install.packages("pacman")
## Installing package into '/usr/local/lib/R/site-library'
## (as 'lib' is unspecified)
library(pacman)
p_load(nycflights13, tidyverse)
data(flights)
data(airlines)
data(weather)
data(airports)
head(flights)
## # A tibble: 6 x 19
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
head(airlines)
## # A tibble: 6 x 2
##   carrier name                    
##   <chr>   <chr>                   
## 1 9E      Endeavor Air Inc.       
## 2 AA      American Airlines Inc.  
## 3 AS      Alaska Airlines Inc.    
## 4 B6      JetBlue Airways         
## 5 DL      Delta Air Lines Inc.    
## 6 EV      ExpressJet Airlines Inc.
head(weather)
## # A tibble: 6 x 15
##   origin  year month   day  hour  temp  dewp humid wind_dir wind_speed wind_gust
##   <chr>  <int> <int> <int> <int> <dbl> <dbl> <dbl>    <dbl>      <dbl>     <dbl>
## 1 EWR     2013     1     1     1  39.0  26.1  59.4      270      10.4         NA
## 2 EWR     2013     1     1     2  39.0  27.0  61.6      250       8.06        NA
## 3 EWR     2013     1     1     3  39.0  28.0  64.4      240      11.5         NA
## 4 EWR     2013     1     1     4  39.9  28.0  62.2      250      12.7         NA
## 5 EWR     2013     1     1     5  39.0  28.0  64.4      260      12.7         NA
## 6 EWR     2013     1     1     6  37.9  28.0  67.2      240      11.5         NA
## # … with 4 more variables: precip <dbl>, pressure <dbl>, visib <dbl>,
## #   time_hour <dttm>
Q1<-filter(flights,month==1,day==1)
Q1
## # A tibble: 842 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # … with 832 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## #   distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Q2<-filter(flights,arr_delay >= 120) %>%
  select(year:day, arr_delay, everything())
Q2  
## # A tibble: 10,200 x 19
##     year month   day arr_delay dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>     <dbl>    <int>          <int>     <dbl>    <int>
##  1  2013     1     1       137      811            630       101     1047
##  2  2013     1     1       851      848           1835       853     1001
##  3  2013     1     1       123      957            733       144     1056
##  4  2013     1     1       145     1114            900       134     1447
##  5  2013     1     1       127     1505           1310       115     1638
##  6  2013     1     1       125     1525           1340       105     1831
##  7  2013     1     1       136     1549           1445        64     1912
##  8  2013     1     1       123     1558           1359       119     1718
##  9  2013     1     1       123     1732           1630        62     2028
## 10  2013     1     1       138     1803           1620       103     2008
## # … with 10,190 more rows, and 11 more variables: sched_arr_time <int>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Q3<-arrange(Q2,desc(arr_delay))%>%
  select(year:day, carrier, flight,arr_delay, everything())%>%
  slice(1)
Q3
## # A tibble: 1 x 19
##    year month   day carrier flight arr_delay dep_time sched_dep_time dep_delay
##   <int> <int> <int> <chr>    <int>     <dbl>    <int>          <int>     <dbl>
## 1  2013     1     9 HA          51      1272      641            900      1301
## # … with 10 more variables: arr_time <int>, sched_arr_time <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
Q4<-group_by(flights,arr_delay)%>%
  arrange(arr_delay)
Q4
## # A tibble: 336,776 x 19
## # Groups:   arr_delay [578]
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     5     7     1715           1729       -14     1944           2110
##  2  2013     5    20      719            735       -16      951           1110
##  3  2013     5     2     1947           1949        -2     2209           2324
##  4  2013     5     6     1826           1830        -4     2045           2200
##  5  2013     5     4     1816           1820        -4     2017           2131
##  6  2013     5     2     1926           1929        -3     2157           2310
##  7  2013     5     6     1753           1755        -2     2004           2115
##  8  2013     5     7     2054           2055        -1     2317             28
##  9  2013     5    13      657            700        -3      908           1019
## 10  2013     1     4     1026           1030        -4     1305           1415
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Q5<-group_by(flights,arr_delay)%>%
  arrange(hour)
Q5
## # A tibble: 336,776 x 19
## # Groups:   arr_delay [578]
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     7    27       NA            106        NA       NA            245
##  2  2013     1     1      517            515         2      830            819
##  3  2013     1     1      533            529         4      850            830
##  4  2013     1     1      542            540         2      923            850
##  5  2013     1     1      544            545        -1     1004           1022
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      559            559         0      702            706
##  8  2013     1     2      458            500        -2      703            650
##  9  2013     1     2      512            515        -3      809            819
## 10  2013     1     2      535            540        -5      831            850
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
answer06<-select(flights,year:day, hour, origin, dest, tailnum, carrier)%>%
  slice(1:100)
answer06
## # A tibble: 100 x 8
##     year month   day  hour origin dest  tailnum carrier
##    <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>  
##  1  2013     1     1     5 EWR    IAH   N14228  UA     
##  2  2013     1     1     5 LGA    IAH   N24211  UA     
##  3  2013     1     1     5 JFK    MIA   N619AA  AA     
##  4  2013     1     1     5 JFK    BQN   N804JB  B6     
##  5  2013     1     1     6 LGA    ATL   N668DN  DL     
##  6  2013     1     1     5 EWR    ORD   N39463  UA     
##  7  2013     1     1     6 EWR    FLL   N516JB  B6     
##  8  2013     1     1     6 LGA    IAD   N829AS  EV     
##  9  2013     1     1     6 JFK    MCO   N593JB  B6     
## 10  2013     1     1     6 LGA    ORD   N3ALAA  AA     
## # … with 90 more rows