0.148
## [3,] 0.351 0.483 1.000 0.385 0.142 0.266 0.092 0.129
## [4,] 0.531 0.386 0.385 1.000 0.228 0.245 0.099 0.357
## [5,] 0.411 0.161 0.142 0.228 1.000 0.348 0.323 0.403
## [6,] 0.313 0.453 0.266 0.245 0.348 1.000 0.381 0.431
## [7,] 0.118 0.080 0.092 0.099 0.323 0.381 1.000 0.256
## [8,] 0.214 0.148 0.129 0.357 0.403 0.431 0.256 1.000
colnames(data) <- c("x1","x2","x3","x4","x5","x6","x7","x8")
rownames(data) <- colnames(data)
data
## x1 x2 x3 x4 x5 x6 x7 x8
## x1 1.000 0.380 0.351 0.531 0.411 0.313 0.118 0.214
## x2 0.380 1.000 0.483 0.386 0.161 0.453 0.080 0.148
## x3 0.351 0.483 1.000 0.385 0.142 0.266 0.092 0.129
## x4 0.531 0.386 0.385 1.000 0.228 0.245 0.099 0.357
## x5 0.411 0.161 0.142 0.228 1.000 0.348 0.323 0.403
## x6 0.313 0.453 0.266 0.245 0.348 1.000 0.381 0.431
## x7 0.118 0.080 0.092 0.099 0.323 0.381 1.000 0.256
## x8 0.214 0.148 0.129 0.357 0.403 0.431 0.256 1.000
#x1 : 멤버 1 재평가, x2 : 멤버 1 예지력, x3 : 멤버 1 통찰력, x4 : 멤버 1 자기주도성
#x5 : 멤버 2 재평가, x6 : 멤버 2 예지력, x7 : 멤버 2 통찰력, x8 : 멤버 2 자기주도성
mean <- c(3.042,2.571,2.903,3.095,3.074,2.474,2.913,3.144)
mean
## [1] 3.042 2.571 2.903 3.095 3.074 2.474 2.913 3.144
sd <- c(0.579,0.626,0.607,0.653,0.662,0.605,0.615,0.694)
sd
## [1] 0.579 0.626 0.607 0.653 0.662 0.605 0.615 0.694
library(lavaan) #cor2cov는 lavaan에 있음.
covdata <- cor2cov(data, sd)
cordata <- cov2cor(covdata)
round(covdata, 3)
## x1 x2 x3 x4 x5 x6 x7 x8
## x1 0.335 0.138 0.123 0.201 0.158 0.110 0.042 0.086
## x2 0.138 0.392 0.184 0.158 0.067 0.172 0.031 0.064
## x3 0.123 0.184 0.368 0.153 0.057 0.098 0.034 0.054
## x4 0.201 0.158 0.153 0.426 0.099 0.097 0.040 0.162
## x5 0.158 0.067 0.057 0.099 0.438 0.139 0.132 0.185
## x6 0.110 0.172 0.098 0.097 0.139 0.366 0.142 0.181
## x7 0.042 0.031 0.034 0.040 0.132 0.142 0.378 0.109
## x8 0.086 0.064 0.054 0.162 0.185 0.181 0.109 0.482
round(cordata, 3)
## x1 x2 x3 x4 x5 x6 x7 x8
## x1 1.000 0.380 0.351 0.531 0.411 0.313 0.118 0.214
## x2 0.380 1.000 0.483 0.386 0.161 0.453 0.080 0.148
## x3 0.351 0.483 1.000 0.385 0.142 0.266 0.092 0.129
## x4 0.531 0.386 0.385 1.000 0.228 0.245 0.099 0.357
## x5 0.411 0.161 0.142 0.228 1.000 0.348 0.323 0.403
## x6 0.313 0.453 0.266 0.245 0.348 1.000 0.381 0.431
## x7 0.118 0.080 0.092 0.099 0.323 0.381 1.000 0.256
## x8 0.214 0.148 0.129 0.357 0.403 0.431 0.256 1.000
library(lavaan)
nullmodel <- '
x1 ~ m1*1 # Means
x5 ~ m1*1
x2 ~ m2*1
x6 ~ m2*1
x3 ~ m3*1
x7 ~ m3*1
x4 ~ m4*1
x8 ~ m4*1
x1 ~~ r1*x1 #Variance
x2 ~~ r2*x2
x3 ~~ r3*x3
x4 ~~ r4*x4
x5 ~~ r1*x5
x6 ~~ r2*x6
x7 ~~ r3*x7
x8 ~~ r4*x8
x1 ~~ 0*x2 #Covariate
x1 ~~ 0*x3
x1 ~~ 0*x4
x1 ~~ 0*x5
x1 ~~ 0*x6
x1 ~~ 0*x7
x1 ~~ 0*x8
x2 ~~ 0*x3
x2 ~~ 0*x4
x2 ~~ 0*x5
x2 ~~ 0*x6
x2 ~~ 0*x7
x2 ~~ 0*x8
x3 ~~ 0*x4
x3 ~~ 0*x5
x3 ~~ 0*x6
x3 ~~ 0*x7
x3 ~~ 0*x8
x4 ~~ 0*x5
x4 ~~ 0*x6
x4 ~~ 0*x7
x4 ~~ 0*x8
x5 ~~ 0*x6
x5 ~~ 0*x7
x5 ~~ 0*x8
x6 ~~ 0*x7
x6 ~~ 0*x8
x7 ~~ 0*x8
'
nullfit <- cfa(nullmodel, sample.cov = covdata, sample.mean = mean, sample.nobs = 137,
std.lv = F, mimic = "Mplus") # std.lv = TRUE 는 요인 분산 1로 고정하는 명령어.
summary(nullfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 23 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 16
## Number of equality constraints 8
## Row rank of the constraints matrix 8
##
## Number of observations 137
##
## Model Test User Model:
##
## Test statistic 285.154
## Degrees of freedom 36
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 279.739
## Degrees of freedom 28
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.010
## Tucker-Lewis Index (TLI) 0.230
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1046.033
## Loglikelihood unrestricted model (H1) -903.455
##
## Akaike (AIC) 2108.065
## Bayesian (BIC) 2131.425
## Sample-size adjusted Bayesian (BIC) 2106.117
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.225
## 90 Percent confidence interval - lower 0.201
## 90 Percent confidence interval - upper 0.249
## P-value RMSEA <= 0.05 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.264
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## x1 ~~
## x2 0.000
## x3 0.000
## x4 0.000
## x5 0.000
## x6 0.000
## x7 0.000
## x8 0.000
## x2 ~~
## x3 0.000
## x4 0.000
## x5 0.000
## x6 0.000
## x7 0.000
## x8 0.000
## x3 ~~
## x4 0.000
## x5 0.000
## x6 0.000
## x7 0.000
## x8 0.000
## x4 ~~
## x5 0.000
## x6 0.000
## x7 0.000
## x8 0.000
## x5 ~~
## x6 0.000
## x7 0.000
## x8 0.000
## x6 ~~
## x7 0.000
## x8 0.000
## x7 ~~
## x8 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## x1 (m1) 3.058 0.037 81.667 0.000
## x5 (m1) 3.058 0.037 81.667 0.000
## x2 (m2) 2.522 0.037 67.866 0.000
## x6 (m2) 2.522 0.037 67.866 0.000
## x3 (m3) 2.908 0.037 79.067 0.000
## x7 (m3) 2.908 0.037 79.067 0.000
## x4 (m4) 3.120 0.041 76.864 0.000
## x8 (m4) 3.120 0.041 76.864 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## x1 (r1) 0.384 0.033 11.705 0.000
## x2 (r2) 0.379 0.032 11.705 0.000
## x3 (r3) 0.371 0.032 11.705 0.000
## x4 (r4) 0.451 0.039 11.705 0.000
## x5 (r1) 0.384 0.033 11.705 0.000
## x6 (r2) 0.379 0.032 11.705 0.000
## x7 (r3) 0.371 0.032 11.705 0.000
## x8 (r4) 0.451 0.039 11.705 0.000
library(lavaan)
isatmodel <- '
x1 ~ m1*1 #Means
x5 ~ m1*1
x2 ~ m2*1
x6 ~ m2*1
x3 ~ m3*1
x7 ~ m3*1
x4 ~ m4*1
x8 ~ m4*1
x1 ~~ v1*x1 #Variance
x2 ~~ v2*x2
x3 ~~ v3*x3
x4 ~~ v4*x4
x5 ~~ v1*x5
x6 ~~ v2*x6
x7 ~~ v3*x7
x8 ~~ v4*x8
x1 ~~ c12*x2 #Within
x1 ~~ c13*x3
x1 ~~ c14*x4
x2 ~~ c23*x3
x2 ~~ c24*x4
x3 ~~ c34*x4
x5 ~~ c12*x6
x5 ~~ c13*x7
x5 ~~ c14*x8
x6 ~~ c23*x7
x6 ~~ c24*x8
x7 ~~ c34*x8
x1 ~~ x5 #residual correlation
x2 ~~ x6
x3 ~~ x7
x4 ~~ x8
x1 ~~ cc12*x6 #Between
x1 ~~ cc13*x7
x1 ~~ cc14*x8
x2 ~~ cc23*x7
x2 ~~ cc24*x8
x3 ~~ cc34*x8
x5 ~~ cc12*x2
x5 ~~ cc13*x3
x5 ~~ cc14*x4
x6 ~~ cc23*x3
x6 ~~ cc24*x4
x7 ~~ cc34*x4
'
isatfit <- cfa(isatmodel, sample.cov = covdata, sample.mean = mean, sample.nobs = 137,
std.lv = F, mimic = "Mplus")
summary(isatfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 59 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 44
## Number of equality constraints 20
## Row rank of the constraints matrix 20
##
## Number of observations 137
##
## Model Test User Model:
##
## Test statistic 21.839
## Degrees of freedom 20
## P-value (Chi-square) 0.349
##
## Model Test Baseline Model:
##
## Test statistic 279.739
## Degrees of freedom 28
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.993
## Tucker-Lewis Index (TLI) 0.990
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -914.375
## Loglikelihood unrestricted model (H1) -903.455
##
## Akaike (AIC) 1876.750
## Bayesian (BIC) 1946.829
## Sample-size adjusted Bayesian (BIC) 1870.904
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.026
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.080
## P-value RMSEA <= 0.05 0.709
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.085
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## x1 ~~
## x2 (c12) 0.137 0.027 5.086 0.000
## x3 (c13) 0.127 0.025 5.140 0.000
## x4 (c14) 0.192 0.030 6.438 0.000
## x2 ~~
## x3 (c23) 0.161 0.025 6.359 0.000
## x4 (c24) 0.167 0.029 5.735 0.000
## x3 ~~
## x4 (c34) 0.130 0.026 4.917 0.000
## x5 ~~
## x6 (c12) 0.137 0.027 5.086 0.000
## x7 (c13) 0.127 0.025 5.140 0.000
## x8 (c14) 0.192 0.030 6.438 0.000
## x6 ~~
## x7 (c23) 0.161 0.025 6.359 0.000
## x8 (c24) 0.167 0.029 5.735 0.000
## x7 ~~
## x8 (c34) 0.130 0.026 4.917 0.000
## x1 ~~
## x5 0.156 0.035 4.407 0.000
## x2 ~~
## x6 0.168 0.035 4.747 0.000
## x3 ~~
## x7 0.034 0.032 1.071 0.284
## x4 ~~
## x8 0.160 0.041 3.911 0.000
## x1 ~~
## x6 (cc12) 0.088 0.027 3.284 0.001
## x7 (cc13) 0.049 0.025 1.994 0.046
## x8 (cc14) 0.091 0.030 3.059 0.002
## x2 ~~
## x7 (cc23) 0.064 0.025 2.525 0.012
## x8 (cc24) 0.081 0.029 2.788 0.005
## x3 ~~
## x8 (cc34) 0.047 0.026 1.761 0.078
## x2 ~~
## x5 (cc12) 0.088 0.027 3.284 0.001
## x3 ~~
## x5 (cc13) 0.049 0.025 1.994 0.046
## x4 ~~
## x5 (cc14) 0.091 0.030 3.059 0.002
## x3 ~~
## x6 (cc23) 0.064 0.025 2.525 0.012
## x4 ~~
## x6 (cc24) 0.081 0.029 2.788 0.005
## x7 (cc34) 0.047 0.026 1.761 0.078
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## x1 (m1) 3.058 0.044 68.864 0.000
## x5 (m1) 3.058 0.044 68.864 0.000
## x2 (m2) 2.523 0.045 56.482 0.000
## x6 (m2) 2.523 0.045 56.482 0.000
## x3 (m3) 2.908 0.038 75.666 0.000
## x7 (m3) 2.908 0.038 75.666 0.000
## x4 (m4) 3.120 0.047 66.043 0.000
## x8 (m4) 3.120 0.047 66.043 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## x1 (v1) 0.384 0.035 10.843 0.000
## x2 (v2) 0.379 0.035 10.699 0.000
## x3 (v3) 0.371 0.032 11.656 0.000
## x4 (v4) 0.451 0.041 11.032 0.000
## x5 (v1) 0.384 0.035 10.843 0.000
## x6 (v2) 0.379 0.035 10.699 0.000
## x7 (v3) 0.371 0.032 11.656 0.000
## x8 (v4) 0.451 0.041 11.032 0.000
library(lavaan)
icfamodel <-'
f1 =~ NA*x1 + a*x1 + b*x2 + c*x3 + 1*x4 #factor loading
f2 =~ NA*x5 + a*x5 + b*x6 + c*x7 + 1*x8
f1 ~ 0*1 #factor means
f2 ~ 0*1
f1 ~~ i*f2 #factor covariate
f1 ~~ h*f1 #factor variance
f2 ~~ h*f2
x1 ~ m1*1 #intercept
x2 ~ m2*1
x3 ~ m3*1
x4 ~ m4*1
x5 ~ m1*1
x6 ~ m2*1
x7 ~ m3*1
x8 ~ m4*1
x1 ~~ v1*x1 #residual variance
x2 ~~ v2*x2
x3 ~~ v3*x3
x4 ~~ v4*x4
x5 ~~ v1*x5
x6 ~~ v2*x6
x7 ~~ v3*x7
x8 ~~ v4*x8
x1 ~~ c1*x5 #residual correlation
x2 ~~ c2*x6
x3 ~~ c3*x7
x4 ~~ c4*x8
'
icfafit <- cfa(icfamodel, sample.cov = covdata, sample.mean = mean, sample.nobs = 137,
std.lv = F, mimic = "Mplus")
summary(icfafit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 39 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 29
## Number of equality constraints 12
## Row rank of the constraints matrix 12
##
## Number of observations 137
##
## Model Test User Model:
##
## Test statistic 34.588
## Degrees of freedom 27
## P-value (Chi-square) 0.150
##
## Model Test Baseline Model:
##
## Test statistic 279.739
## Degrees of freedom 28
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.970
## Tucker-Lewis Index (TLI) 0.969
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -920.749
## Loglikelihood unrestricted model (H1) -903.455
##
## Akaike (AIC) 1875.499
## Bayesian (BIC) 1925.138
## Sample-size adjusted Bayesian (BIC) 1871.358
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.045
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.085
## P-value RMSEA <= 0.05 0.537
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.091
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## f1 =~
## x1 (a) 0.864 0.121 7.154 0.000
## x2 (b) 0.880 0.137 6.414 0.000
## x3 (c) 0.775 0.127 6.084 0.000
## x4 1.000
## f2 =~
## x5 (a) 0.864 0.121 7.154 0.000
## x6 (b) 0.880 0.137 6.414 0.000
## x7 (c) 0.775 0.127 6.084 0.000
## x8 1.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## f1 ~~
## f2 (i) 0.093 0.030 3.084 0.002
## .x1 ~~
## .x5 (c1) 0.076 0.027 2.875 0.004
## .x2 ~~
## .x6 (c2) 0.082 0.026 3.130 0.002
## .x3 ~~
## .x7 (c3) -0.005 0.025 -0.195 0.845
## .x4 ~~
## .x8 (c4) 0.078 0.030 2.572 0.010
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## f1 0.000
## f2 0.000
## .x1 (m1) 3.058 0.044 69.765 0.000
## .x2 (m2) 2.523 0.044 57.533 0.000
## .x3 (m3) 2.908 0.039 74.175 0.000
## .x4 (m4) 3.120 0.048 65.264 0.000
## .x5 (m1) 3.058 0.044 69.765 0.000
## .x6 (m2) 2.523 0.044 57.533 0.000
## .x7 (m3) 2.908 0.039 74.175 0.000
## .x8 (m4) 3.120 0.048 65.264 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## f1 (h) 0.194 0.042 4.590 0.000
## f2 (h) 0.194 0.042 4.590 0.000
## .x1 (v1) 0.236 0.029 8.081 0.000
## .x2 (v2) 0.223 0.029 7.627 0.000
## .x3 (v3) 0.254 0.028 9.209 0.000
## .x4 (v4) 0.261 0.034 7.593 0.000
## .x5 (v1) 0.236 0.029 8.081 0.000
## .x6 (v2) 0.223 0.029 7.627 0.000
## .x7 (v3) 0.254 0.028 9.209 0.000
## .x8 (v4) 0.261 0.034 7.593 0.000
standardizedSolution(icfafit)
## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 f1 =~ x1 0.617 0.059 10.497 0.000 0.502 0.732
## 2 f1 =~ x2 0.635 0.059 10.686 0.000 0.518 0.751
## 3 f1 =~ x3 0.561 0.058 9.628 0.000 0.447 0.675
## 4 f1 =~ x4 0.653 0.056 11.675 0.000 0.544 0.763
## 5 f2 =~ x5 0.617 0.059 10.497 0.000 0.502 0.732
## 6 f2 =~ x6 0.635 0.059 10.686 0.000 0.518 0.751
## 7 f2 =~ x7 0.561 0.058 9.628 0.000 0.447 0.675
## 8 f2 =~ x8 0.653 0.056 11.675 0.000 0.544 0.763
## 9 f1 ~1 0.000 0.000 NA NA 0.000 0.000
## 10 f2 ~1 0.000 0.000 NA NA 0.000 0.000
## 11 f1 ~~ f2 0.478 0.099 4.838 0.000 0.285 0.672
## 12 f1 ~~ f1 1.000 0.000 NA NA 1.000 1.000
## 13 f2 ~~ f2 1.000 0.000 NA NA 1.000 1.000
## 14 x1 ~1 4.956 0.235 21.126 0.000 4.496 5.415
## 15 x2 ~1 4.129 0.201 20.587 0.000 3.736 4.522
## 16 x3 ~1 4.779 0.216 22.123 0.000 4.355 5.202
## 17 x4 ~1 4.626 0.223 20.762 0.000 4.189 5.063
## 18 x5 ~1 4.956 0.235 21.126 0.000 4.496 5.415
## 19 x6 ~1 4.129 0.201 20.587 0.000 3.736 4.522
## 20 x7 ~1 4.779 0.216 22.123 0.000 4.355 5.202
## 21 x8 ~1 4.626 0.223 20.762 0.000 4.189 5.063
## 22 x1 ~~ x1 0.619 0.073 8.540 0.000 0.477 0.761
## 23 x2 ~~ x2 0.597 0.075 7.923 0.000 0.449 0.745
## 24 x3 ~~ x3 0.685 0.065 10.484 0.000 0.557 0.813
## 25 x4 ~~ x4 0.573 0.073 7.836 0.000 0.430 0.716
## 26 x5 ~~ x5 0.619 0.073 8.540 0.000 0.477 0.761
## 27 x6 ~~ x6 0.597 0.075 7.923 0.000 0.449 0.745
## 28 x7 ~~ x7 0.685 0.065 10.484 0.000 0.557 0.813
## 29 x8 ~~ x8 0.573 0.073 7.836 0.000 0.430 0.716
## 30 x1 ~~ x5 0.324 0.094 3.456 0.001 0.140 0.507
## 31 x2 ~~ x6 0.366 0.093 3.943 0.000 0.184 0.548
## 32 x3 ~~ x7 -0.019 0.100 -0.195 0.846 -0.215 0.176
## 33 x4 ~~ x8 0.301 0.100 3.021 0.003 0.106 0.496
anova(nullfit, isatfit)
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## isatfit 20 1876.8 1946.8 21.839
## nullfit 36 2108.1 2131.4 285.154 263.31 16 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(icfafit, isatfit)
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## isatfit 20 1876.8 1946.8 21.839
## icfafit 27 1875.5 1925.1 34.588 12.749 7 0.07846 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
setwd("C:/Users/LG/Documents/Dyadic Analysis Book Data")
library(haven)
indis <- read_spss("chapter6 Acitelli.sav")
names(indis) <- c("x1","x2","x3","x4","x5","x6","LM")
#x1=아내 친밀성, x2=아내 헌신, x3=아내 만족도, x4=남편 친밀성, x5=남편 헌신, x6=남편 만족도, LM=결혼기간
#각 indicator는 4점 척도임.
#LM = the length of the marriage in years로 between-dyads variable임.
indis
## # A tibble: 148 x 7
## x1 x2 x3 x4 x5 x6 LM
## <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl>
## 1 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 4 [vsat] 2
## 2 3 [swtclos~ 4 [very] 4 [vsat] 3 [swtclo~ 4 [very] 3 [smwtsat] 3.83
## 3 4 [vclose] 3 [fairly] 3 [smwtsa~ 2 [nvclos~ 3 [fairl~ 3 [smwtsat] 7.17
## 4 4 [vclose] 4 [very] 4 [vsat] 3 [swtclo~ 3 [fairl~ 3 [smwtsat] 22.8
## 5 3 [swtclos~ 3 [fairly] 3 [smwtsa~ 3 [swtclo~ 4 [very] 2 [smwtdis~ 15.5
## 6 3 [swtclos~ 3 [fairly] 3 [smwtsa~ 3 [swtclo~ 3 [fairl~ 3 [smwtsat] 7.92
## 7 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 3 [smwtsat] 9.67
## 8 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 3 [smwtsat] 11.2
## 9 4 [vclose] 4 [very] 4 [vsat] 3 [swtclo~ 3 [fairl~ 3 [smwtsat] 1.92
## 10 3 [swtclos~ 4 [very] 4 [vsat] 3 [swtclo~ 4 [very] 4 [vsat] 2.17
## # ... with 138 more rows
library(psych)
describe(indis)
## vars n mean sd median trimmed mad min max range skew kurtosis
## x1 1 148 3.43 0.73 4.00 3.56 0.00 1 4.00 3.00 -1.17 0.95
## x2 2 148 3.70 0.58 4.00 3.82 0.00 2 4.00 2.00 -1.73 1.91
## x3 3 148 3.61 0.66 4.00 3.73 0.00 1 4.00 3.00 -1.69 2.59
## x4 4 148 3.43 0.64 4.00 3.51 0.00 2 4.00 2.00 -0.65 -0.59
## x5 5 148 3.74 0.52 4.00 3.84 0.00 1 4.00 3.00 -2.19 5.45
## x6 6 148 3.59 0.64 4.00 3.69 0.00 1 4.00 3.00 -1.58 2.53
## LM 7 148 11.21 7.72 10.12 10.93 10.13 0 26.25 26.25 0.23 -1.22
## se
## x1 0.06
## x2 0.05
## x3 0.05
## x4 0.05
## x5 0.04
## x6 0.05
## LM 0.63
result1 <- describe(indis)
indis1 <- indis[,1:3]
indis2 <- indis[,4:6]
names(indis2) <- c("x1","x2","x3")
doubleindis <- rbind(indis1, indis2)
describe(doubleindis)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## x1 1 296 3.43 0.69 4 3.54 0 1 4 3 -0.97 0.45 0.04
## x2 2 296 3.72 0.55 4 3.83 0 1 4 3 -1.95 3.43 0.03
## x3 3 296 3.60 0.65 4 3.71 0 1 4 3 -1.64 2.60 0.04
result2 <- describe(doubleindis)
DS <- rbind(result1[,3:4], result2[,3:4])
print(DS)
## mean sd
## x1 3.43 0.73
## x2 3.70 0.58
## x3 3.61 0.66
## x4 3.43 0.64
## x5 3.74 0.52
## x6 3.59 0.64
## LM 11.21 7.72
## x11 3.43 0.69
## x21 3.72 0.55
## x31 3.60 0.65
corindis <- indis[,1:6]
corindis
## # A tibble: 148 x 6
## x1 x2 x3 x4 x5 x6
## <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>
## 1 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 4 [vsat]
## 2 3 [swtclose] 4 [very] 4 [vsat] 3 [swtclose] 4 [very] 3 [smwtsat]
## 3 4 [vclose] 3 [fairly] 3 [smwtsat] 2 [nvclose] 3 [fairl~ 3 [smwtsat]
## 4 4 [vclose] 4 [very] 4 [vsat] 3 [swtclose] 3 [fairl~ 3 [smwtsat]
## 5 3 [swtclose] 3 [fairly] 3 [smwtsat] 3 [swtclose] 4 [very] 2 [smwtdissa~
## 6 3 [swtclose] 3 [fairly] 3 [smwtsat] 3 [swtclose] 3 [fairl~ 3 [smwtsat]
## 7 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 3 [smwtsat]
## 8 4 [vclose] 4 [very] 4 [vsat] 4 [vclose] 4 [very] 3 [smwtsat]
## 9 4 [vclose] 4 [very] 4 [vsat] 3 [swtclose] 3 [fairl~ 3 [smwtsat]
## 10 3 [swtclose] 4 [very] 4 [vsat] 3 [swtclose] 4 [very] 4 [vsat]
## # ... with 138 more rows
corta <- cor(corindis, corindis)
ccor <- corta
corta[upper.tri(corta, diag = F)] <- NA #uppertri 지우는 방법
corta
## x1 x2 x3 x4 x5 x6
## x1 1.0000000 NA NA NA NA NA
## x2 0.5383563 1.0000000 NA NA NA NA
## x3 0.4983389 0.6868043 1.0000000 NA NA NA
## x4 0.4479787 0.4433826 0.3838977 1.0000000 NA NA
## x5 0.3283128 0.5262843 0.4381323 0.5318835 1.0000000 NA
## x6 0.4582692 0.5420793 0.5540184 0.5825756 0.6181255 1
round(corta,3)
## x1 x2 x3 x4 x5 x6
## x1 1.000 NA NA NA NA NA
## x2 0.538 1.000 NA NA NA NA
## x3 0.498 0.687 1.000 NA NA NA
## x4 0.448 0.443 0.384 1.000 NA NA
## x5 0.328 0.526 0.438 0.532 1.000 NA
## x6 0.458 0.542 0.554 0.583 0.618 1
library(lavaan)
ccormean <- c(3.432432, 3.695946, 3.608108, 3.425676, 3.743243, 3.587838)
ccorsd <- c(0.7299442, 0.5792181, 0.6560564, 0.6398471, 0.5232242, 0.6381207)
covv <- cor2cov(ccor, ccorsd)
covv
## x1 x2 x3 x4 x5 x6
## x1 0.5328185 0.2276154 0.2386468 0.2092296 0.1253907 0.2134584
## x2 0.2276154 0.3354936 0.2609855 0.1643225 0.1594962 0.2003585
## x3 0.2386468 0.2609855 0.4304100 0.1611509 0.1503953 0.2319360
## x4 0.2092296 0.1643225 0.1611509 0.4094043 0.1780658 0.2378654
## x5 0.1253907 0.1594962 0.1503953 0.1780658 0.2737636 0.2063799
## x6 0.2134584 0.2003585 0.2319360 0.2378654 0.2063799 0.4071980
round(covv, 3)
## x1 x2 x3 x4 x5 x6
## x1 0.533 0.228 0.239 0.209 0.125 0.213
## x2 0.228 0.335 0.261 0.164 0.159 0.200
## x3 0.239 0.261 0.430 0.161 0.150 0.232
## x4 0.209 0.164 0.161 0.409 0.178 0.238
## x5 0.125 0.159 0.150 0.178 0.274 0.206
## x6 0.213 0.200 0.232 0.238 0.206 0.407
library(lavaan)
ddyadmodel <- '
wife =~ 1*x1 + a*x2 + b*x3
husband =~ 1*x4 + a*x5 + b*x6
wife ~~ husband
x1 ~ 1
x2 ~ 1
x3 ~ 1
x4 ~ 1
x5 ~ 1
x6 ~ 1
x1 ~~ x4
x2 ~~ x5
x3 ~~ x6
'
ddyadfit <- cfa(ddyadmodel, sample.cov = covv, sample.nobs = 148, sample.mean = ccormean,
std.lv = FALSE, mimic = "Mplus")
summary(ddyadfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 22
## Number of equality constraints 2
## Row rank of the constraints matrix 2
##
## Number of observations 148
##
## Model Test User Model:
##
## Test statistic 7.124
## Degrees of freedom 7
## P-value (Chi-square) 0.416
##
## Model Test Baseline Model:
##
## Test statistic 388.633
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 0.999
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -648.024
## Loglikelihood unrestricted model (H1) -644.462
##
## Akaike (AIC) 1336.048
## Bayesian (BIC) 1395.992
## Sample-size adjusted Bayesian (BIC) 1332.699
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.011
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.102
## P-value RMSEA <= 0.05 0.646
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.077
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## wife =~
## x1 1.000
## x2 (a) 0.974 0.097 10.089 0.000
## x3 (b) 1.155 0.115 10.002 0.000
## husband =~
## x4 1.000
## x5 (a) 0.974 0.097 10.089 0.000
## x6 (b) 1.155 0.115 10.002 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## wife ~~
## husband 0.156 0.034 4.628 0.000
## .x1 ~~
## .x4 0.053 0.025 2.086 0.037
## .x2 ~~
## .x5 0.016 0.015 1.093 0.274
## .x3 ~~
## .x6 0.018 0.020 0.883 0.377
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## .x1 3.432 0.060 56.755 0.000
## .x2 3.696 0.046 79.908 0.000
## .x3 3.608 0.055 65.664 0.000
## .x4 3.426 0.052 65.985 0.000
## .x5 3.743 0.044 84.237 0.000
## .x6 3.588 0.051 70.317 0.000
## wife 0.000
## husband 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .x1 0.314 0.042 7.504 0.000
## .x2 0.101 0.022 4.681 0.000
## .x3 0.144 0.029 4.991 0.000
## .x4 0.210 0.030 7.014 0.000
## .x5 0.113 0.020 5.679 0.000
## .x6 0.134 0.028 4.861 0.000
## wife 0.227 0.047 4.883 0.000
## husband 0.189 0.038 4.932 0.000
standardizedSolution(ddyadfit)
## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 wife =~ x1 0.648 0.048 13.420 0.000 0.553 0.742
## 2 wife =~ x2 0.825 0.043 19.261 0.000 0.741 0.909
## 3 wife =~ x3 0.823 0.039 21.147 0.000 0.747 0.900
## 4 husband =~ x4 0.687 0.049 13.995 0.000 0.591 0.784
## 5 husband =~ x5 0.782 0.041 19.075 0.000 0.702 0.862
## 6 husband =~ x6 0.808 0.045 18.094 0.000 0.720 0.895
## 7 wife ~~ husband 0.754 0.055 13.824 0.000 0.647 0.861
## 8 x1 ~1 4.665 0.267 17.481 0.000 4.142 5.188
## 9 x2 ~1 6.568 0.375 17.511 0.000 5.833 7.304
## 10 x3 ~1 5.398 0.320 16.853 0.000 4.770 6.025
## 11 x4 ~1 5.424 0.306 17.700 0.000 4.823 6.025
## 12 x5 ~1 6.924 0.403 17.177 0.000 6.134 7.714
## 13 x6 ~1 5.780 0.329 17.577 0.000 5.135 6.425
## 14 x1 ~~ x4 0.206 0.091 2.254 0.024 0.027 0.384
## 15 x2 ~~ x5 0.148 0.125 1.190 0.234 -0.096 0.393
## 16 x3 ~~ x6 0.128 0.134 0.954 0.340 -0.135 0.390
## 17 x1 ~~ x1 0.580 0.063 9.278 0.000 0.458 0.703
## 18 x2 ~~ x2 0.320 0.071 4.525 0.000 0.181 0.458
## 19 x3 ~~ x3 0.322 0.064 5.027 0.000 0.197 0.448
## 20 x4 ~~ x4 0.527 0.068 7.807 0.000 0.395 0.660
## 21 x5 ~~ x5 0.388 0.064 6.054 0.000 0.263 0.514
## 22 x6 ~~ x6 0.348 0.072 4.822 0.000 0.206 0.489
## 23 wife ~~ wife 1.000 0.000 NA NA 1.000 1.000
## 24 husband ~~ husband 1.000 0.000 NA NA 1.000 1.000
## 25 wife ~1 0.000 0.000 NA NA 0.000 0.000
## 26 husband ~1 0.000 0.000 NA NA 0.000 0.000
library(lavaan)
cfamodel <- '
wife =~ 1*x1 + x2 + x3
husband =~ 1*x4 + x5 + x6
wife ~~ husband
x1 ~ 1
x2 ~ 1
x3 ~ 1
x4 ~ 1
x5 ~ 1
x6 ~ 1
x1 ~~ x4
x2 ~~ x5
x3 ~~ x6
'
cfafit <- cfa(cfamodel, sample.cov = covv, sample.nobs = 148, sample.mean = ccormean,
std.lv = FALSE, mimic = "Mplus")
summary(cfafit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 22
##
## Number of observations 148
##
## Model Test User Model:
##
## Test statistic 3.057
## Degrees of freedom 5
## P-value (Chi-square) 0.691
##
## Model Test Baseline Model:
##
## Test statistic 388.633
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 1.016
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -645.990
## Loglikelihood unrestricted model (H1) -644.462
##
## Akaike (AIC) 1335.980
## Bayesian (BIC) 1401.919
## Sample-size adjusted Bayesian (BIC) 1332.297
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.087
## P-value RMSEA <= 0.05 0.826
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.015
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## wife =~
## x1 1.000
## x2 1.070 0.142 7.537 0.000
## x3 1.117 0.149 7.480 0.000
## husband =~
## x4 1.000
## x5 0.874 0.113 7.733 0.000
## x6 1.209 0.153 7.900 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## wife ~~
## husband 0.154 0.033 4.594 0.000
## .x1 ~~
## .x4 0.050 0.025 2.005 0.045
## .x2 ~~
## .x5 0.018 0.015 1.231 0.218
## .x3 ~~
## .x6 0.021 0.020 1.031 0.302
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## .x1 3.432 0.060 57.335 0.000
## .x2 3.696 0.048 77.803 0.000
## .x3 3.608 0.054 67.223 0.000
## .x4 3.426 0.052 65.514 0.000
## .x5 3.743 0.043 87.275 0.000
## .x6 3.588 0.052 68.602 0.000
## wife 0.000
## husband 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .x1 0.315 0.042 7.454 0.000
## .x2 0.088 0.023 3.783 0.000
## .x3 0.158 0.029 5.356 0.000
## .x4 0.209 0.031 6.819 0.000
## .x5 0.123 0.020 6.054 0.000
## .x6 0.119 0.029 4.042 0.000
## wife 0.215 0.054 4.010 0.000
## husband 0.196 0.044 4.419 0.000
standardizedSolution(cfafit)
## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 wife =~ x1 0.637 0.058 11.037 0.000 0.524 0.750
## 2 wife =~ x2 0.859 0.042 20.464 0.000 0.777 0.941
## 3 wife =~ x3 0.793 0.046 17.298 0.000 0.704 0.883
## 4 husband =~ x4 0.695 0.054 12.906 0.000 0.590 0.801
## 5 husband =~ x5 0.741 0.051 14.475 0.000 0.641 0.841
## 6 husband =~ x6 0.840 0.045 18.648 0.000 0.752 0.929
## 7 wife ~~ husband 0.750 0.054 13.816 0.000 0.643 0.856
## 8 x1 ~1 4.713 0.286 16.481 0.000 4.152 5.273
## 9 x2 ~1 6.395 0.381 16.794 0.000 5.649 7.142
## 10 x3 ~1 5.526 0.331 16.686 0.000 4.877 6.175
## 11 x4 ~1 5.385 0.322 16.708 0.000 4.754 6.017
## 12 x5 ~1 7.174 0.425 16.876 0.000 6.341 8.007
## 13 x6 ~1 5.639 0.338 16.689 0.000 4.977 6.301
## 14 x1 ~~ x4 0.196 0.091 2.152 0.031 0.018 0.375
## 15 x2 ~~ x5 0.173 0.127 1.365 0.172 -0.075 0.422
## 16 x3 ~~ x6 0.152 0.134 1.136 0.256 -0.111 0.415
## 17 x1 ~~ x1 0.594 0.074 8.086 0.000 0.450 0.738
## 18 x2 ~~ x2 0.262 0.072 3.639 0.000 0.121 0.404
## 19 x3 ~~ x3 0.371 0.073 5.091 0.000 0.228 0.513
## 20 x4 ~~ x4 0.517 0.075 6.899 0.000 0.370 0.663
## 21 x5 ~~ x5 0.451 0.076 5.942 0.000 0.302 0.600
## 22 x6 ~~ x6 0.294 0.076 3.881 0.000 0.145 0.442
## 23 wife ~~ wife 1.000 0.000 NA NA 1.000 1.000
## 24 husband ~~ husband 1.000 0.000 NA NA 1.000 1.000
## 25 wife ~1 0.000 0.000 NA NA 0.000 0.000
## 26 husband ~1 0.000 0.000 NA NA 0.000 0.000
anova(cfafit, ddyadfit)
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## cfafit 5 1336 1401.9 3.0571
## ddyadfit 7 1336 1396.0 7.1244 4.0674 2 0.1309
library(lavaan)
ISATmodel <- '
x1 ~ m1*1 #Means
x4 ~ m1*1
x2 ~ m2*1
x5 ~ m2*1
x3 ~ m3*1
x6 ~ m3*1
x1 ~~ v1*x1 #Variances
x4 ~~ v1*x4
x2 ~~ v2*x2
x5 ~~ v2*x5
x3 ~~ v3*x3
x6 ~~ v3*x6
x1 ~~ x4 #Error correlation
x2 ~~ x5
x3 ~~ x6
x1 ~~ c12*x2 #Within member correlation
x1 ~~ c13*x3
x2 ~~ c23*x3
x4 ~~ c12*x5
x4 ~~ c13*x6
x5 ~~ c23*x6
x1 ~~ cc12*x5 #Between member correlation
x1 ~~ cc13*x6
x2 ~~ cc23*x6
x4 ~~ cc12*x2
x4 ~~ cc13*x3
x5 ~~ cc23*x3
'
ISATfit <- cfa(ISATmodel, sample.cov = covv, sample.nobs = 148, sample.mean = ccormean,
std.lv = F, mimic = "Mplus")
summary(ISATfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 57 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 27
## Number of equality constraints 12
## Row rank of the constraints matrix 12
##
## Number of observations 148
##
## Model Test User Model:
##
## Test statistic 14.919
## Degrees of freedom 12
## P-value (Chi-square) 0.246
##
## Model Test Baseline Model:
##
## Test statistic 388.633
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.992
## Tucker-Lewis Index (TLI) 0.990
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -651.921
## Loglikelihood unrestricted model (H1) -644.462
##
## Akaike (AIC) 1333.842
## Bayesian (BIC) 1378.800
## Sample-size adjusted Bayesian (BIC) 1331.331
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.041
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.098
## P-value RMSEA <= 0.05 0.546
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.150
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## x1 ~~
## x4 0.208 0.042 4.938 0.000
## x2 ~~
## x5 0.158 0.028 5.619 0.000
## x3 ~~
## x6 0.230 0.039 5.891 0.000
## x1 ~~
## x2 (c12) 0.201 0.028 7.133 0.000
## x3 (c13) 0.237 0.034 7.055 0.000
## x2 ~~
## x3 (c23) 0.232 0.029 8.032 0.000
## x4 ~~
## x5 (c12) 0.201 0.028 7.133 0.000
## x6 (c13) 0.237 0.034 7.055 0.000
## x5 ~~
## x6 (c23) 0.232 0.029 8.032 0.000
## x1 ~~
## x5 (cc12) 0.144 0.028 5.099 0.000
## x6 (cc13) 0.186 0.034 5.544 0.000
## x2 ~~
## x6 (cc23) 0.174 0.029 6.043 0.000
## x4 ~~
## x2 (cc12) 0.144 0.028 5.099 0.000
## x3 (cc13) 0.186 0.034 5.544 0.000
## x5 ~~
## x3 (cc23) 0.174 0.029 6.043 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## x1 (m1) 3.429 0.048 71.768 0.000
## x4 (m1) 3.429 0.048 71.768 0.000
## x2 (m2) 3.720 0.039 94.253 0.000
## x5 (m2) 3.720 0.039 94.253 0.000
## x3 (m3) 3.598 0.047 76.997 0.000
## x6 (m3) 3.598 0.047 76.997 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## x1 (v1) 0.468 0.042 11.118 0.000
## x4 (v1) 0.468 0.042 11.118 0.000
## x2 (v2) 0.303 0.028 10.790 0.000
## x5 (v2) 0.303 0.028 10.790 0.000
## x3 (v3) 0.416 0.039 10.644 0.000
## x6 (v3) 0.416 0.039 10.644 0.000
library(lavaan)
NULLmodel <- '
x1 ~ m1*1 #Means
x4 ~ m1*1
x2 ~ m2*1
x5 ~ m2*1
x3 ~ m3*1
x6 ~ m3*1
x1 ~~ r1*x1 #Variance
x2 ~~ r2*x2
x3 ~~ r3*x3
x4 ~~ r1*x4
x5 ~~ r2*x5
x6 ~~ r3*x6
x1 ~~ 0*x2 #Covariate
x1 ~~ 0*x3
x1 ~~ 0*x4
x1 ~~ 0*x5
x1 ~~ 0*x6
x2 ~~ 0*x3
x2 ~~ 0*x4
x2 ~~ 0*x5
x2 ~~ 0*x6
x3 ~~ 0*x4
x3 ~~ 0*x5
x3 ~~ 0*x6
x4 ~~ 0*x5
x4 ~~ 0*x6
x5 ~~ 0*x6
'
NULLfit <- cfa(NULLmodel, sample.cov = covv, sample.nobs = 148, sample.mean = ccormean,
std.lv = F, mimic = "Mplus")
summary(NULLfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 22 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 12
## Number of equality constraints 6
## Row rank of the constraints matrix 6
##
## Number of observations 148
##
## Model Test User Model:
##
## Test statistic 393.462
## Degrees of freedom 21
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 388.633
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.003
## Tucker-Lewis Index (TLI) 0.288
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -841.193
## Loglikelihood unrestricted model (H1) -644.462
##
## Akaike (AIC) 1694.386
## Bayesian (BIC) 1712.369
## Sample-size adjusted Bayesian (BIC) 1693.381
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.346
## 90 Percent confidence interval - lower 0.317
## 90 Percent confidence interval - upper 0.377
## P-value RMSEA <= 0.05 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.410
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## x1 ~~
## x2 0.000
## x3 0.000
## x4 0.000
## x5 0.000
## x6 0.000
## x2 ~~
## x3 0.000
## x4 0.000
## x5 0.000
## x6 0.000
## x3 ~~
## x4 0.000
## x5 0.000
## x6 0.000
## x4 ~~
## x5 0.000
## x6 0.000
## x5 ~~
## x6 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## x1 (m1) 3.429 0.040 86.243 0.000
## x4 (m1) 3.429 0.040 86.243 0.000
## x2 (m2) 3.720 0.032 116.233 0.000
## x5 (m2) 3.720 0.032 116.233 0.000
## x3 (m3) 3.598 0.037 95.966 0.000
## x6 (m3) 3.598 0.037 95.966 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## x1 (r1) 0.468 0.038 12.166 0.000
## x2 (r2) 0.303 0.025 12.166 0.000
## x3 (r3) 0.416 0.034 12.166 0.000
## x4 (r1) 0.468 0.038 12.166 0.000
## x5 (r2) 0.303 0.025 12.166 0.000
## x6 (r3) 0.416 0.034 12.166 0.000
library(lavaan)
idyadmodel <-'
wife =~ 1*x1 + a*x2 + b*x3 #factor loading
husband =~ 1*x4 + a*x5 + b*x6
wife ~ 0*1 #factor means
husband ~ 0*1
wife ~~ i*husband #factor covariate
wife ~~ h*wife #factor variance
husband ~~ h*husband
x1 ~ m1*1 #intercept
x2 ~ m2*1
x3 ~ m3*1
x4 ~ m1*1
x5 ~ m2*1
x6 ~ m3*1
x1 ~~ v1*x1 #residual variance
x2 ~~ v2*x2
x3 ~~ v3*x3
x4 ~~ v1*x4
x5 ~~ v2*x5
x6 ~~ v3*x6
x1 ~~ c1*x4 #residual correlation
x2 ~~ c2*x5
x3 ~~ c3*x6
'
idyadfit <- cfa(idyadmodel, sample.cov = covv, sample.nobs = 148, sample.mean = ccormean,
std.lv = F, mimic = "Mplus")
summary(idyadfit, fit.measures = TRUE)
## lavaan 0.6-5 ended normally after 40 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 22
## Number of equality constraints 9
## Row rank of the constraints matrix 9
##
## Number of observations 148
##
## Model Test User Model:
##
## Test statistic 15.702
## Degrees of freedom 14
## P-value (Chi-square) 0.332
##
## Model Test Baseline Model:
##
## Test statistic 388.633
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.995
## Tucker-Lewis Index (TLI) 0.995
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -652.313
## Loglikelihood unrestricted model (H1) -644.462
##
## Akaike (AIC) 1330.625
## Bayesian (BIC) 1369.589
## Sample-size adjusted Bayesian (BIC) 1328.449
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.029
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.087
## P-value RMSEA <= 0.05 0.659
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.150
##
## Parameter Estimates:
##
## Information Observed
## Observed information based on Hessian
## Standard errors Standard
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## wife =~
## x1 1.000
## x2 (a) 0.971 0.097 9.996 0.000
## x3 (b) 1.164 0.117 9.906 0.000
## husband =~
## x4 1.000
## x5 (a) 0.971 0.097 9.996 0.000
## x6 (b) 1.164 0.117 9.906 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## wife ~~
## husband (i) 0.155 0.034 4.579 0.000
## .x1 ~~
## .x4 (c1) 0.053 0.026 2.079 0.038
## .x2 ~~
## .x5 (c2) 0.016 0.015 1.068 0.285
## .x3 ~~
## .x6 (c3) 0.016 0.020 0.812 0.417
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## wife 0.000
## husband 0.000
## .x1 (m1) 3.429 0.048 71.755 0.000
## .x2 (m2) 3.720 0.040 93.847 0.000
## .x3 (m3) 3.598 0.047 77.297 0.000
## .x4 (m1) 3.429 0.048 71.755 0.000
## .x5 (m2) 3.720 0.040 93.847 0.000
## .x6 (m3) 3.598 0.047 77.297 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## wife (h) 0.205 0.039 5.264 0.000
## husband (h) 0.205 0.039 5.264 0.000
## .x1 (v1) 0.263 0.027 9.899 0.000
## .x2 (v2) 0.110 0.016 6.676 0.000
## .x3 (v3) 0.137 0.023 6.042 0.000
## .x4 (v1) 0.263 0.027 9.899 0.000
## .x5 (v2) 0.110 0.016 6.676 0.000
## .x6 (v3) 0.137 0.023 6.042 0.000
standardizedSolution(idyadfit)
## lhs op rhs est.std se z pvalue ci.lower ci.upper
## 1 wife =~ x1 0.662 0.044 15.221 0.000 0.577 0.748
## 2 wife =~ x2 0.798 0.037 21.763 0.000 0.726 0.870
## 3 wife =~ x3 0.818 0.036 22.593 0.000 0.747 0.889
## 4 husband =~ x4 0.662 0.044 15.221 0.000 0.577 0.748
## 5 husband =~ x5 0.798 0.037 21.763 0.000 0.726 0.870
## 6 husband =~ x6 0.818 0.036 22.593 0.000 0.747 0.889
## 7 wife ~1 0.000 0.000 NA NA 0.000 0.000
## 8 husband ~1 0.000 0.000 NA NA 0.000 0.000
## 9 wife ~~ husband 0.753 0.055 13.673 0.000 0.645 0.861
## 10 wife ~~ wife 1.000 0.000 NA NA 1.000 1.000
## 11 husband ~~ husband 1.000 0.000 NA NA 1.000 1.000
## 12 x1 ~1 5.013 0.236 21.267 0.000 4.551 5.475
## 13 x2 ~1 6.750 0.322 20.933 0.000 6.118 7.382
## 14 x3 ~1 5.582 0.271 20.615 0.000 5.051 6.112
## 15 x4 ~1 5.013 0.236 21.267 0.000 4.551 5.475
## 16 x5 ~1 6.750 0.322 20.933 0.000 6.118 7.382
## 17 x6 ~1 5.582 0.271 20.615 0.000 5.051 6.112
## 18 x1 ~~ x1 0.561 0.058 9.735 0.000 0.448 0.674
## 19 x2 ~~ x2 0.363 0.059 6.193 0.000 0.248 0.477
## 20 x3 ~~ x3 0.331 0.059 5.584 0.000 0.215 0.447
## 21 x4 ~~ x4 0.561 0.058 9.735 0.000 0.448 0.674
## 22 x5 ~~ x5 0.363 0.059 6.193 0.000 0.248 0.477
## 23 x6 ~~ x6 0.331 0.059 5.584 0.000 0.215 0.447
## 24 x1 ~~ x4 0.203 0.091 2.243 0.025 0.026 0.381
## 25 x2 ~~ x5 0.143 0.123 1.157 0.247 -0.099 0.384
## 26 x3 ~~ x6 0.120 0.137 0.875 0.382 -0.149 0.388
anova(ISATfit, NULLfit)
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## ISATfit 12 1333.8 1378.8 14.919
## NULLfit 21 1694.4 1712.4 393.462 378.54 9 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ISATfit, idyadfit)
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## ISATfit 12 1333.8 1378.8 14.919
## idyadfit 14 1330.6 1369.6 15.702 0.78301 2 0.676