R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

# Q1.   Perform all necessary cleaning and transformation of the data to make it useful for regression modeling.  Hint:  It might be easier just to set some variables up as factors rather than to create indicator variables across the board. 
setwd("/Users/Fisher/Desktop/BANA 288 Predictive Analytics/HW3 Regression Model Selection and Regularization")
dbike <- read.csv("hw3_hour.csv")
dim(dbike)
## [1] 17379    15
str(dbike)
## 'data.frame':    17379 obs. of  15 variables:
##  $ obs       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ dteday    : Factor w/ 731 levels "1/1/2011","1/1/2012",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ season    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ yr        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ hr        : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ holiday   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday     : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ workday   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weathersit: int  1 1 1 1 1 2 1 1 1 1 ...
##  $ temp      : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp     : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum       : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ cnt       : int  16 40 32 13 1 1 2 3 8 14 ...
head(dbike)
##   obs   dteday season yr mnth hr holiday wkday workday weathersit temp  atemp
## 1   1 1/1/2011      1  0    1  0       0     6       0          1 0.24 0.2879
## 2   2 1/1/2011      1  0    1  1       0     6       0          1 0.22 0.2727
## 3   3 1/1/2011      1  0    1  2       0     6       0          1 0.22 0.2727
## 4   4 1/1/2011      1  0    1  3       0     6       0          1 0.24 0.2879
## 5   5 1/1/2011      1  0    1  4       0     6       0          1 0.24 0.2879
## 6   6 1/1/2011      1  0    1  5       0     6       0          2 0.24 0.2576
##    hum windspeed cnt
## 1 0.81    0.0000  16
## 2 0.80    0.0000  40
## 3 0.80    0.0000  32
## 4 0.75    0.0000  13
## 5 0.75    0.0000   1
## 6 0.75    0.0896   1
dbike1 <- dbike
dbike1$wkday <- as.factor(dbike1$wkday)
dbike1$season <- as.factor(dbike1$season)
dbike1$mnth <- as.factor(dbike1$mnth)
dbike1$weathersit <- as.factor(dbike1$weathersit)
#dbike1$yr <- as.factor(dbike1$yr)
#dbike1$holiday <- as.factor(dbike1$holiday)
#dbike1$workday <- as.factor(dbike1$workday)

dbike1 <- mutate(dbike1, 
                 daytime = ifelse(dbike1$hr %in% c(7,8,9,10,11,12,13,14,15,16,17,18), 1, 0))
#dbike1$daytime <- as.factor(dbike1$daytime)

dbike1 <-  dbike1 %>% 
  cbind(acm.disjonctif(dbike1[c("season","mnth","wkday","weathersit")])) %>% 
  ungroup()

str(dbike1)
## 'data.frame':    17379 obs. of  43 variables:
##  $ obs         : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ dteday      : Factor w/ 731 levels "1/1/2011","1/1/2012",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ season      : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
##  $ yr          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth        : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ hr          : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ holiday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday       : Factor w/ 7 levels "0","1","2","3",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ workday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weathersit  : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 1 1 1 1 ...
##  $ temp        : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp       : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum         : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed   : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ cnt         : int  16 40 32 13 1 1 2 3 8 14 ...
##  $ daytime     : num  0 0 0 0 0 0 0 1 1 1 ...
##  $ season.1    : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ season.2    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ season.3    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ season.4    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.1      : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ mnth.2      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.3      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.4      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.5      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.6      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.7      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.8      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.9      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.10     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.11     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.12     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.0     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.1     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.2     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.3     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.4     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.5     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.6     : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ weathersit.1: num  1 1 1 1 1 0 1 1 1 1 ...
##  $ weathersit.2: num  0 0 0 0 0 1 0 0 0 0 ...
##  $ weathersit.3: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ weathersit.4: num  0 0 0 0 0 0 0 0 0 0 ...
dbike2 <- dbike1 %>%
  select(-obs, -hr, -dteday, -season.4, -mnth.12, -weathersit.4, -season, -mnth, -wkday, -weathersit)
str(dbike2)
## 'data.frame':    17379 obs. of  33 variables:
##  $ yr          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ holiday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ workday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ temp        : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp       : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum         : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed   : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ cnt         : int  16 40 32 13 1 1 2 3 8 14 ...
##  $ daytime     : num  0 0 0 0 0 0 0 1 1 1 ...
##  $ season.1    : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ season.2    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ season.3    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.1      : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ mnth.2      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.3      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.4      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.5      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.6      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.7      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.8      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.9      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.10     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.11     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.0     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.1     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.2     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.3     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.4     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.5     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.6     : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ weathersit.1: num  1 1 1 1 1 0 1 1 1 1 ...
##  $ weathersit.2: num  0 0 0 0 0 1 0 0 0 0 ...
##  $ weathersit.3: num  0 0 0 0 0 0 0 0 0 0 ...
# season <- as.data.frame(dummy(dbike2$season))
# mnth <- as.data.frame(dummy(dbike2$mnth))
# wkday <- as.data.frame(dummy(dbike2$wkday))
# weathersit <- as.data.frame(dummy(dbike2$weathersit))
# 
# dbike2 <- as.data.frame(cbind(dbike2, season, mnth, wkday, weathersit))
# names(dbike2$weathersit)1) <- "Clear"
# names(dbike2$weathersit)2) <- "Mist"
# names(dbike2$weathersit)3) <- "Light"
# names(dbike2$weathersit)4) <- "Heavy"
# 
# names(dbike2$wkday)[1] <- "Mon"
# names(dbike2$wkday)[2] <- "Tue"
# names(dbike2$wkday)[3] <- "Wed"
# names(dbike2$wkday)[4] <- "Thur"
# names(dbike2$wkday)[5] <- "Fri"
# names(dbike2$wkday)[6] <- "Sat"
# names(dbike2$wkday)[7] <- "Sun"
# 
# names(dbike2$mnth)[1] <- "Jan"
# names(dbike2$mnth)[2] <- "Feb"
# names(dbike2$mnth)[3] <- "Mar"
# names(dbike2$mnth)[4] <- "Apr"
# names(dbike2$mnth)[5] <- "May"
# names(dbike2$mnth)[6] <- "June"
# names(dbike2$mnth)[7] <- "July"
# names(dbike2$mnth)[8] <- "Aug"
# names(dbike2$mnth)[9] <- "Sep"
# names(dbike2$mnth)[10] <- "Oct"
# names(dbike2$mnth)[11] <- "Nov"
# names(dbike2$mnth)[12] <- "Dec"
# 
# names(dbike2$season)[1] <- "winter"
# names(dbike2$season)[2] <- "spring"
# names(dbike2$season)[3] <- "summer"
# names(dbike2$season)[4] <- "fall"
# 
# dbike2 <- dbike2 %>%
#   select(-c("season", "mnth", "wkday", "weathersit"))
# 
# str(dbike2)
# Q2.   Are there any variables with a curvilinear relationship with the response?  If so, add squared versions of these variables to the data set.  In addition, pick one situation in this data where an interaction term might be useful, that is, where adding an interaction variable might make sense.  Explain, in your own words why this is the case.  Add the corresponding interaction variable to the data set.

dbike2 %>%
  gather(temp, atemp, hum, windspeed, key = "var", value = "value") %>%
  ggplot(aes(x = value, y = cnt)) +
    geom_point() +
    stat_smooth() +
    facet_wrap(~ var, scales = "free") +
    theme_bw()
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

# temp
reg_temp1 <- lm(cnt ~ temp, data = dbike2)
summary(reg_temp1)
## 
## Call:
## lm(formula = cnt ~ temp, data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -291.37 -110.23  -32.86   76.77  744.76 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.0356     3.4827   -0.01    0.992    
## temp        381.2949     6.5344   58.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 165.9 on 17377 degrees of freedom
## Multiple R-squared:  0.1638, Adjusted R-squared:  0.1638 
## F-statistic:  3405 on 1 and 17377 DF,  p-value: < 2.2e-16
reg_temp2 <- lm(cnt ~ temp + I(temp^2), data = dbike2)
summary(reg_temp2)
## 
## Call:
## lm(formula = cnt ~ temp + I(temp^2), data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -294.13 -109.58  -33.54   77.07  747.08 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   13.270      7.735   1.716   0.0862 .  
## temp         318.192     33.398   9.527   <2e-16 ***
## I(temp^2)     63.559     32.990   1.927   0.0540 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 165.9 on 17376 degrees of freedom
## Multiple R-squared:  0.164,  Adjusted R-squared:  0.1639 
## F-statistic:  1705 on 2 and 17376 DF,  p-value: < 2.2e-16
# atemp
reg_atemp1 <- lm(cnt ~ atemp, data = dbike2)
summary(reg_atemp1)
## 
## Call:
## lm(formula = cnt ~ atemp, data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -314.55 -110.95  -33.25   77.70  743.29 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -11.876      3.711   -3.20  0.00137 ** 
## atemp        423.180      7.335   57.69  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 166.2 on 17377 degrees of freedom
## Multiple R-squared:  0.1607, Adjusted R-squared:  0.1607 
## F-statistic:  3328 on 1 and 17377 DF,  p-value: < 2.2e-16
reg_atemp2 <- lm(cnt ~ atemp + I(atemp^2), data = dbike2)
summary(reg_atemp2)
## 
## Call:
## lm(formula = cnt ~ atemp + I(atemp^2), data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -334.55 -110.12  -34.07   77.86  746.02 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.251      8.414   0.743   0.4575    
## atemp        333.616     38.026   8.773   <2e-16 ***
## I(atemp^2)    95.687     39.863   2.400   0.0164 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 166.2 on 17376 degrees of freedom
## Multiple R-squared:  0.161,  Adjusted R-squared:  0.1609 
## F-statistic:  1667 on 2 and 17376 DF,  p-value: < 2.2e-16
# hum
reg_hum1 <- lm(cnt ~ hum, data = dbike2)
summary(reg_hum1)
## 
## Call:
## lm(formula = cnt ~ hum, data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -378.88 -118.90  -44.12   78.73  747.91 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   379.88       4.43   85.76   <2e-16 ***
## hum          -303.59       6.75  -44.98   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 171.7 on 17377 degrees of freedom
## Multiple R-squared:  0.1043, Adjusted R-squared:  0.1042 
## F-statistic:  2023 on 1 and 17377 DF,  p-value: < 2.2e-16
reg_hum2 <- lm(cnt ~ hum + I(hum^2), data = dbike2)
summary(reg_hum2)
## 
## Call:
## lm(formula = cnt ~ hum + I(hum^2), data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -326.21 -119.64  -42.93   78.43  744.26 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   327.21      11.97  27.338  < 2e-16 ***
## hum          -114.08      40.57  -2.812  0.00493 ** 
## I(hum^2)     -153.70      32.45  -4.737 2.19e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 171.6 on 17376 degrees of freedom
## Multiple R-squared:  0.1054, Adjusted R-squared:  0.1053 
## F-statistic:  1024 on 2 and 17376 DF,  p-value: < 2.2e-16
# windspeed
reg_windspeed1 <- lm(cnt ~ windspeed, data = dbike2)
summary(reg_windspeed1)
## 
## Call:
## lm(formula = cnt ~ windspeed, data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -265.47 -146.00  -48.75   90.25  806.81 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  163.185      2.532   64.46   <2e-16 ***
## windspeed    138.233     11.198   12.34   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 180.6 on 17377 degrees of freedom
## Multiple R-squared:  0.008693,   Adjusted R-squared:  0.008635 
## F-statistic: 152.4 on 1 and 17377 DF,  p-value: < 2.2e-16
reg_windspeed2 <- lm(cnt ~ windspeed + I(windspeed^2), data = dbike2)
summary(reg_windspeed2)
## 
## Call:
## lm(formula = cnt ~ windspeed + I(windspeed^2), data = dbike2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -211.00 -141.48  -47.84   90.24  823.24 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     146.755      3.285  44.668  < 2e-16 ***
## windspeed       352.541     29.579  11.918  < 2e-16 ***
## I(windspeed^2) -475.690     60.787  -7.826 5.34e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 180.3 on 17376 degrees of freedom
## Multiple R-squared:  0.01217,    Adjusted R-squared:  0.01206 
## F-statistic: 107.1 on 2 and 17376 DF,  p-value: < 2.2e-16

It seems the accuracy of each model were improved by adding squared versions of these variables to the data set.

attach(dbike2)
dbike3 <- dbike2 %>%
  mutate(temp2 = temp^2,
         atemp2 = atemp^2,
         hum2 = hum^2,
         windspeed2 = windspeed^2)
# Season and temprature will be a set of interactive terms but since we set season as a factor, we could consider use the daytime variable we created. The humidity is also determined by temperature more or less. 
cor(dbike3$temp, as.numeric(dbike1$season))
## [1] 0.3120252
cor(dbike3$temp, as.numeric(dbike1$daytime))
## [1] 0.1393702
cor(dbike3$temp, dbike1$hum)
## [1] -0.06988139
dbike3 <- dbike3 %>%
  mutate(temp_dif_s = temp * as.numeric(dbike1$season))
str(dbike3)
## 'data.frame':    17379 obs. of  38 variables:
##  $ yr          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ holiday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ workday     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ temp        : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp       : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum         : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed   : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ cnt         : int  16 40 32 13 1 1 2 3 8 14 ...
##  $ daytime     : num  0 0 0 0 0 0 0 1 1 1 ...
##  $ season.1    : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ season.2    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ season.3    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.1      : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ mnth.2      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.3      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.4      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.5      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.6      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.7      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.8      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.9      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.10     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth.11     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.0     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.1     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.2     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.3     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.4     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.5     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wkday.6     : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ weathersit.1: num  1 1 1 1 1 0 1 1 1 1 ...
##  $ weathersit.2: num  0 0 0 0 0 1 0 0 0 0 ...
##  $ weathersit.3: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ temp2       : num  0.0576 0.0484 0.0484 0.0576 0.0576 ...
##  $ atemp2      : num  0.0829 0.0744 0.0744 0.0829 0.0829 ...
##  $ hum2        : num  0.656 0.64 0.64 0.562 0.562 ...
##  $ windspeed2  : num  0 0 0 0 0 ...
##  $ temp_dif_s  : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
# Q3.   Use your own student identification number as a seed in the homework.  Randomly select approximately 50% of the rows for a training data set and include the rest of the data in a test data set.  Run the “all-variables-in” regression model on the training data.  What is the fit for this model?
set.seed(49204366)
split = sample.split(dbike3$cnt, SplitRatio = 0.5)
training_set = subset(dbike3, split == TRUE)
test_set = subset(dbike3, split == FALSE)
as.numeric(dbike1$season)
##     [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##    [37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##    [73] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [181] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [217] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [253] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [289] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [325] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [361] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [397] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [433] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [469] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [505] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [541] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [577] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [613] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [649] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [721] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [757] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [793] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [829] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [865] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [901] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [937] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1009] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1045] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1081] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1117] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1189] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1225] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1261] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1477] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1513] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1549] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1585] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1621] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1657] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1693] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1729] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1765] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [1801] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [1837] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [1873] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [1909] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [1945] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [1981] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2017] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2053] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2089] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2125] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2161] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2197] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2233] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2269] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2305] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2341] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2377] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2413] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2449] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2485] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2521] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2557] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2593] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2629] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2665] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2701] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2737] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2773] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2809] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2845] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2881] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2917] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2953] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [2989] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3025] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3061] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3097] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3133] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3169] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3205] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3241] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3277] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3313] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3349] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3385] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3421] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3457] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3493] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3529] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3565] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3601] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3637] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3673] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3709] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3745] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3781] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3817] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3853] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3889] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3925] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3961] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [3997] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4033] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4069] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4105] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4141] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4177] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4213] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4249] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4285] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4321] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4357] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4393] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4429] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4465] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4501] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4537] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4573] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4609] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4645] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4681] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4717] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4753] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4789] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4825] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4861] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4897] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4933] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [4969] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5005] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5041] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5077] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5113] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5185] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5221] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5257] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5293] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5329] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5365] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5401] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5437] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5473] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5509] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5545] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5581] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5617] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5653] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5689] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5725] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5761] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5797] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5833] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5869] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5905] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5941] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [5977] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6013] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6049] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6085] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6121] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6157] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6193] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [6229] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6265] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6301] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6337] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6373] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6409] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6445] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6481] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6517] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6553] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6589] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6625] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6661] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6697] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6733] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6769] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6805] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6841] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6877] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6913] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6949] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [6985] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7021] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7057] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7093] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7129] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7165] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7201] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7237] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7273] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7309] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7345] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7381] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7417] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7453] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7489] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7525] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7561] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7597] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7633] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7669] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7705] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7741] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7777] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7813] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7849] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7885] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7921] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7957] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [7993] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8029] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8065] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8101] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8137] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8173] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8209] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8245] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8281] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8317] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
##  [8353] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1
##  [8389] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8425] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8461] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8497] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8533] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8569] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8605] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8641] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8677] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8713] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8749] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8785] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8821] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8857] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8893] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8929] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [8965] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9001] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9181] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9217] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9253] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9289] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9325] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9361] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9397] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9433] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9469] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9505] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9541] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9577] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9613] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9649] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9721] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9757] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9793] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9829] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9865] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9901] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9937] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [9973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10009] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10045] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10081] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10117] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10189] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10225] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10261] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10477] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10513] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [10549] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10585] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10621] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10657] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10693] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10729] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10765] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10801] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10837] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10873] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10909] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10945] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [10981] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11017] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11053] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11089] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11125] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11161] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11197] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11233] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11269] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11305] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11341] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11377] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11413] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11449] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11485] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11521] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11557] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11593] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11629] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11665] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11701] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11737] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11773] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11809] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11845] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11881] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11917] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11953] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [11989] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12025] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12061] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12097] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12133] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12169] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12205] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12241] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12277] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12313] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12349] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12385] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12421] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12457] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12493] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12529] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12565] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12601] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12637] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12673] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12709] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [12745] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12781] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12817] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12853] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12889] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12925] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [12997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13033] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13069] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13105] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13141] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13177] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13213] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13249] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13285] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13321] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13357] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13393] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13429] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13465] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13501] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13537] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13573] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13609] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13645] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13681] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13717] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13753] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13789] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13825] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13861] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13897] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13933] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [13969] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14005] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14041] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14077] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14113] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14185] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14221] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14257] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14293] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14329] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14365] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14401] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14437] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14473] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14509] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14545] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14581] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14617] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14653] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14689] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14725] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14761] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14797] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14833] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14869] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14905] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14941] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [14977] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [15013] 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15049] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15085] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15121] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15157] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15193] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15229] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15265] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15301] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15337] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15373] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15409] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15445] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15481] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15517] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15553] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15589] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15625] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15661] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15697] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15733] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15769] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15805] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15841] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15877] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15913] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15949] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [15985] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16021] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16057] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16093] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16129] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16165] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16201] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16237] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16273] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16309] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16345] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16381] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16417] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16453] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16489] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16525] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16561] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16597] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16633] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16669] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16705] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16741] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16777] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16813] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16849] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16885] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16921] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16957] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [16993] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [17029] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [17065] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [17101] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17137] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17173] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17209] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17245] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17281] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17317] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17353] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
reg_all <- lm(cnt ~., data = training_set)
summary(reg_all)
## 
## Call:
## lm(formula = cnt ~ ., data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -370.28  -95.52  -18.24   67.08  554.31 
## 
## Coefficients: (2 not defined because of singularities)
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -50.7105    98.4908  -0.515 0.606653    
## yr             85.3105     2.9207  29.209  < 2e-16 ***
## holiday       -31.4690    10.3739  -3.033 0.002425 ** 
## workday         2.3295     5.4261   0.429 0.667714    
## temp         -556.5099   165.4196  -3.364 0.000771 ***
## atemp         955.4759   182.1552   5.245 1.60e-07 ***
## hum             9.0753    49.6999   0.183 0.855114    
## windspeed     137.6221    32.7976   4.196 2.74e-05 ***
## daytime       153.3723     3.1789  48.247  < 2e-16 ***
## season.1      -38.9183    17.6817  -2.201 0.027758 *  
## season.2       -5.1309    16.1315  -0.318 0.750440    
## season.3      -29.1217    11.0201  -2.643 0.008242 ** 
## mnth.1          2.7472     9.6136   0.286 0.775070    
## mnth.2         -1.7816     9.3738  -0.190 0.849264    
## mnth.3          5.7176     9.2602   0.617 0.536963    
## mnth.4        -19.3828    11.9705  -1.619 0.105439    
## mnth.5         -3.1724    12.4593  -0.255 0.799021    
## mnth.6        -34.0348    12.2780  -2.772 0.005583 ** 
## mnth.7        -61.8605    13.5969  -4.550 5.45e-06 ***
## mnth.8        -31.8491    13.1901  -2.415 0.015772 *  
## mnth.9         20.0113    11.2186   1.784 0.074498 .  
## mnth.10        13.4208     8.6626   1.549 0.121351    
## mnth.11        -7.2005     7.8064  -0.922 0.356355    
## wkday.0       -12.8076     5.3643  -2.388 0.016982 *  
## wkday.1        -3.0135     5.5348  -0.544 0.586134    
## wkday.2        -8.4617     5.4268  -1.559 0.118973    
## wkday.3        -2.2435     5.4523  -0.411 0.680727    
## wkday.4        -1.4723     5.4374  -0.271 0.786579    
## wkday.5             NA         NA      NA       NA    
## wkday.6             NA         NA      NA       NA    
## weathersit.1    7.9381    95.2555   0.083 0.933587    
## weathersit.2    0.2877    95.2301   0.003 0.997590    
## weathersit.3  -21.3883    95.2855  -0.224 0.822401    
## temp2         674.6153   147.0899   4.586 4.57e-06 ***
## atemp2       -789.5091   177.5443  -4.447 8.82e-06 ***
## hum2         -143.5744    39.6283  -3.623 0.000293 ***
## windspeed2   -253.2290    65.6772  -3.856 0.000116 ***
## temp_dif_s     19.9128    13.3219   1.495 0.135018    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.3 on 8722 degrees of freedom
## Multiple R-squared:  0.4918, Adjusted R-squared:  0.4897 
## F-statistic: 241.1 on 35 and 8722 DF,  p-value: < 2.2e-16

The R-squared is 0.4918 means that 49.18% of the training cases were explained by this linear model.

# Q4.   Using the training data set from question 3, perform best subsets regression to pick a “good” model.  What model was selected here and why?  
regfit.full <- regsubsets(cnt~., dbike3, nvmax = 38, method = "exhaustive")
## Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in =
## force.in, : 2 linear dependencies found
## Reordering variables and trying again:
summary(regfit.full)
## Subset selection object
## Call: regsubsets.formula(cnt ~ ., dbike3, nvmax = 38, method = "exhaustive")
## 37 Variables  (and intercept)
##              Forced in Forced out
## yr               FALSE      FALSE
## holiday          FALSE      FALSE
## workday          FALSE      FALSE
## temp             FALSE      FALSE
## atemp            FALSE      FALSE
## hum              FALSE      FALSE
## windspeed        FALSE      FALSE
## daytime          FALSE      FALSE
## season.1         FALSE      FALSE
## season.2         FALSE      FALSE
## season.3         FALSE      FALSE
## mnth.1           FALSE      FALSE
## mnth.2           FALSE      FALSE
## mnth.3           FALSE      FALSE
## mnth.4           FALSE      FALSE
## mnth.5           FALSE      FALSE
## mnth.6           FALSE      FALSE
## mnth.7           FALSE      FALSE
## mnth.8           FALSE      FALSE
## mnth.9           FALSE      FALSE
## mnth.10          FALSE      FALSE
## mnth.11          FALSE      FALSE
## wkday.0          FALSE      FALSE
## wkday.1          FALSE      FALSE
## wkday.2          FALSE      FALSE
## wkday.3          FALSE      FALSE
## wkday.4          FALSE      FALSE
## weathersit.1     FALSE      FALSE
## weathersit.2     FALSE      FALSE
## weathersit.3     FALSE      FALSE
## temp2            FALSE      FALSE
## atemp2           FALSE      FALSE
## hum2             FALSE      FALSE
## windspeed2       FALSE      FALSE
## temp_dif_s       FALSE      FALSE
## wkday.5          FALSE      FALSE
## wkday.6          FALSE      FALSE
## 1 subsets of each size up to 35
## Selection Algorithm: exhaustive
##           yr  holiday workday temp atemp hum windspeed daytime season.1
## 1  ( 1 )  " " " "     " "     " "  " "   " " " "       "*"     " "     
## 2  ( 1 )  " " " "     " "     "*"  " "   " " " "       "*"     " "     
## 3  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 4  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 5  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 6  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 7  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 8  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 9  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 10  ( 1 ) "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 11  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     " "     
## 12  ( 1 ) "*" "*"     " "     "*"  " "   " " " "       "*"     "*"     
## 13  ( 1 ) "*" "*"     " "     "*"  " "   " " "*"       "*"     " "     
## 14  ( 1 ) "*" "*"     " "     "*"  " "   " " "*"       "*"     " "     
## 15  ( 1 ) "*" "*"     " "     "*"  " "   " " "*"       "*"     "*"     
## 16  ( 1 ) "*" "*"     " "     "*"  " "   " " "*"       "*"     "*"     
## 17  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     " "     
## 18  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     "*"     
## 19  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 20  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 21  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 22  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 23  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 24  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 25  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 26  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 27  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 28  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 29  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 30  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 31  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 32  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 33  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 34  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 35  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
##           season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 2  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 3  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 4  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 5  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 6  ( 1 )  " "      "*"      " "    " "    " "    " "    " "    " "    " "   
## 7  ( 1 )  " "      "*"      " "    " "    " "    " "    " "    " "    "*"   
## 8  ( 1 )  " "      "*"      " "    " "    " "    " "    " "    " "    "*"   
## 9  ( 1 )  " "      "*"      " "    " "    " "    " "    " "    " "    "*"   
## 10  ( 1 ) "*"      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 11  ( 1 ) "*"      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 12  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 13  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 14  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 15  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 16  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 17  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 18  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 19  ( 1 ) " "      "*"      " "    " "    " "    " "    " "    "*"    "*"   
## 20  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 21  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 22  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 23  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 24  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 25  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 26  ( 1 ) " "      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 27  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 28  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 29  ( 1 ) " "      "*"      "*"    " "    "*"    "*"    "*"    "*"    "*"   
## 30  ( 1 ) " "      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 31  ( 1 ) " "      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 32  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 33  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 34  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 35  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
##           mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 2  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 3  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 4  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 5  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 6  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 7  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 8  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 9  ( 1 )  " "    "*"    " "     " "     " "     " "     " "     " "     " "    
## 10  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 11  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 12  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 13  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 14  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 15  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 16  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 17  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 18  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 19  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 20  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 21  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 22  ( 1 ) "*"    " "    " "     "*"     "*"     " "     " "     " "     " "    
## 23  ( 1 ) "*"    " "    " "     "*"     "*"     " "     " "     " "     " "    
## 24  ( 1 ) "*"    " "    " "     "*"     " "     " "     " "     " "     " "    
## 25  ( 1 ) "*"    " "    " "     "*"     " "     " "     " "     " "     " "    
## 26  ( 1 ) "*"    " "    " "     "*"     "*"     " "     " "     "*"     " "    
## 27  ( 1 ) "*"    " "    " "     "*"     "*"     " "     " "     "*"     " "    
## 28  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     " "     "*"     " "    
## 29  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     " "     "*"     " "    
## 30  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     " "     "*"     " "    
## 31  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     " "     "*"     "*"    
## 32  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     " "     "*"     "*"    
## 33  ( 1 ) "*"    "*"    " "     "*"     " "     " "     " "     "*"     "*"    
## 34  ( 1 ) "*"    "*"    " "     "*"     " "     "*"     " "     "*"     "*"    
## 35  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
##           wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2
## 1  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 2  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 3  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 4  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 5  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 6  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 7  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 8  ( 1 )  " "     " "     " "          " "          "*"          " "   " "   
## 9  ( 1 )  " "     " "     " "          " "          "*"          " "   " "   
## 10  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 11  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 12  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 13  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 14  ( 1 ) " "     " "     " "          "*"          "*"          " "   " "   
## 15  ( 1 ) " "     " "     " "          "*"          "*"          " "   " "   
## 16  ( 1 ) " "     " "     " "          "*"          "*"          " "   " "   
## 17  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 18  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 19  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 20  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 21  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 22  ( 1 ) " "     " "     " "          "*"          "*"          "*"   "*"   
## 23  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 24  ( 1 ) "*"     "*"     " "          "*"          "*"          "*"   "*"   
## 25  ( 1 ) "*"     "*"     " "          "*"          "*"          "*"   "*"   
## 26  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 27  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 28  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 29  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 30  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 31  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 32  ( 1 ) "*"     " "     " "          "*"          "*"          "*"   "*"   
## 33  ( 1 ) "*"     "*"     "*"          "*"          "*"          "*"   "*"   
## 34  ( 1 ) "*"     "*"     "*"          "*"          "*"          "*"   "*"   
## 35  ( 1 ) " "     " "     "*"          "*"          "*"          "*"   "*"   
##           hum2 windspeed2 temp_dif_s
## 1  ( 1 )  " "  " "        " "       
## 2  ( 1 )  " "  " "        " "       
## 3  ( 1 )  " "  " "        " "       
## 4  ( 1 )  "*"  " "        " "       
## 5  ( 1 )  "*"  " "        " "       
## 6  ( 1 )  "*"  " "        "*"       
## 7  ( 1 )  "*"  " "        "*"       
## 8  ( 1 )  "*"  " "        "*"       
## 9  ( 1 )  "*"  " "        "*"       
## 10  ( 1 ) "*"  " "        "*"       
## 11  ( 1 ) "*"  " "        "*"       
## 12  ( 1 ) "*"  " "        "*"       
## 13  ( 1 ) "*"  "*"        "*"       
## 14  ( 1 ) "*"  "*"        "*"       
## 15  ( 1 ) "*"  "*"        "*"       
## 16  ( 1 ) "*"  "*"        "*"       
## 17  ( 1 ) "*"  "*"        "*"       
## 18  ( 1 ) "*"  "*"        "*"       
## 19  ( 1 ) "*"  "*"        "*"       
## 20  ( 1 ) "*"  "*"        "*"       
## 21  ( 1 ) "*"  "*"        "*"       
## 22  ( 1 ) "*"  "*"        "*"       
## 23  ( 1 ) "*"  "*"        "*"       
## 24  ( 1 ) "*"  "*"        "*"       
## 25  ( 1 ) "*"  "*"        "*"       
## 26  ( 1 ) "*"  "*"        "*"       
## 27  ( 1 ) "*"  "*"        "*"       
## 28  ( 1 ) "*"  "*"        "*"       
## 29  ( 1 ) "*"  "*"        "*"       
## 30  ( 1 ) "*"  "*"        "*"       
## 31  ( 1 ) "*"  "*"        "*"       
## 32  ( 1 ) "*"  "*"        "*"       
## 33  ( 1 ) "*"  "*"        "*"       
## 34  ( 1 ) "*"  "*"        "*"       
## 35  ( 1 ) "*"  "*"        "*"
summary(regfit.full)$which
##    (Intercept)    yr holiday workday  temp atemp   hum windspeed daytime
## 1         TRUE FALSE   FALSE   FALSE FALSE FALSE FALSE     FALSE    TRUE
## 2         TRUE FALSE   FALSE   FALSE  TRUE FALSE FALSE     FALSE    TRUE
## 3         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 4         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 5         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 6         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 7         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 8         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 9         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 10        TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 11        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 12        TRUE  TRUE    TRUE   FALSE  TRUE FALSE FALSE     FALSE    TRUE
## 13        TRUE  TRUE    TRUE   FALSE  TRUE FALSE FALSE      TRUE    TRUE
## 14        TRUE  TRUE    TRUE   FALSE  TRUE FALSE FALSE      TRUE    TRUE
## 15        TRUE  TRUE    TRUE   FALSE  TRUE FALSE FALSE      TRUE    TRUE
## 16        TRUE  TRUE    TRUE   FALSE  TRUE FALSE FALSE      TRUE    TRUE
## 17        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 18        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 19        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 20        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 21        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 22        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 23        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 24        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 25        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 26        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 27        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 28        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 29        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 30        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 31        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 32        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 33        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 34        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 35        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
##    season.1 season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 2     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 3     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 4     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 5      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 6     FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 7     FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 8     FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 9     FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 10    FALSE     TRUE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 11    FALSE     TRUE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 12     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 13    FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 14    FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 15     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 16     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 17    FALSE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 18     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 19     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 20     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 21     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 22     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 23     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 24     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 25     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 26     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 27     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 28     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 29     TRUE    FALSE     TRUE   TRUE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 30     TRUE    FALSE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 31     TRUE    FALSE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 32     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 33     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 34     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 35     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
##    mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 2   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 3   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 4   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 5   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 6   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 7   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 8   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 9   FALSE   TRUE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 10   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 11   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 12   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 13   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 14   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 15   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 16   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 17   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 18   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 19   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 20   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 21   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 22   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE   FALSE   FALSE   FALSE
## 23   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE   FALSE   FALSE   FALSE
## 24   TRUE  FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE   FALSE
## 25   TRUE  FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE   FALSE
## 26   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE   FALSE
## 27   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE   FALSE
## 28   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE   FALSE
## 29   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE   FALSE
## 30   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE   FALSE
## 31   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE    TRUE
## 32   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE   FALSE    TRUE    TRUE
## 33   TRUE   TRUE   FALSE    TRUE   FALSE   FALSE   FALSE    TRUE    TRUE
## 34   TRUE   TRUE   FALSE    TRUE   FALSE    TRUE   FALSE    TRUE    TRUE
## 35   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
##    wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2  hum2
## 1    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 2    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 3    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 4    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 5    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 6    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 7    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 8    FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 9    FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 10   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 11   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 12   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 13   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 14   FALSE   FALSE        FALSE         TRUE         TRUE FALSE  FALSE  TRUE
## 15   FALSE   FALSE        FALSE         TRUE         TRUE FALSE  FALSE  TRUE
## 16   FALSE   FALSE        FALSE         TRUE         TRUE FALSE  FALSE  TRUE
## 17   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 18   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 19   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 20   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 21   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 22   FALSE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 23    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 24    TRUE    TRUE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 25    TRUE    TRUE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 26    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 27    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 28    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 29    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 30    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 31    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 32    TRUE   FALSE        FALSE         TRUE         TRUE  TRUE   TRUE  TRUE
## 33    TRUE    TRUE         TRUE         TRUE         TRUE  TRUE   TRUE  TRUE
## 34    TRUE    TRUE         TRUE         TRUE         TRUE  TRUE   TRUE  TRUE
## 35   FALSE   FALSE         TRUE         TRUE         TRUE  TRUE   TRUE  TRUE
##    windspeed2 temp_dif_s
## 1       FALSE      FALSE
## 2       FALSE      FALSE
## 3       FALSE      FALSE
## 4       FALSE      FALSE
## 5       FALSE      FALSE
## 6       FALSE       TRUE
## 7       FALSE       TRUE
## 8       FALSE       TRUE
## 9       FALSE       TRUE
## 10      FALSE       TRUE
## 11      FALSE       TRUE
## 12      FALSE       TRUE
## 13       TRUE       TRUE
## 14       TRUE       TRUE
## 15       TRUE       TRUE
## 16       TRUE       TRUE
## 17       TRUE       TRUE
## 18       TRUE       TRUE
## 19       TRUE       TRUE
## 20       TRUE       TRUE
## 21       TRUE       TRUE
## 22       TRUE       TRUE
## 23       TRUE       TRUE
## 24       TRUE       TRUE
## 25       TRUE       TRUE
## 26       TRUE       TRUE
## 27       TRUE       TRUE
## 28       TRUE       TRUE
## 29       TRUE       TRUE
## 30       TRUE       TRUE
## 31       TRUE       TRUE
## 32       TRUE       TRUE
## 33       TRUE       TRUE
## 34       TRUE       TRUE
## 35       TRUE       TRUE
summary(regfit.full)$rsq
##  [1] 0.2571076 0.3709439 0.4281075 0.4546976 0.4647773 0.4719204 0.4754116
##  [8] 0.4774123 0.4788067 0.4799354 0.4808037 0.4814501 0.4823230 0.4829841
## [15] 0.4835621 0.4840786 0.4844385 0.4849411 0.4853609 0.4856316 0.4858562
## [22] 0.4861199 0.4861962 0.4862903 0.4863327 0.4863507 0.4863672 0.4863749
## [29] 0.4863866 0.4864017 0.4864043 0.4864045 0.4864046 0.4864047 0.4864047
plot(summary(regfit.full)$rsq)

par(mfrow=c(2,2))

max.rsq <- which.max(summary(regfit.full)$rsq)
max.rsq
## [1] 35
plot(summary(regfit.full)$rsq, xlab = "Number of Variables", 
     ylab ="R-squared")

plot(summary(regfit.full)$adjr2, xlab = "Number of Variables", 
     ylab ="Adj R-squared")
max.adjr2 <- which.max(summary(regfit.full)$adjr2)
max.adjr2
## [1] 25
points(max.adjr2,summary(regfit.full)$adjr2[25], col = "red", cex = 2, pch = 20)

plot(summary(regfit.full)$cp, xlab = "Number of Variables", 
     ylab ="Mallows Cp")
min.cp <- which.min(summary(regfit.full)$cp)
min.cp
## [1] 24
points(min.cp,summary(regfit.full)$cp[24], col = "blue", cex = 2, pch = 20)

plot(summary(regfit.full)$bic, xlab = "Number of Variables", 
     ylab ="Bayesian Info Crit")
min.bic <- which.min(summary(regfit.full)$bic)
min.bic
## [1] 19
points(min.bic,summary(regfit.full)$bic[19], col = "green", cex = 2, pch = 20)

coef.adjr2 <- coef(regfit.full, 25)
coef.adjr2
##  (Intercept)           yr      holiday      workday         temp        atemp 
##  -101.571574    80.897184   -21.673139     9.673813  -418.474009   806.762502 
##          hum    windspeed      daytime     season.1     season.3       mnth.4 
##    40.032519   162.982037   148.380556   -35.252856   -28.879797   -23.433975 
##       mnth.5       mnth.6       mnth.7       mnth.8      mnth.11 weathersit.1 
##   -17.313240   -50.024201   -72.662491   -42.391804   -12.488104    37.618949 
## weathersit.2        temp2       atemp2         hum2   windspeed2   temp_dif_s 
##    26.239432   584.653120  -684.347756  -156.119778  -325.586402    23.444120 
##      wkday.5      wkday.6 
##     5.614182    14.963727
coef.cp <- coef(regfit.full, 24)
coef.cp
##  (Intercept)           yr      holiday      workday         temp        atemp 
##   -89.629271    80.995139   -21.525907     9.614918  -405.012450   787.436736 
##    windspeed      daytime     season.1     season.3       mnth.4       mnth.5 
##   164.220487   148.230767   -35.326974   -28.610051   -23.577155   -16.837961 
##       mnth.6       mnth.7       mnth.8      mnth.11 weathersit.1 weathersit.2 
##   -49.594593   -72.398351   -41.915672   -12.480455    38.353633    27.044895 
##        temp2       atemp2         hum2   windspeed2   temp_dif_s      wkday.5 
##   562.214491  -655.904012  -124.659299  -330.287895    23.765395     5.683187 
##      wkday.6 
##    14.844124
coef.bic <- coef(regfit.full, 19)
coef.bic
## (Intercept)          yr     holiday        temp       atemp   windspeed 
##  -49.953936   80.680869  -31.312880 -395.143924  758.607067  146.365391 
##     daytime    season.1    season.3      mnth.6      mnth.7      mnth.8 
##  145.323851  -17.943035  -23.359776  -37.773794  -69.055197  -38.065430 
##     wkday.0       temp2      atemp2        hum2  windspeed2  temp_dif_s 
##   -8.491526  517.077788 -614.187685 -146.359165 -326.149128   35.533399 
##     wkday.5     wkday.6 
##    5.768492    5.952683
c(names(coef.adjr2))
##  [1] "(Intercept)"  "yr"           "holiday"      "workday"      "temp"        
##  [6] "atemp"        "hum"          "windspeed"    "daytime"      "season.1"    
## [11] "season.3"     "mnth.4"       "mnth.5"       "mnth.6"       "mnth.7"      
## [16] "mnth.8"       "mnth.11"      "weathersit.1" "weathersit.2" "temp2"       
## [21] "atemp2"       "hum2"         "windspeed2"   "temp_dif_s"   "wkday.5"     
## [26] "wkday.6"
c(names(coef.cp))
##  [1] "(Intercept)"  "yr"           "holiday"      "workday"      "temp"        
##  [6] "atemp"        "windspeed"    "daytime"      "season.1"     "season.3"    
## [11] "mnth.4"       "mnth.5"       "mnth.6"       "mnth.7"       "mnth.8"      
## [16] "mnth.11"      "weathersit.1" "weathersit.2" "temp2"        "atemp2"      
## [21] "hum2"         "windspeed2"   "temp_dif_s"   "wkday.5"      "wkday.6"
c(names(coef.bic))
##  [1] "(Intercept)" "yr"          "holiday"     "temp"        "atemp"      
##  [6] "windspeed"   "daytime"     "season.1"    "season.3"    "mnth.6"     
## [11] "mnth.7"      "mnth.8"      "wkday.0"     "temp2"       "atemp2"     
## [16] "hum2"        "windspeed2"  "temp_dif_s"  "wkday.5"     "wkday.6"
reg_adjr2 <- lm(cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + daytime + season.1 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + wkday.6, data = training_set)
summary(reg_adjr2)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + workday + temp + atemp + hum + 
##     windspeed + daytime + season.1 + season.3 + mnth.4 + mnth.5 + 
##     mnth.6 + mnth.7 + mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + 
##     temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + 
##     wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -369.21  -95.57  -17.93   66.51  558.99 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -89.082     22.519  -3.956 7.69e-05 ***
## yr             85.125      2.911  29.239  < 2e-16 ***
## holiday       -22.173      9.294  -2.386 0.017067 *  
## workday        10.887      4.268   2.551 0.010764 *  
## temp         -510.707    159.860  -3.195 0.001405 ** 
## atemp         918.220    179.964   5.102 3.43e-07 ***
## hum            14.370     49.183   0.292 0.770155    
## windspeed     138.190     32.704   4.225 2.41e-05 ***
## daytime       152.920      3.166  48.299  < 2e-16 ***
## season.1      -37.690      8.185  -4.605 4.19e-06 ***
## season.3      -21.411      6.117  -3.500 0.000467 ***
## mnth.4        -29.043      7.554  -3.845 0.000122 ***
## mnth.5        -14.671      8.106  -1.810 0.070343 .  
## mnth.6        -48.122      7.770  -6.193 6.16e-10 ***
## mnth.7        -81.436      8.002 -10.176  < 2e-16 ***
## mnth.8        -50.907      7.575  -6.721 1.92e-11 ***
## mnth.11       -15.046      6.176  -2.436 0.014864 *  
## weathersit.1   29.485      6.074   4.855 1.23e-06 ***
## weathersit.2   21.244      6.060   3.506 0.000458 ***
## temp2         636.570    145.646   4.371 1.25e-05 ***
## atemp2       -760.108    175.913  -4.321 1.57e-05 ***
## hum2         -146.530     39.294  -3.729 0.000193 ***
## windspeed2   -258.005     65.442  -3.943 8.13e-05 ***
## temp_dif_s     25.812      6.797   3.797 0.000147 ***
## wkday.5         4.060      4.324   0.939 0.347789    
## wkday.6        12.793      5.362   2.386 0.017066 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.3 on 8732 degrees of freedom
## Multiple R-squared:  0.4914, Adjusted R-squared:  0.4899 
## F-statistic: 337.4 on 25 and 8732 DF,  p-value: < 2.2e-16
reg_cp <- lm(cnt ~ yr + holiday + workday + temp + atemp + windspeed + daytime + season.1 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + temp2 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5  + wkday.6, data = training_set)
summary(reg_cp)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + workday + temp + atemp + windspeed + 
##     daytime + season.1 + season.3 + mnth.4 + mnth.5 + mnth.6 + 
##     mnth.7 + mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + 
##     temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + 
##     wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -368.75  -95.39  -17.93   66.43  559.09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -84.677     16.726  -5.062 4.22e-07 ***
## yr             85.144      2.910  29.255  < 2e-16 ***
## holiday       -22.128      9.292  -2.381 0.017269 *  
## workday        10.862      4.267   2.545 0.010930 *  
## temp         -504.905    158.614  -3.183 0.001462 ** 
## atemp         910.100    177.796   5.119 3.14e-07 ***
## windspeed     138.508     32.684   4.238 2.28e-05 ***
## daytime       152.871      3.161  48.354  < 2e-16 ***
## season.1      -37.711      8.185  -4.608 4.13e-06 ***
## season.3      -21.315      6.108  -3.490 0.000485 ***
## mnth.4        -29.115      7.550  -3.856 0.000116 ***
## mnth.5        -14.506      8.086  -1.794 0.072847 .  
## mnth.6        -47.993      7.757  -6.187 6.41e-10 ***
## mnth.7        -81.356      7.997 -10.173  < 2e-16 ***
## mnth.8        -50.748      7.555  -6.718 1.96e-11 ***
## mnth.11       -15.044      6.176  -2.436 0.014874 *  
## weathersit.1   29.702      6.027   4.928 8.46e-07 ***
## weathersit.2   21.488      6.002   3.580 0.000345 ***
## temp2         627.709    142.447   4.407 1.06e-05 ***
## atemp2       -748.826    171.614  -4.363 1.30e-05 ***
## hum2         -135.272      7.706 -17.553  < 2e-16 ***
## windspeed2   -259.534     65.229  -3.979 6.98e-05 ***
## temp_dif_s     25.929      6.785   3.821 0.000134 ***
## wkday.5         4.106      4.321   0.950 0.342012    
## wkday.6        12.744      5.359   2.378 0.017431 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.3 on 8733 degrees of freedom
## Multiple R-squared:  0.4914, Adjusted R-squared:   0.49 
## F-statistic: 351.5 on 24 and 8733 DF,  p-value: < 2.2e-16
reg_bic <- lm(cnt ~ yr + holiday + workday + temp + atemp + windspeed + daytime + season.1 + season.3 + mnth.6 + mnth.7 + mnth.8 + wkday.0 + temp2 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5  + wkday.6, data = training_set)
summary(reg_bic)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + workday + temp + atemp + windspeed + 
##     daytime + season.1 + season.3 + mnth.6 + mnth.7 + mnth.8 + 
##     wkday.0 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -372.06  -95.64  -18.17   66.55  565.46 
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -53.339     14.317  -3.726 0.000196 ***
## yr            85.088      2.914  29.199  < 2e-16 ***
## holiday      -36.392      9.280  -3.921 8.87e-05 ***
## workday       -2.797      4.269  -0.655 0.512283    
## temp        -486.514    157.857  -3.082 0.002063 ** 
## atemp        865.085    177.447   4.875 1.11e-06 ***
## windspeed    128.469     32.709   3.928 8.64e-05 ***
## daytime      150.558      3.118  48.291  < 2e-16 ***
## season.1     -17.786      5.753  -3.092 0.001996 ** 
## season.3     -16.488      5.901  -2.794 0.005217 ** 
## mnth.6       -35.842      6.281  -5.707 1.19e-08 ***
## mnth.7       -78.640      7.795 -10.088  < 2e-16 ***
## mnth.8       -47.199      7.401  -6.378 1.89e-10 ***
## wkday.0      -12.842      5.367  -2.393 0.016750 *  
## temp2        581.531    142.517   4.080 4.54e-05 ***
## atemp2      -696.286    171.387  -4.063 4.89e-05 ***
## hum2        -150.212      6.706 -22.399  < 2e-16 ***
## windspeed2  -267.376     65.313  -4.094 4.28e-05 ***
## temp_dif_s    38.635      4.579   8.438  < 2e-16 ***
## wkday.5        4.023      4.328   0.930 0.352616    
## wkday.6           NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.6 on 8738 degrees of freedom
## Multiple R-squared:  0.4888, Adjusted R-squared:  0.4877 
## F-statistic: 439.7 on 19 and 8738 DF,  p-value: < 2.2e-16
anova(reg_adjr2, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.3 + mnth.4 + mnth.5 + mnth.6 + 
##     mnth.7 + mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + 
##     temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + 
##     wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F Pr(>F)
## 1   8732 157433646                           
## 2   8722 157313762 10    119883 0.6647 0.7583
anova(reg_cp, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + workday + temp + atemp + windspeed + daytime + 
##     season.1 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + 
##     mnth.8 + mnth.11 + weathersit.1 + weathersit.2 + temp2 + 
##     atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq     F Pr(>F)
## 1   8733 157435185                          
## 2   8722 157313762 11    121423 0.612 0.8203
anova(reg_bic, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + workday + temp + atemp + windspeed + daytime + 
##     season.1 + season.3 + mnth.6 + mnth.7 + mnth.8 + wkday.0 + 
##     temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s + wkday.5 + 
##     wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1   8738 158231263                                  
## 2   8722 157313762 16    917501 3.1793 1.732e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

According to the p-value(all 3 are significant at the 95% level), the third model(min_bic) were selected because it has the smallest subset with a decent r square. The model is as good as the all in model.

# Q5.   Using the training data set from question 3, perform forward stepwise regression to pick a “good” model.  What model was selected and why?  Repeat for backward stepwise regression.  Is a “good” model in backward different from forward stepwise?  Explain.
regfit.fwd <- regsubsets(cnt ~ ., data = training_set, nvmax = 38, method = 'forward')
## Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in =
## force.in, : 2 linear dependencies found
## Reordering variables and trying again:
## Warning in rval$lopt[] <- rval$vorder[rval$lopt]: number of items to replace is
## not a multiple of replacement length
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(cnt ~ ., data = training_set, nvmax = 38, 
##     method = "forward")
## 37 Variables  (and intercept)
##              Forced in Forced out
## yr               FALSE      FALSE
## holiday          FALSE      FALSE
## workday          FALSE      FALSE
## temp             FALSE      FALSE
## atemp            FALSE      FALSE
## hum              FALSE      FALSE
## windspeed        FALSE      FALSE
## daytime          FALSE      FALSE
## season.1         FALSE      FALSE
## season.2         FALSE      FALSE
## season.3         FALSE      FALSE
## mnth.1           FALSE      FALSE
## mnth.2           FALSE      FALSE
## mnth.3           FALSE      FALSE
## mnth.4           FALSE      FALSE
## mnth.5           FALSE      FALSE
## mnth.6           FALSE      FALSE
## mnth.7           FALSE      FALSE
## mnth.8           FALSE      FALSE
## mnth.9           FALSE      FALSE
## mnth.10          FALSE      FALSE
## mnth.11          FALSE      FALSE
## wkday.0          FALSE      FALSE
## wkday.1          FALSE      FALSE
## wkday.2          FALSE      FALSE
## wkday.3          FALSE      FALSE
## wkday.4          FALSE      FALSE
## weathersit.1     FALSE      FALSE
## weathersit.2     FALSE      FALSE
## weathersit.3     FALSE      FALSE
## temp2            FALSE      FALSE
## atemp2           FALSE      FALSE
## hum2             FALSE      FALSE
## windspeed2       FALSE      FALSE
## temp_dif_s       FALSE      FALSE
## wkday.5          FALSE      FALSE
## wkday.6          FALSE      FALSE
## 1 subsets of each size up to 35
## Selection Algorithm: forward
##           yr  holiday workday temp atemp hum windspeed daytime season.1
## 1  ( 1 )  " " " "     " "     " "  " "   " " " "       "*"     " "     
## 2  ( 1 )  " " " "     " "     " "  "*"   " " " "       "*"     " "     
## 3  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 4  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 5  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 6  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 7  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 8  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 9  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 10  ( 1 ) "*" " "     " "     " "  "*"   " " " "       "*"     "*"     
## 11  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 12  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 13  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 14  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 15  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 16  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     "*"     
## 17  ( 1 ) "*" "*"     " "     "*"  "*"   " " " "       "*"     "*"     
## 18  ( 1 ) "*" "*"     " "     "*"  "*"   " " " "       "*"     "*"     
## 19  ( 1 ) "*" "*"     " "     "*"  "*"   " " " "       "*"     "*"     
## 20  ( 1 ) "*" "*"     " "     "*"  "*"   " " " "       "*"     "*"     
## 21  ( 1 ) "*" "*"     " "     "*"  "*"   " " " "       "*"     "*"     
## 22  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 23  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 24  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 25  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 26  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 27  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 28  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 29  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 30  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 31  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 32  ( 1 ) "*" "*"     " "     "*"  "*"   "*" "*"       "*"     "*"     
## 33  ( 1 ) "*" "*"     " "     "*"  "*"   "*" "*"       "*"     "*"     
## 34  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 35  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
##           season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 2  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 3  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 4  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 5  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 6  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    "*"   
## 7  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    "*"   
## 8  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    "*"   
## 9  ( 1 )  " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 10  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 11  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 12  ( 1 ) " "      " "      " "    " "    " "    "*"    " "    "*"    "*"   
## 13  ( 1 ) " "      " "      " "    " "    " "    "*"    " "    "*"    "*"   
## 14  ( 1 ) "*"      " "      " "    " "    " "    "*"    " "    "*"    "*"   
## 15  ( 1 ) "*"      " "      " "    " "    " "    "*"    " "    "*"    "*"   
## 16  ( 1 ) "*"      " "      " "    " "    " "    "*"    "*"    "*"    "*"   
## 17  ( 1 ) "*"      " "      " "    " "    " "    "*"    "*"    "*"    "*"   
## 18  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 19  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 20  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 21  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 22  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 23  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 24  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 25  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 26  ( 1 ) "*"      "*"      " "    " "    " "    "*"    "*"    "*"    "*"   
## 27  ( 1 ) "*"      "*"      " "    " "    "*"    "*"    "*"    "*"    "*"   
## 28  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    "*"    "*"    "*"   
## 29  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    "*"    "*"    "*"   
## 30  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    "*"    "*"    "*"   
## 31  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 32  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 33  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 34  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 35  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
##           mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 2  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 3  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 4  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 5  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 6  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 7  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 8  ( 1 )  "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 9  ( 1 )  "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 10  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 11  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 12  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 13  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 14  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 15  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 16  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 17  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 18  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 19  ( 1 ) "*"    " "    " "     "*"     "*"     " "     " "     " "     " "    
## 20  ( 1 ) "*"    " "    " "     "*"     "*"     " "     "*"     " "     " "    
## 21  ( 1 ) "*"    " "    " "     "*"     "*"     " "     "*"     " "     " "    
## 22  ( 1 ) "*"    " "    " "     "*"     "*"     " "     "*"     " "     " "    
## 23  ( 1 ) "*"    " "    " "     "*"     "*"     " "     "*"     " "     " "    
## 24  ( 1 ) "*"    " "    " "     "*"     "*"     " "     "*"     " "     " "    
## 25  ( 1 ) "*"    "*"    " "     "*"     "*"     " "     "*"     " "     " "    
## 26  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 27  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 28  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 29  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 30  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     "*"    
## 31  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     "*"    
## 32  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     "*"    
## 33  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     " "     "*"    
## 34  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     " "     "*"    
## 35  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     " "     "*"    
##           wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2
## 1  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 2  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 3  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 4  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 5  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 6  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 7  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 8  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 9  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 10  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 11  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 12  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 13  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 14  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 15  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 16  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 17  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 18  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 19  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 20  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 21  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 22  ( 1 ) " "     " "     "*"          " "          "*"          " "   " "   
## 23  ( 1 ) " "     " "     "*"          " "          "*"          "*"   " "   
## 24  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 25  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 26  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 27  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 28  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 29  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 30  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 31  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 32  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 33  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 34  ( 1 ) "*"     " "     "*"          " "          "*"          "*"   "*"   
## 35  ( 1 ) "*"     " "     "*"          "*"          "*"          "*"   "*"   
##           hum2 windspeed2 temp_dif_s
## 1  ( 1 )  " "  " "        " "       
## 2  ( 1 )  " "  " "        " "       
## 3  ( 1 )  " "  " "        " "       
## 4  ( 1 )  "*"  " "        " "       
## 5  ( 1 )  "*"  " "        " "       
## 6  ( 1 )  "*"  " "        " "       
## 7  ( 1 )  "*"  " "        "*"       
## 8  ( 1 )  "*"  " "        "*"       
## 9  ( 1 )  "*"  " "        "*"       
## 10  ( 1 ) "*"  " "        "*"       
## 11  ( 1 ) "*"  " "        "*"       
## 12  ( 1 ) "*"  " "        "*"       
## 13  ( 1 ) "*"  " "        "*"       
## 14  ( 1 ) "*"  " "        "*"       
## 15  ( 1 ) "*"  " "        "*"       
## 16  ( 1 ) "*"  " "        "*"       
## 17  ( 1 ) "*"  " "        "*"       
## 18  ( 1 ) "*"  " "        "*"       
## 19  ( 1 ) "*"  " "        "*"       
## 20  ( 1 ) "*"  " "        "*"       
## 21  ( 1 ) "*"  "*"        "*"       
## 22  ( 1 ) "*"  "*"        "*"       
## 23  ( 1 ) "*"  "*"        "*"       
## 24  ( 1 ) "*"  "*"        "*"       
## 25  ( 1 ) "*"  "*"        "*"       
## 26  ( 1 ) "*"  "*"        "*"       
## 27  ( 1 ) "*"  "*"        "*"       
## 28  ( 1 ) "*"  "*"        "*"       
## 29  ( 1 ) "*"  "*"        "*"       
## 30  ( 1 ) "*"  "*"        "*"       
## 31  ( 1 ) "*"  "*"        "*"       
## 32  ( 1 ) "*"  "*"        "*"       
## 33  ( 1 ) "*"  "*"        "*"       
## 34  ( 1 ) "*"  "*"        "*"       
## 35  ( 1 ) "*"  "*"        "*"
sum.regfit_fwd <- summary(regfit.fwd)
sum.regfit_fwd$which
##    (Intercept)    yr holiday workday  temp atemp   hum windspeed daytime
## 1         TRUE FALSE   FALSE   FALSE FALSE FALSE FALSE     FALSE    TRUE
## 2         TRUE FALSE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 3         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 4         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 5         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 6         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 7         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 8         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 9         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 10        TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 11        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 12        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 13        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 14        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 15        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 16        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 17        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE     FALSE    TRUE
## 18        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE     FALSE    TRUE
## 19        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE     FALSE    TRUE
## 20        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE     FALSE    TRUE
## 21        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE     FALSE    TRUE
## 22        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 23        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 24        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 25        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 26        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 27        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 28        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 29        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 30        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 31        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 32        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE  TRUE      TRUE    TRUE
## 33        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE  TRUE      TRUE    TRUE
## 34        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 35        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
##    season.1 season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 2     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 3     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 4     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 5      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 6      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 7      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 8      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 9      TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 10     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 11     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 12     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 13     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 14     TRUE     TRUE    FALSE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 15     TRUE     TRUE    FALSE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 16     TRUE     TRUE    FALSE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 17     TRUE     TRUE    FALSE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 18     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 19     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 20     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 21     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 22     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 23     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 24     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 25     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 26     TRUE     TRUE     TRUE  FALSE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE
## 27     TRUE     TRUE     TRUE  FALSE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 28     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 29     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 30     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 31     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 32     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 33     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 34     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 35     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
##    mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 2   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 3   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 4   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 5   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 6   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 7   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 8    TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 9    TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 10   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 11   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 12   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 13   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 14   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 15   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 16   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 17   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 18   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 19   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE   FALSE   FALSE   FALSE
## 20   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 21   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 22   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 23   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 24   TRUE  FALSE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 25   TRUE   TRUE   FALSE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 26   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 27   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 28   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 29   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 30   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE    TRUE
## 31   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE    TRUE
## 32   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE    TRUE
## 33   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE    TRUE
## 34   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE    TRUE
## 35   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE    TRUE
##    wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2  hum2
## 1    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 2    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 3    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 4    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 5    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 6    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 7    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 8    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 9    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 10   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 11   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 12   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 13   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 14   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 15   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 16   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 17   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 18   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 19   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 20   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 21   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 22   FALSE   FALSE         TRUE        FALSE         TRUE FALSE  FALSE  TRUE
## 23   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE  FALSE  TRUE
## 24   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 25   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 26   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 27   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 28   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 29    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 30    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 31    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 32    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 33    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 34    TRUE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 35    TRUE   FALSE         TRUE         TRUE         TRUE  TRUE   TRUE  TRUE
##    windspeed2 temp_dif_s
## 1       FALSE      FALSE
## 2       FALSE      FALSE
## 3       FALSE      FALSE
## 4       FALSE      FALSE
## 5       FALSE      FALSE
## 6       FALSE      FALSE
## 7       FALSE       TRUE
## 8       FALSE       TRUE
## 9       FALSE       TRUE
## 10      FALSE       TRUE
## 11      FALSE       TRUE
## 12      FALSE       TRUE
## 13      FALSE       TRUE
## 14      FALSE       TRUE
## 15      FALSE       TRUE
## 16      FALSE       TRUE
## 17      FALSE       TRUE
## 18      FALSE       TRUE
## 19      FALSE       TRUE
## 20      FALSE       TRUE
## 21       TRUE       TRUE
## 22       TRUE       TRUE
## 23       TRUE       TRUE
## 24       TRUE       TRUE
## 25       TRUE       TRUE
## 26       TRUE       TRUE
## 27       TRUE       TRUE
## 28       TRUE       TRUE
## 29       TRUE       TRUE
## 30       TRUE       TRUE
## 31       TRUE       TRUE
## 32       TRUE       TRUE
## 33       TRUE       TRUE
## 34       TRUE       TRUE
## 35       TRUE       TRUE
par(mfrow=c(2,2))

max.rsq.fwd <- which.max(summary(regfit.fwd)$rsq)
max.rsq.fwd
## [1] 35
plot(summary(regfit.fwd)$rsq, xlab = "Number of Variables", 
     ylab ="R-squared")

plot(summary(regfit.fwd)$adjr2, xlab = "Number of Variables", 
     ylab ="Adj R-squared")
max.adjr2.fwd <- which.max(summary(regfit.fwd)$adjr2)
max.adjr2.fwd
## [1] 26
points(max.adjr2.fwd,summary(regfit.fwd)$adjr2[26], col = "red", cex = 2, pch = 20)

plot(summary(regfit.fwd)$cp, xlab = "Number of Variables", 
     ylab ="Mallows Cp")
min.cp.fwd <- which.min(summary(regfit.fwd)$cp)
min.cp.fwd 
## [1] 24
points(min.cp.fwd,summary(regfit.fwd)$cp[24], col = "blue", cex = 2, pch = 20)

plot(summary(regfit.fwd)$bic, xlab = "Number of Variables", 
     ylab ="Bayesian Info Crit")
min.bic.fwd <- which.min(summary(regfit.fwd)$bic)
min.bic.fwd
## [1] 11
points(min.bic.fwd,summary(regfit.fwd)$bic[11], col = "green", cex = 2, pch = 20)

coef.adjr2.fwd <- coef(regfit.fwd, 26)
coef.adjr2.fwd
##  (Intercept)           yr      holiday         temp        atemp    windspeed 
##  -26.0024675   84.6334937  -34.8799944  150.9272632  189.4846484  109.0394260 
##      daytime     season.1     season.2     season.3       mnth.4       mnth.5 
##  153.2636243  -37.0824316   -3.0421732  -26.4591592  -23.1607168   -7.9022598 
##       mnth.6       mnth.7       mnth.8       mnth.9      mnth.10      mnth.11 
##  -37.0218983  -66.0266490  -35.9363016   14.1172646    9.2632804   -8.9429303 
##      wkday.0      wkday.2 weathersit.3       atemp2         hum2   windspeed2 
##  -12.4530402   -6.0674327  -24.9058296  -22.2783922 -144.7559464 -241.0866029 
##   temp_dif_s      wkday.5      wkday.6 
##   21.4631095    2.3009453    0.4213261
coef.cp.fwd <- coef(regfit.fwd, 24)
coef.cp.fwd
##  (Intercept)           yr      holiday         temp        atemp    windspeed 
##  -31.0325478   84.5586915  -34.4785938  146.0292224  198.8927096  108.7293021 
##      daytime     season.1     season.2     season.3       mnth.4       mnth.5 
##  152.8692197  -34.2825491    0.9776745  -20.3574815  -27.8469073  -13.4490583 
##       mnth.6       mnth.7       mnth.8      mnth.11      wkday.0      wkday.2 
##  -45.0977553  -79.1457797  -48.7248929  -13.8612730  -12.0834342   -6.1241313 
## weathersit.3       atemp2         hum2   windspeed2   temp_dif_s      wkday.5 
##  -24.7993041  -34.7057867 -144.0049165 -241.0520876   28.1670619    2.5325986 
##      wkday.6 
##    0.7686559
coef.bic.fwd <- coef(regfit.fwd, 11)
coef.bic.fwd
## (Intercept)          yr     holiday       atemp     daytime    season.1 
##  -73.694557   92.845039  -31.274968   93.474369  170.411589  -12.279763 
##      mnth.6      mnth.7      mnth.8      atemp2  temp_dif_s     wkday.6 
##  -26.889048  -89.943847  -57.612889  247.570199   33.215973    5.407031
c(names(coef.adjr2.fwd))
##  [1] "(Intercept)"  "yr"           "holiday"      "temp"         "atemp"       
##  [6] "windspeed"    "daytime"      "season.1"     "season.2"     "season.3"    
## [11] "mnth.4"       "mnth.5"       "mnth.6"       "mnth.7"       "mnth.8"      
## [16] "mnth.9"       "mnth.10"      "mnth.11"      "wkday.0"      "wkday.2"     
## [21] "weathersit.3" "atemp2"       "hum2"         "windspeed2"   "temp_dif_s"  
## [26] "wkday.5"      "wkday.6"
c(names(coef.cp.fwd))
##  [1] "(Intercept)"  "yr"           "holiday"      "temp"         "atemp"       
##  [6] "windspeed"    "daytime"      "season.1"     "season.2"     "season.3"    
## [11] "mnth.4"       "mnth.5"       "mnth.6"       "mnth.7"       "mnth.8"      
## [16] "mnth.11"      "wkday.0"      "wkday.2"      "weathersit.3" "atemp2"      
## [21] "hum2"         "windspeed2"   "temp_dif_s"   "wkday.5"      "wkday.6"
c(names(coef.bic.fwd))
##  [1] "(Intercept)" "yr"          "holiday"     "atemp"       "daytime"    
##  [6] "season.1"    "mnth.6"      "mnth.7"      "mnth.8"      "atemp2"     
## [11] "temp_dif_s"  "wkday.6"
reg_adjr2_fwd <- lm(cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + mnth.11 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5  + wkday.6, data = training_set)
summary(reg_adjr2_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + temp + atemp + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + 
##     mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + mnth.11 + wkday.0 + 
##     wkday.2 + weathersit.3 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -373.74  -96.48  -18.93   67.36  553.39 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -26.0025    18.8195  -1.382 0.167107    
## yr             84.6335     2.9141  29.043  < 2e-16 ***
## holiday       -34.8800     8.7202  -4.000 6.39e-05 ***
## temp          150.9273    62.0430   2.433 0.015010 *  
## atemp         189.4846    76.8879   2.464 0.013742 *  
## windspeed     109.0394    32.1388   3.393 0.000695 ***
## daytime       153.2636     3.1385  48.834  < 2e-16 ***
## season.1      -37.0824    15.2719  -2.428 0.015197 *  
## season.2       -3.0422    14.1349  -0.215 0.829598    
## season.3      -26.4592    10.2942  -2.570 0.010178 *  
## mnth.4        -23.1607     9.0358  -2.563 0.010387 *  
## mnth.5         -7.9023     9.4669  -0.835 0.403898    
## mnth.6        -37.0219     9.8457  -3.760 0.000171 ***
## mnth.7        -66.0266    12.3979  -5.326 1.03e-07 ***
## mnth.8        -35.9363    11.9404  -3.010 0.002623 ** 
## mnth.9         14.1173    10.2264   1.380 0.167475    
## mnth.10         9.2633     8.4416   1.097 0.272527    
## mnth.11        -8.9429     7.7255  -1.158 0.247065    
## wkday.0       -12.4530     4.4257  -2.814 0.004907 ** 
## wkday.2        -6.0674     4.3920  -1.381 0.167173    
## weathersit.3  -24.9058     5.7579  -4.325 1.54e-05 ***
## atemp2        -22.2784    60.9379  -0.366 0.714678    
## hum2         -144.7559     7.3083 -19.807  < 2e-16 ***
## windspeed2   -241.0866    65.2696  -3.694 0.000222 ***
## temp_dif_s     21.4631    13.0142   1.649 0.099141 .  
## wkday.5         2.3009     4.4728   0.514 0.606960    
## wkday.6         0.4213     4.4245   0.095 0.924138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.4 on 8731 degrees of freedom
## Multiple R-squared:  0.4902, Adjusted R-squared:  0.4886 
## F-statistic: 322.8 on 26 and 8731 DF,  p-value: < 2.2e-16
reg_cp_fwd <- lm(cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.11 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5 + wkday.6, data = training_set)
summary(reg_cp_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + temp + atemp + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + 
##     mnth.6 + mnth.7 + mnth.8 + mnth.11 + wkday.0 + wkday.2 + 
##     weathersit.3 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -372.68  -96.25  -19.02   67.38  556.00 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -31.0325    18.4999  -1.677 0.093491 .  
## yr             84.5587     2.9136  29.022  < 2e-16 ***
## holiday       -34.4786     8.7116  -3.958 7.63e-05 ***
## temp          146.0292    61.6954   2.367 0.017958 *  
## atemp         198.8927    76.2949   2.607 0.009152 ** 
## windspeed     108.7293    32.1337   3.384 0.000718 ***
## daytime       152.8692     3.1269  48.889  < 2e-16 ***
## season.1      -34.2825    15.1269  -2.266 0.023456 *  
## season.2        0.9777    13.6736   0.072 0.943001    
## season.3      -20.3575     8.0249  -2.537 0.011205 *  
## mnth.4        -27.8469     8.4004  -3.315 0.000920 ***
## mnth.5        -13.4491     8.6028  -1.563 0.118011    
## mnth.6        -45.0978     7.9516  -5.672 1.46e-08 ***
## mnth.7        -79.1458     8.0176  -9.871  < 2e-16 ***
## mnth.8        -48.7249     7.5774  -6.430 1.34e-10 ***
## mnth.11       -13.8613     6.5829  -2.106 0.035263 *  
## wkday.0       -12.0834     4.4181  -2.735 0.006251 ** 
## wkday.2        -6.1241     4.3917  -1.394 0.163212    
## weathersit.3  -24.7993     5.7570  -4.308 1.67e-05 ***
## atemp2        -34.7058    60.1423  -0.577 0.563913    
## hum2         -144.0049     7.2847 -19.768  < 2e-16 ***
## windspeed2   -241.0521    65.2700  -3.693 0.000223 ***
## temp_dif_s     28.1671    12.1294   2.322 0.020244 *  
## wkday.5         2.5326     4.4700   0.567 0.571018    
## wkday.6         0.7687     4.4183   0.174 0.861892    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.4 on 8733 degrees of freedom
## Multiple R-squared:   0.49,  Adjusted R-squared:  0.4886 
## F-statistic: 349.6 on 24 and 8733 DF,  p-value: < 2.2e-16
reg_bic_fwd <- lm(cnt ~ yr + holiday + atemp + daytime + season.1 + mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.6, data = training_set)
summary(reg_bic_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + atemp + daytime + season.1 + 
##     mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.6, 
##     data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -381.52  -95.83  -21.40   69.15  575.72 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -73.695     13.289  -5.546 3.01e-08 ***
## yr            92.845      2.989  31.060  < 2e-16 ***
## holiday      -31.275      8.897  -3.515 0.000442 ***
## atemp         93.474     53.153   1.759 0.078684 .  
## daytime      170.412      3.088  55.187  < 2e-16 ***
## season.1     -12.280      5.842  -2.102 0.035598 *  
## mnth.6       -26.889      6.314  -4.259 2.08e-05 ***
## mnth.7       -89.944      7.175 -12.536  < 2e-16 ***
## mnth.8       -57.613      6.448  -8.935  < 2e-16 ***
## atemp2       247.570     57.220   4.327 1.53e-05 ***
## temp_dif_s    33.216      4.455   7.455 9.83e-14 ***
## wkday.6        5.407      4.252   1.272 0.203494    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 139.2 on 8746 degrees of freedom
## Multiple R-squared:  0.4526, Adjusted R-squared:  0.4519 
## F-statistic: 657.5 on 11 and 8746 DF,  p-value: < 2.2e-16
anova(reg_adjr2_fwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + 
##     season.2 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + 
##     mnth.8 + mnth.9 + mnth.10 + mnth.11 + wkday.0 + wkday.2 + 
##     weathersit.3 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1   8731 157808652                                
## 2   8722 157313762  9    494890 3.0487 0.001198 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(reg_cp_fwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + 
##     season.2 + season.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + 
##     mnth.8 + mnth.11 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + 
##     hum2 + windspeed2 + temp_dif_s + wkday.5 + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1   8733 157848152                                
## 2   8722 157313762 11    534390 2.6935 0.001835 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(reg_bic_fwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + atemp + daytime + season.1 + mnth.6 + mnth.7 + 
##     mnth.8 + atemp2 + temp_dif_s + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1   8746 169424655                                  
## 2   8722 157313762 24  12110892 27.978 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

According to the p-value(all 3 are significant at the 95% level), the third model(min_bic) were selected because it has the smallest subset with a decent r square. The model is just as good as the all in model.

regfit.bwd <- regsubsets(cnt ~ ., data = training_set, nvmax = 38, method = 'backward')
## Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in =
## force.in, : 2 linear dependencies found
## Reordering variables and trying again:
## Warning in rval$lopt[] <- rval$vorder[rval$lopt]: number of items to replace is
## not a multiple of replacement length
summary(regfit.bwd)
## Subset selection object
## Call: regsubsets.formula(cnt ~ ., data = training_set, nvmax = 38, 
##     method = "backward")
## 37 Variables  (and intercept)
##              Forced in Forced out
## yr               FALSE      FALSE
## holiday          FALSE      FALSE
## workday          FALSE      FALSE
## temp             FALSE      FALSE
## atemp            FALSE      FALSE
## hum              FALSE      FALSE
## windspeed        FALSE      FALSE
## daytime          FALSE      FALSE
## season.1         FALSE      FALSE
## season.2         FALSE      FALSE
## season.3         FALSE      FALSE
## mnth.1           FALSE      FALSE
## mnth.2           FALSE      FALSE
## mnth.3           FALSE      FALSE
## mnth.4           FALSE      FALSE
## mnth.5           FALSE      FALSE
## mnth.6           FALSE      FALSE
## mnth.7           FALSE      FALSE
## mnth.8           FALSE      FALSE
## mnth.9           FALSE      FALSE
## mnth.10          FALSE      FALSE
## mnth.11          FALSE      FALSE
## wkday.0          FALSE      FALSE
## wkday.1          FALSE      FALSE
## wkday.2          FALSE      FALSE
## wkday.3          FALSE      FALSE
## wkday.4          FALSE      FALSE
## weathersit.1     FALSE      FALSE
## weathersit.2     FALSE      FALSE
## weathersit.3     FALSE      FALSE
## temp2            FALSE      FALSE
## atemp2           FALSE      FALSE
## hum2             FALSE      FALSE
## windspeed2       FALSE      FALSE
## temp_dif_s       FALSE      FALSE
## wkday.5          FALSE      FALSE
## wkday.6          FALSE      FALSE
## 1 subsets of each size up to 35
## Selection Algorithm: backward
##           yr  holiday workday temp atemp hum windspeed daytime season.1
## 1  ( 1 )  " " " "     " "     " "  " "   " " " "       "*"     " "     
## 2  ( 1 )  " " " "     " "     " "  "*"   " " " "       "*"     " "     
## 3  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 4  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 5  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 6  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 7  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 8  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 9  ( 1 )  "*" " "     " "     " "  "*"   " " " "       "*"     " "     
## 10  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     " "     
## 11  ( 1 ) "*" "*"     " "     " "  "*"   " " " "       "*"     " "     
## 12  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     " "     
## 13  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     "*"     
## 14  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     "*"     
## 15  ( 1 ) "*" "*"     " "     " "  "*"   " " "*"       "*"     "*"     
## 16  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 17  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 18  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 19  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 20  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 21  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 22  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 23  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 24  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 25  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 26  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 27  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 28  ( 1 ) "*" "*"     " "     "*"  "*"   " " "*"       "*"     "*"     
## 29  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 30  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 31  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 32  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 33  ( 1 ) "*" "*"     "*"     "*"  "*"   " " "*"       "*"     "*"     
## 34  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
## 35  ( 1 ) "*" "*"     "*"     "*"  "*"   "*" "*"       "*"     "*"     
##           season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 2  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 3  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 4  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 5  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    " "   
## 6  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    "*"   
## 7  ( 1 )  " "      " "      " "    " "    " "    " "    " "    " "    "*"   
## 8  ( 1 )  " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 9  ( 1 )  " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 10  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 11  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 12  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 13  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 14  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 15  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 16  ( 1 ) " "      " "      " "    " "    " "    " "    " "    "*"    "*"   
## 17  ( 1 ) " "      " "      " "    " "    " "    "*"    " "    "*"    "*"   
## 18  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 19  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 20  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 21  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 22  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 23  ( 1 ) " "      "*"      " "    " "    " "    "*"    " "    "*"    "*"   
## 24  ( 1 ) " "      "*"      " "    " "    "*"    "*"    " "    "*"    "*"   
## 25  ( 1 ) " "      "*"      " "    " "    "*"    "*"    " "    "*"    "*"   
## 26  ( 1 ) "*"      "*"      " "    " "    "*"    "*"    " "    "*"    "*"   
## 27  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    " "    "*"    "*"   
## 28  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    " "    "*"    "*"   
## 29  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    " "    "*"    "*"   
## 30  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    " "    "*"    "*"   
## 31  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    " "    "*"    "*"   
## 32  ( 1 ) "*"      "*"      "*"    " "    "*"    "*"    "*"    "*"    "*"   
## 33  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 34  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
## 35  ( 1 ) "*"      "*"      "*"    "*"    "*"    "*"    "*"    "*"    "*"   
##           mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 2  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 3  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 4  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 5  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 6  ( 1 )  " "    " "    " "     " "     " "     " "     " "     " "     " "    
## 7  ( 1 )  "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 8  ( 1 )  "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 9  ( 1 )  "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 10  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 11  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 12  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 13  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 14  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 15  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 16  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 17  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 18  ( 1 ) "*"    " "    " "     " "     " "     " "     " "     " "     " "    
## 19  ( 1 ) "*"    " "    " "     " "     "*"     " "     " "     " "     " "    
## 20  ( 1 ) "*"    "*"    " "     " "     "*"     " "     " "     " "     " "    
## 21  ( 1 ) "*"    "*"    "*"     " "     "*"     " "     " "     " "     " "    
## 22  ( 1 ) "*"    "*"    "*"     " "     "*"     " "     " "     " "     " "    
## 23  ( 1 ) "*"    "*"    "*"     " "     "*"     " "     "*"     " "     " "    
## 24  ( 1 ) "*"    "*"    "*"     " "     "*"     " "     "*"     " "     " "    
## 25  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 26  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 27  ( 1 ) "*"    "*"    "*"     "*"     "*"     " "     "*"     " "     " "    
## 28  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     " "     " "    
## 29  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     " "     " "    
## 30  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     " "    
## 31  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
## 32  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
## 33  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
## 34  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
## 35  ( 1 ) "*"    "*"    "*"     "*"     "*"     "*"     "*"     "*"     "*"    
##           wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2
## 1  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 2  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 3  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 4  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 5  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 6  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 7  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 8  ( 1 )  " "     " "     " "          " "          " "          " "   " "   
## 9  ( 1 )  " "     " "     " "          " "          "*"          " "   " "   
## 10  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 11  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 12  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 13  ( 1 ) " "     " "     " "          " "          "*"          " "   " "   
## 14  ( 1 ) " "     " "     " "          " "          "*"          "*"   " "   
## 15  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 16  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 17  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 18  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 19  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 20  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 21  ( 1 ) " "     " "     " "          " "          "*"          "*"   "*"   
## 22  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 23  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 24  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 25  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 26  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 27  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 28  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 29  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 30  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 31  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 32  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 33  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 34  ( 1 ) " "     " "     "*"          " "          "*"          "*"   "*"   
## 35  ( 1 ) " "     " "     "*"          "*"          "*"          "*"   "*"   
##           hum2 windspeed2 temp_dif_s
## 1  ( 1 )  " "  " "        " "       
## 2  ( 1 )  " "  " "        " "       
## 3  ( 1 )  " "  " "        " "       
## 4  ( 1 )  "*"  " "        " "       
## 5  ( 1 )  "*"  " "        "*"       
## 6  ( 1 )  "*"  " "        "*"       
## 7  ( 1 )  "*"  " "        "*"       
## 8  ( 1 )  "*"  " "        "*"       
## 9  ( 1 )  "*"  " "        "*"       
## 10  ( 1 ) "*"  " "        "*"       
## 11  ( 1 ) "*"  "*"        "*"       
## 12  ( 1 ) "*"  "*"        "*"       
## 13  ( 1 ) "*"  "*"        "*"       
## 14  ( 1 ) "*"  "*"        "*"       
## 15  ( 1 ) "*"  "*"        "*"       
## 16  ( 1 ) "*"  "*"        "*"       
## 17  ( 1 ) "*"  "*"        "*"       
## 18  ( 1 ) "*"  "*"        "*"       
## 19  ( 1 ) "*"  "*"        "*"       
## 20  ( 1 ) "*"  "*"        "*"       
## 21  ( 1 ) "*"  "*"        "*"       
## 22  ( 1 ) "*"  "*"        "*"       
## 23  ( 1 ) "*"  "*"        "*"       
## 24  ( 1 ) "*"  "*"        "*"       
## 25  ( 1 ) "*"  "*"        "*"       
## 26  ( 1 ) "*"  "*"        "*"       
## 27  ( 1 ) "*"  "*"        "*"       
## 28  ( 1 ) "*"  "*"        "*"       
## 29  ( 1 ) "*"  "*"        "*"       
## 30  ( 1 ) "*"  "*"        "*"       
## 31  ( 1 ) "*"  "*"        "*"       
## 32  ( 1 ) "*"  "*"        "*"       
## 33  ( 1 ) "*"  "*"        "*"       
## 34  ( 1 ) "*"  "*"        "*"       
## 35  ( 1 ) "*"  "*"        "*"
sum.regfit_bwd <- summary(regfit.bwd)
sum.regfit_bwd$which
##    (Intercept)    yr holiday workday  temp atemp   hum windspeed daytime
## 1         TRUE FALSE   FALSE   FALSE FALSE FALSE FALSE     FALSE    TRUE
## 2         TRUE FALSE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 3         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 4         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 5         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 6         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 7         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 8         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 9         TRUE  TRUE   FALSE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 10        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 11        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE     FALSE    TRUE
## 12        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 13        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 14        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 15        TRUE  TRUE    TRUE   FALSE FALSE  TRUE FALSE      TRUE    TRUE
## 16        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 17        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 18        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 19        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 20        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 21        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 22        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 23        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 24        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 25        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 26        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 27        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 28        TRUE  TRUE    TRUE   FALSE  TRUE  TRUE FALSE      TRUE    TRUE
## 29        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 30        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 31        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 32        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 33        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE FALSE      TRUE    TRUE
## 34        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
## 35        TRUE  TRUE    TRUE    TRUE  TRUE  TRUE  TRUE      TRUE    TRUE
##    season.1 season.2 season.3 mnth.1 mnth.2 mnth.3 mnth.4 mnth.5 mnth.6 mnth.7
## 1     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 2     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 3     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 4     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 5     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
## 6     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 7     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE
## 8     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 9     FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 10    FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 11    FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 12    FALSE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 13     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 14     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 15     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 16     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE  FALSE  FALSE   TRUE   TRUE
## 17     TRUE    FALSE    FALSE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 18     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 19     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 20     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 21     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 22     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 23     TRUE    FALSE     TRUE  FALSE  FALSE  FALSE   TRUE  FALSE   TRUE   TRUE
## 24     TRUE    FALSE     TRUE  FALSE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 25     TRUE    FALSE     TRUE  FALSE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 26     TRUE     TRUE     TRUE  FALSE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 27     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 28     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 29     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 30     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 31     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE  FALSE   TRUE   TRUE
## 32     TRUE     TRUE     TRUE   TRUE  FALSE   TRUE   TRUE   TRUE   TRUE   TRUE
## 33     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 34     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
## 35     TRUE     TRUE     TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE   TRUE
##    mnth.8 mnth.9 mnth.10 mnth.11 wkday.0 wkday.1 wkday.2 wkday.3 wkday.4
## 1   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 2   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 3   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 4   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 5   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 6   FALSE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 7    TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 8    TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 9    TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 10   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 11   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 12   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 13   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 14   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 15   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 16   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 17   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 18   TRUE  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
## 19   TRUE  FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 20   TRUE   TRUE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 21   TRUE   TRUE    TRUE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 22   TRUE   TRUE    TRUE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE
## 23   TRUE   TRUE    TRUE   FALSE    TRUE   FALSE    TRUE   FALSE   FALSE
## 24   TRUE   TRUE    TRUE   FALSE    TRUE   FALSE    TRUE   FALSE   FALSE
## 25   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 26   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 27   TRUE   TRUE    TRUE    TRUE    TRUE   FALSE    TRUE   FALSE   FALSE
## 28   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE   FALSE
## 29   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE   FALSE
## 30   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE   FALSE
## 31   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
## 32   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
## 33   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
## 34   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
## 35   TRUE   TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
##    wkday.5 wkday.6 weathersit.1 weathersit.2 weathersit.3 temp2 atemp2  hum2
## 1    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 2    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 3    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE FALSE
## 4    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 5    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 6    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 7    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 8    FALSE   FALSE        FALSE        FALSE        FALSE FALSE  FALSE  TRUE
## 9    FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 10   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 11   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 12   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 13   FALSE   FALSE        FALSE        FALSE         TRUE FALSE  FALSE  TRUE
## 14   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE  FALSE  TRUE
## 15   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 16   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 17   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 18   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 19   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 20   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 21   FALSE   FALSE        FALSE        FALSE         TRUE  TRUE   TRUE  TRUE
## 22   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 23   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 24   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 25   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 26   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 27   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 28   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 29   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 30   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 31   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 32   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 33   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 34   FALSE   FALSE         TRUE        FALSE         TRUE  TRUE   TRUE  TRUE
## 35   FALSE   FALSE         TRUE         TRUE         TRUE  TRUE   TRUE  TRUE
##    windspeed2 temp_dif_s
## 1       FALSE      FALSE
## 2       FALSE      FALSE
## 3       FALSE      FALSE
## 4       FALSE      FALSE
## 5       FALSE       TRUE
## 6       FALSE       TRUE
## 7       FALSE       TRUE
## 8       FALSE       TRUE
## 9       FALSE       TRUE
## 10      FALSE       TRUE
## 11       TRUE       TRUE
## 12       TRUE       TRUE
## 13       TRUE       TRUE
## 14       TRUE       TRUE
## 15       TRUE       TRUE
## 16       TRUE       TRUE
## 17       TRUE       TRUE
## 18       TRUE       TRUE
## 19       TRUE       TRUE
## 20       TRUE       TRUE
## 21       TRUE       TRUE
## 22       TRUE       TRUE
## 23       TRUE       TRUE
## 24       TRUE       TRUE
## 25       TRUE       TRUE
## 26       TRUE       TRUE
## 27       TRUE       TRUE
## 28       TRUE       TRUE
## 29       TRUE       TRUE
## 30       TRUE       TRUE
## 31       TRUE       TRUE
## 32       TRUE       TRUE
## 33       TRUE       TRUE
## 34       TRUE       TRUE
## 35       TRUE       TRUE
par(mfrow=c(2,2))

max.rsq.bwd <- which.max(summary(regfit.bwd)$rsq)
max.rsq.bwd
## [1] 35
plot(summary(regfit.bwd)$rsq, xlab = "Number of Variables", 
     ylab ="R-squared")

plot(summary(regfit.bwd)$adjr2, xlab = "Number of Variables", 
     ylab ="Adj R-squared")
max.adjr2.bwd <- which.max(summary(regfit.bwd)$adjr2)
max.adjr2.bwd
## [1] 24
points(max.adjr2.bwd,summary(regfit.bwd)$adjr2[24], col = "red", cex = 2, pch = 20)

plot(summary(regfit.bwd)$cp, xlab = "Number of Variables", 
     ylab ="Mallows Cp")
min.cp.bwd <- which.min(summary(regfit.bwd)$cp)
min.cp.bwd 
## [1] 23
points(min.cp.bwd,summary(regfit.bwd)$cp[23], col = "blue", cex = 2, pch = 20)

plot(summary(regfit.bwd)$bic, xlab = "Number of Variables", 
     ylab ="Bayesian Info Crit")
min.bic.bwd <- which.min(summary(regfit.bwd)$bic)
min.bic.bwd
## [1] 13
points(min.bic.bwd,summary(regfit.bwd)$bic[13], col = "green", cex = 2, pch = 20)

coef.adjr2.bwd <- coef(regfit.bwd, 24)
coef.adjr2.bwd
##  (Intercept)           yr      holiday         temp        atemp    windspeed 
##  -31.7106353   84.8115410  -35.0742912  134.0860497  189.9749059  107.1429057 
##      daytime     season.1     season.3       mnth.3       mnth.4       mnth.6 
##  153.4948982  -29.1072826  -25.0266268    5.3255900  -16.9646222  -29.7975352 
##       mnth.7       mnth.8       mnth.9      mnth.10      wkday.0      wkday.2 
##  -59.3090251  -29.2726633   20.3371872   14.9172331  -12.5351795   -6.1904195 
## weathersit.3       atemp2         hum2   windspeed2   temp_dif_s      wkday.5 
##  -24.9675930  -19.6007165 -144.7155710 -237.4909692   25.2584314    2.2451093 
##      wkday.6 
##    0.4181552
coef.cp.bwd <- coef(regfit.bwd, 23)
coef.cp.bwd
##  (Intercept)           yr      holiday         temp        atemp    windspeed 
##  -31.8745841   84.7437997  -35.6591856  137.7591758  194.7862673  108.7681294 
##      daytime     season.1     season.3       mnth.4       mnth.6       mnth.7 
##  153.5210737  -29.3089522  -24.8229430  -18.2392771  -30.7748548  -59.5410585 
##       mnth.8       mnth.9      mnth.10      wkday.0      wkday.2 weathersit.3 
##  -29.6984335   20.0145554   15.0193751  -12.6178588   -6.1966902  -25.0213347 
##       atemp2         hum2   windspeed2   temp_dif_s      wkday.5      wkday.6 
##  -25.3769212 -144.9383713 -239.6893926   23.8909889    2.2591985    0.3408962
coef.bic.bwd <- coef(regfit.bwd, 13)
coef.bic.bwd
## (Intercept)          yr     holiday       atemp   windspeed     daytime 
##  -90.827599   92.994004  -30.297060  112.905876   59.894395  168.021770 
##    season.1      mnth.6      mnth.7      mnth.8      atemp2  temp_dif_s 
##  -12.287276  -25.889880  -87.594819  -56.518997  222.597799   34.661471 
##     wkday.5     wkday.6 
##   10.633810    6.882804
c(names(coef.adjr2.bwd))
##  [1] "(Intercept)"  "yr"           "holiday"      "temp"         "atemp"       
##  [6] "windspeed"    "daytime"      "season.1"     "season.3"     "mnth.3"      
## [11] "mnth.4"       "mnth.6"       "mnth.7"       "mnth.8"       "mnth.9"      
## [16] "mnth.10"      "wkday.0"      "wkday.2"      "weathersit.3" "atemp2"      
## [21] "hum2"         "windspeed2"   "temp_dif_s"   "wkday.5"      "wkday.6"
c(names(coef.cp.bwd))
##  [1] "(Intercept)"  "yr"           "holiday"      "temp"         "atemp"       
##  [6] "windspeed"    "daytime"      "season.1"     "season.3"     "mnth.4"      
## [11] "mnth.6"       "mnth.7"       "mnth.8"       "mnth.9"       "mnth.10"     
## [16] "wkday.0"      "wkday.2"      "weathersit.3" "atemp2"       "hum2"        
## [21] "windspeed2"   "temp_dif_s"   "wkday.5"      "wkday.6"
c(names(coef.bic.bwd))
##  [1] "(Intercept)" "yr"          "holiday"     "atemp"       "windspeed"  
##  [6] "daytime"     "season.1"    "mnth.6"      "mnth.7"      "mnth.8"     
## [11] "atemp2"      "temp_dif_s"  "wkday.5"     "wkday.6"
reg_adjr2_bwd <- lm(cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + season.3 + mnth.4 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + mnth.11 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5  + wkday.6, data = training_set)
summary(reg_adjr2_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + temp + atemp + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + 
##     mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + mnth.11 + wkday.0 + 
##     wkday.2 + weathersit.3 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -373.74  -96.48  -18.93   67.36  553.39 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -26.0025    18.8195  -1.382 0.167107    
## yr             84.6335     2.9141  29.043  < 2e-16 ***
## holiday       -34.8800     8.7202  -4.000 6.39e-05 ***
## temp          150.9273    62.0430   2.433 0.015010 *  
## atemp         189.4846    76.8879   2.464 0.013742 *  
## windspeed     109.0394    32.1388   3.393 0.000695 ***
## daytime       153.2636     3.1385  48.834  < 2e-16 ***
## season.1      -37.0824    15.2719  -2.428 0.015197 *  
## season.2       -3.0422    14.1349  -0.215 0.829598    
## season.3      -26.4592    10.2942  -2.570 0.010178 *  
## mnth.4        -23.1607     9.0358  -2.563 0.010387 *  
## mnth.5         -7.9023     9.4669  -0.835 0.403898    
## mnth.6        -37.0219     9.8457  -3.760 0.000171 ***
## mnth.7        -66.0266    12.3979  -5.326 1.03e-07 ***
## mnth.8        -35.9363    11.9404  -3.010 0.002623 ** 
## mnth.9         14.1173    10.2264   1.380 0.167475    
## mnth.10         9.2633     8.4416   1.097 0.272527    
## mnth.11        -8.9429     7.7255  -1.158 0.247065    
## wkday.0       -12.4530     4.4257  -2.814 0.004907 ** 
## wkday.2        -6.0674     4.3920  -1.381 0.167173    
## weathersit.3  -24.9058     5.7579  -4.325 1.54e-05 ***
## atemp2        -22.2784    60.9379  -0.366 0.714678    
## hum2         -144.7559     7.3083 -19.807  < 2e-16 ***
## windspeed2   -241.0866    65.2696  -3.694 0.000222 ***
## temp_dif_s     21.4631    13.0142   1.649 0.099141 .  
## wkday.5         2.3009     4.4728   0.514 0.606960    
## wkday.6         0.4213     4.4245   0.095 0.924138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.4 on 8731 degrees of freedom
## Multiple R-squared:  0.4902, Adjusted R-squared:  0.4886 
## F-statistic: 322.8 on 26 and 8731 DF,  p-value: < 2.2e-16
reg_cp_bwd <- lm(cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + season.3 + mnth.4 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5  + wkday.6, data = training_set)
summary(reg_cp_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + temp + atemp + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.4 + mnth.5 + 
##     mnth.6 + mnth.7 + mnth.8 + mnth.11 + wkday.0 + wkday.2 + 
##     weathersit.3 + atemp2 + hum2 + windspeed2 + temp_dif_s + 
##     wkday.5 + wkday.6, data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -372.68  -96.25  -19.02   67.38  556.00 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -31.0325    18.4999  -1.677 0.093491 .  
## yr             84.5587     2.9136  29.022  < 2e-16 ***
## holiday       -34.4786     8.7116  -3.958 7.63e-05 ***
## temp          146.0292    61.6954   2.367 0.017958 *  
## atemp         198.8927    76.2949   2.607 0.009152 ** 
## windspeed     108.7293    32.1337   3.384 0.000718 ***
## daytime       152.8692     3.1269  48.889  < 2e-16 ***
## season.1      -34.2825    15.1269  -2.266 0.023456 *  
## season.2        0.9777    13.6736   0.072 0.943001    
## season.3      -20.3575     8.0249  -2.537 0.011205 *  
## mnth.4        -27.8469     8.4004  -3.315 0.000920 ***
## mnth.5        -13.4491     8.6028  -1.563 0.118011    
## mnth.6        -45.0978     7.9516  -5.672 1.46e-08 ***
## mnth.7        -79.1458     8.0176  -9.871  < 2e-16 ***
## mnth.8        -48.7249     7.5774  -6.430 1.34e-10 ***
## mnth.11       -13.8613     6.5829  -2.106 0.035263 *  
## wkday.0       -12.0834     4.4181  -2.735 0.006251 ** 
## wkday.2        -6.1241     4.3917  -1.394 0.163212    
## weathersit.3  -24.7993     5.7570  -4.308 1.67e-05 ***
## atemp2        -34.7058    60.1423  -0.577 0.563913    
## hum2         -144.0049     7.2847 -19.768  < 2e-16 ***
## windspeed2   -241.0521    65.2700  -3.693 0.000223 ***
## temp_dif_s     28.1671    12.1294   2.322 0.020244 *  
## wkday.5         2.5326     4.4700   0.567 0.571018    
## wkday.6         0.7687     4.4183   0.174 0.861892    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 134.4 on 8733 degrees of freedom
## Multiple R-squared:   0.49,  Adjusted R-squared:  0.4886 
## F-statistic: 349.6 on 24 and 8733 DF,  p-value: < 2.2e-16
reg_bic_bwd <- lm(cnt ~ yr + holiday + atemp + windspeed + daytime + season.1 + mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.5 + wkday.6, data = training_set)
summary(reg_bic_fwd)
## 
## Call:
## lm(formula = cnt ~ yr + holiday + atemp + daytime + season.1 + 
##     mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.6, 
##     data = training_set)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -381.52  -95.83  -21.40   69.15  575.72 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -73.695     13.289  -5.546 3.01e-08 ***
## yr            92.845      2.989  31.060  < 2e-16 ***
## holiday      -31.275      8.897  -3.515 0.000442 ***
## atemp         93.474     53.153   1.759 0.078684 .  
## daytime      170.412      3.088  55.187  < 2e-16 ***
## season.1     -12.280      5.842  -2.102 0.035598 *  
## mnth.6       -26.889      6.314  -4.259 2.08e-05 ***
## mnth.7       -89.944      7.175 -12.536  < 2e-16 ***
## mnth.8       -57.613      6.448  -8.935  < 2e-16 ***
## atemp2       247.570     57.220   4.327 1.53e-05 ***
## temp_dif_s    33.216      4.455   7.455 9.83e-14 ***
## wkday.6        5.407      4.252   1.272 0.203494    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 139.2 on 8746 degrees of freedom
## Multiple R-squared:  0.4526, Adjusted R-squared:  0.4519 
## F-statistic: 657.5 on 11 and 8746 DF,  p-value: < 2.2e-16
anova(reg_adjr2_bwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + 
##     season.3 + mnth.4 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + 
##     mnth.11 + wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2 + 
##     windspeed2 + temp_dif_s + wkday.5 + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1   8733 157827603                                
## 2   8722 157313762 11    513840 2.5899 0.002754 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(reg_cp_bwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + temp + atemp + windspeed + daytime + season.1 + 
##     season.3 + mnth.4 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + mnth.10 + 
##     wkday.0 + wkday.2 + weathersit.3 + atemp2 + hum2 + windspeed2 + 
##     temp_dif_s + wkday.5 + wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)   
## 1   8734 157843482                               
## 2   8722 157313762 12    529719 2.4475 0.00351 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(reg_bic_bwd, reg_all)
## Analysis of Variance Table
## 
## Model 1: cnt ~ yr + holiday + atemp + windspeed + daytime + season.1 + 
##     mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.5 + 
##     wkday.6
## Model 2: cnt ~ yr + holiday + workday + temp + atemp + hum + windspeed + 
##     daytime + season.1 + season.2 + season.3 + mnth.1 + mnth.2 + 
##     mnth.3 + mnth.4 + mnth.5 + mnth.6 + mnth.7 + mnth.8 + mnth.9 + 
##     mnth.10 + mnth.11 + wkday.0 + wkday.1 + wkday.2 + wkday.3 + 
##     wkday.4 + wkday.5 + wkday.6 + weathersit.1 + weathersit.2 + 
##     weathersit.3 + temp2 + atemp2 + hum2 + windspeed2 + temp_dif_s
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1   8744 168878592                                  
## 2   8722 157313762 22  11564829 29.145 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

According to the p-value(all 3 are significant at the 95% level), the third model(min_bic) were selected because it has the smallest subset with a decent r square. The model is just as good as the all in model. Compared with forward stepwise, the backward F-stat is a little bit higher than the former one. Moreover, adding variable could cause other variables unsignificant so I prefer the reg_bic_bwd model.

# Q6.   Using the favorite model from questions 4 and 5 run LOO, 5-Fold and 10-Fold cross-validation.  Save the MSEs.  What was learned in this question?   

# LOO
glm.1 <- glm(cnt ~ yr + holiday + workday + temp + atemp + windspeed + daytime + season.1 + season.3 + mnth.6 + mnth.7 + mnth.8 + wkday.0 + temp2 + atemp2 + hum2  + windspeed2 + temp_dif_s + wkday.5, data = dbike3)
cv.err.1 <- cv.glm(dbike3, glm.1)
cv.err.1$delta[2]
## [1] 17055.53
MSE.LOOCV.1 <- cv.err.1$delta[2]
MSE.LOOCV.1
## [1] 17055.53
# 5-Fold
cv.err.5.1 <- cv.glm(dbike3, glm.1, K = 5)
MSE.5.1 <- cv.err.5.1$delta
MSE.5.1
## [1] 17050.47 17046.54
# 10-Fold
cv.err3.10.1 <- cv.glm(dbike3, glm.1, K = 10)
MSE.10.1 <- cv.err3.10.1$delta
MSE.10.1
## [1] 17049.78 17047.95

10 FOLD Validation has the smallest MSE and its the best cv method.

#LOO
glm.2 <- glm(cnt ~ yr + holiday + atemp + windspeed + daytime + season.1 + mnth.6 + mnth.7 + mnth.8 + atemp2 + temp_dif_s + wkday.5 + wkday.6, data = dbike3)
cv.err.2 <- cv.glm(dbike3, glm.2)
cv.err.2
## $call
## cv.glm(data = dbike3, glmfit = glm.2)
## 
## $K
## [1] 17379
## 
## $delta
## [1] 18223.67 18223.67
## 
## $seed
##   [1]       10403         188  1077329476   610674084 -2113862655 -1024038508
##   [7] -1955727596   306522696 -1841834735 -1461462276 -1198267463  -115386373
##  [13]   944868980 -2008551803   311709003 -1450835770 -2055625295 -1793800812
##  [19]  1192707820  -389273099   473851391  1022759321  1071796079  -247297840
##  [25]    77783733  1654790731 -2047622228   224977577   113692845 -1161120840
##  [31]  1444924786 -1161348212  -359223090  -101984981  -806279225  1613689450
##  [37]  1828680783   -53684575 -1922158355 -1797996641 -1492574976  -472849192
##  [43]  -552503328  1004151751  1543327191  -185289332  1494697437 -1002857496
##  [49] -2141259278 -2093532514 -1094395035   743138088  2054523443 -1193601487
##  [55]  -353552601   -61256919  -357698898  2032538668  1785777687 -1493969092
##  [61]  -564976998 -2124525243 -2089643739  1252501744  1062149369 -1407779565
##  [67]  1219441698 -1282659892   742098048  1241956367  -835487523  -727688927
##  [73]  -713630967   505244766   252159788 -1621732464  2031904011  1795896924
##  [79] -1802386131  -786257445  -793241775  -407528505 -1354983189 -1520360683
##  [85]   523238374 -1506690392     -528305  1829270956  1309754840  1051021841
##  [91]  -693961798 -1497386487 -1464337852  1702126483  1102851769  -685127170
##  [97]   180504283  1728093188 -1772164452   532282142  -246878231 -1925074985
## [103]  -539036012  1171211471 -1416561732  1825614530 -1076374333   847045038
## [109] -1555559405 -1364783250 -1316649987  1907448237  -285365992   722597175
## [115]  -689669668  1960174028  -962720654  -970603356  1623672471  -618342272
## [121]  1009451060  1434330415   693811645   241399535  -826072159    26525908
## [127]  1584584425   -57028893   953216754   884437345 -1343249146  -332045213
## [133]  -798065557    79798763 -1696041964  1178969177   -33312177  1267647748
## [139]  1865279697  -294923649  -541590171  1934423689 -1680161494  -271836478
## [145]   132673877  1083797415  1307340340  -253886819   584297700  1551036111
## [151]  1631481736  1283500852  -695486083   249040282  1200597677 -1695789750
## [157]  -652686274   635868204  1750772781 -1461436613 -1184092410 -1317102212
## [163]   976478847 -1484276327  1953562768  -636509520   124882705 -1812874828
## [169]  1195249611 -1776501508  1615507158   888681652  1565181919 -1087496730
## [175]   263439982 -1168782894   114425508  -656071998  -727884638  1032070957
## [181] -1837988082  1081714701   406175449  -837512301  -395894993 -1031544095
## [187]  -837791153  2046925696  1846795206  1587424393  -199707355  -998553418
## [193]   348709629  1532047799  -505887791  -461094850  1844851593 -1306423594
## [199]  1957177101 -1120877343  1512728990 -1832117585  1605776816   422290045
## [205]   236538340   986950046  1026523755 -1463828659 -1383604815 -1731624672
## [211] -1903337796   553203205   880914158   829916917  1862249219 -2145648553
## [217]   150524446  1165553616   503754771  1407947558   810185640 -1533277299
## [223]  1569438033   589187277   449159987  1285529065 -1644136525   -22749839
## [229]  -379276868 -1923280676 -1513838947   -87511175  1087982093  -587675762
## [235]  -218907112 -2100590177    77308977  1005701812 -2012742350 -1910761705
## [241]  1087088686  -607151256  -520832550  1930600201 -1940168919 -2097386337
## [247] -1732714241   -55315537  1933911696  -351228844  -862302407  -919405249
## [253]  1886369778  1230679334 -1347289563  1784183116   744412332  -282988538
## [259]    19181432 -1861933091  -150334637 -1375906825   516447398  2012951433
## [265]  1584367441  -230223540 -1614009579  1568520362   610542931  1545438442
## [271] -1660701935  1121424430  -507490400 -1008347445 -1784219826  -736962404
## [277] -2020852607  1181397596   794262469   -19432376 -1028391299  1854269808
## [283]  -738588265 -1510126324  -918242457   350486943  1645344210  -536034932
## [289]   451743868 -1236066661 -1301025880 -1975990371 -1790138667  -554492973
## [295] -1079928863  1379832325   142771289   617706074 -1154313923  1803438263
## [301]  -542980363  1466052474  1201536115   447149659  -927831453 -1041263763
## [307] -1116687005  1467599628 -1561278891  1138269197  1229779673  1369028317
## [313] -2040327621   524957556 -1823560736 -1832313911  -493810876  -387125669
## [319]   831304148 -1111976835   413639659  -595778928   545180157   967696075
## [325]  -523986749  1174579903   702345035  1207479528  -800774280  -421403974
## [331]   496509986  1044283336  -939337026  -445913576  1204324783  1074608542
## [337] -1645033085 -1322180686  1734292968  -636006016   860423944  -256262393
## [343]  -155914319  -449596615 -1823002420 -1745263304  1810257172     2508166
## [349]   538826985  1253901939 -1961331346  1762978090 -1048509624   870862166
## [355]  -106548744 -1665635851     5467222  1518271243   272757923   826313671
## [361] -1754421470   374696691   393732699   416305362  -388363438 -1596693236
## [367] -1597398980  -473825832   608427517    61374161   618186026   871872522
## [373]  -101513767  -885080934  1816542912   641935263   -19427057  -200742833
## [379]  1258668740  -890154910    82301451  1379047147   478369698  1436830792
## [385]   388945269   728281610   235892330  -524657515    22493484  -317070877
## [391]  1838610383   617752623  1475936135   802933242 -1878262318   952931513
## [397] -1918911172  1907248592  1676441680  1687275054 -1844049510  1834045982
## [403]   139129759 -1636481062   269650553   236605079 -1464145048   770247881
## [409]  1969513634  1105604101  1518169394 -1416330003 -1806798995  1037849203
## [415]   299618340 -1007246405 -2035954588   471430470  1049610937  -348827243
## [421]  1814369172  1861559080    -5447391  1559267135   359316882  1407897933
## [427] -2010387997  1004458851 -1280525372 -1552488842 -1001041596  1838290315
## [433] -1412559015  -520596204  1307604480  1407877553  1874722326   126248170
## [439]  1495653003  -566302557   957734259 -1807664167  1506484820  -697861000
## [445]  -262879044 -1892737954  1775333473  -655877485   470297310   693135422
## [451]   132266268  -909180779  1814274732  1961626325   741638901 -1419756139
## [457]    -2586224 -1039973510  1263614293  -841232599  1528835681 -1995135791
## [463]  -719103021  1481443304 -2078173262  1574854361  -598537822  1945217279
## [469]  1510581524  -792549424  1857911565   782741015  2000176956  -135303848
## [475] -1727552866 -1969342606  -871681520 -2055849053  -343838282  2076405853
## [481]  1890508505   942194319  -595817375  1699785984  1484701973   475019788
## [487]   526776263  -364276939  1551116960  -737847484   513456533 -1916078687
## [493]  -754757906 -1800430990 -1907949898  -489555301 -1450202349 -1000518994
## [499] -1307237042   510499872 -1581109461  1527577277  -197306381 -1679069329
## [505]  -734659816  1454026167 -1871049637  1495827866  -809100101   399052851
## [511] -1925719258  -476079451 -1207685906  1404933292 -2084485196  1122126510
## [517]  1136791615  -609681211  -564790100 -1638662656  1354020923 -1482059730
## [523]   -80699129  1246343519 -1516994903  -986337274 -1337034472 -1230924754
## [529]  -329193940   701428558  1863246696  1762599847   380568005 -1505325506
## [535]    37004038  -290846888 -1417755900   968276642  -398483073  -306735261
## [541] -1092222479  -417946810  2016211048   -62573466    82248431 -1103715450
## [547] -1940875928   525036004  -375483787   650172114  2113224256  1636711296
## [553] -2045176557  1349520503   529132299  1721451210 -1289167378   946861368
## [559]  1226038796  -612270371 -1485981270  1574160254 -1908403295    79300749
## [565]   663366490  -173981821  -853488270   424744569  -825312902 -2130361097
## [571]  -491192822   281032058   991591621  1216311504  1386545684   858519762
## [577]  -775142413 -2128726756   911221560  -983868978  -338696006  1941555682
## [583]  -873865379 -1010507598 -1770952451   995904649 -1584105203  1750285995
## [589]   807232470 -1774831438 -1561211460   987537179  1879025813 -1665673718
## [595] -1394941745 -1785621595  -712911641 -1101320161  1045268158  1022178336
## [601]  -758210068 -2046339890   289612721  1004116597 -1586549258  -353064300
## [607]  -800472687  -466628922   744810202  -705808878  -637213633  1043921561
## [613]  -435773576  1765287483  -152814525   822066372 -1188315444  -315106652
## [619]   762924632   827994557  1656735557  -606726250   153643118  1841629729
## [625] -1845649713  1140270962
#5-Fold
cv.err.2.5 <- cv.glm(dbike3, glm.2, K = 5)
cv.err.2.5
## $call
## cv.glm(data = dbike3, glmfit = glm.2, K = 5)
## 
## $K
## [1] 5
## 
## $delta
## [1] 18224.69 18221.25
## 
## $seed
##   [1]       10403          62  1774323545  -750303354  -896698764  1563263850
##   [7]  1243797079 -1041264708  -853462195  1125340654 -1381404098  -322088854
##  [13]  1416522295 -1718858230 -1857162506 -1974701556  -675392767    17278200
##  [19]  -329656659   401699641 -1346389945   285542777 -1233605153   955535774
##  [25]  -142111092  -411758768 -1320384991  -426191011   942423726  2146912952
##  [31]   794552699  1585164545  1397201962 -1756688484 -1730317197 -1340933670
##  [37] -1044611390   537892654   668384330   411498208  1920083463 -1933430240
##  [43]  1704802634  1856063144   294358645  -540965148  1010153990   -46640816
##  [49]  -319645509 -1722603818  1160049636 -1986059733 -1825034116  1864752803
##  [55]  1023726069       12865   123984582  -838830266  -772139563 -1414205266
##  [61]   204510559 -1820181988 -1251045074   356587195 -2098705526 -1240748841
##  [67]   470810256 -1402465581  1359116137 -1284971855 -1885815136  -687869157
##  [73]  -994367566   148492471    33049600    14943690   210777868  -839221791
##  [79] -1917181791   385591360  1123364569   186022385  1859738707    75937078
##  [85]   601731673 -1965268259  1901530262   887657099  1868646177   553100237
##  [91]   310979486 -1241965754  1415254543   803124159  -429010540  1598535078
##  [97]   862843872  2083652981 -1612036099  1647051717   816228134  2059661481
## [103] -1938681351  -523350676 -2016494513   477396105   -49462445  1895160989
## [109]  1508889177 -2086137003  -634512090  1297988670  1750554735  -872558053
## [115] -1564847355   198918427  1920901185 -1111888172 -1355419302 -1265426817
## [121]  1174578990 -2059781965  1623425039   558788717  -450462263   187379680
## [127]   195893644  1957975407  1719533924 -1497507044  1748817795  -654076705
## [133]  1053798547 -2042459687   390637361  1170567292  1057863296   681274528
## [139]  -616402735 -1076216315   173417282  1904261663  -382885192   555824983
## [145]   950222281  1084047833 -2003033231   -72650762  -131880524  1431531748
## [151] -1987713609   458901430   630129086 -1803465489  1781928002   615873208
## [157]  1206257047   866821852 -1339060595   923753756 -2139608107 -1149479864
## [163] -2144289771   629718118 -1707888551 -1042368937   805210662   -28662458
## [169] -1964799902 -1362005118  1830431837  -614932893   456225745     6097700
## [175]  -905688819   149300673  1238237996   422958334 -1843905671  1471991055
## [181] -1008050044 -1938726446   505852650  2128321435  -379670267  -813466869
## [187]  -181062584   313797234    87368562  1599011419 -1755458476  -184210159
## [193]  1187208365  -587567713  -883641305 -2140143876  2144181045   570668747
## [199]   882129221   799982305  -362880394  -722762037 -1883328611  -346165626
## [205] -1459215860  -109218154 -1170001309   554711280  -662454866  1006762874
## [211]  -261893831  1482523858  -936420556  -417013368 -1540613726  1236166057
## [217] -1519625851  1761823720 -1643268797 -1006334548  -599832996   996296097
## [223] -1495470856 -1704882184  -511139591 -1555780278   617559694  -464922780
## [229]     4678529  -656492814 -1013686276  -401703827 -1280763744 -1483792073
## [235]   -83243639   495122890  1651981590 -2115499055  1160359187  1781439335
## [241]  -945363746   385499259  1844713482  2091679943 -2068647985  -759502159
## [247] -1822558856 -1963604081 -1117767792  1691327389   -35159687  -732289092
## [253]  1445455117   973026462 -1271623798 -1356096032 -1112220946   697903833
## [259] -1590643303   389969898  1800258414  -403567849    93347879   709690675
## [265] -2099084818 -2010752389  1621236489  2034068021  1948267773 -1153106725
## [271] -1408179230  -695508241   374224222   848580906 -1838776756 -2042708317
## [277]   706595589  -198707768  1496874137   857234891  1444033676  1321549146
## [283]  1424659185 -2053921105  1320506057 -1757260970 -1529807021  -337405554
## [289]    92095228 -1447586911    80924242  -937869006  1993268386   540815461
## [295]   469076523   -78922235 -1067317875  -325344013 -2007550547  -645631150
## [301]   993639598  -581890568  1128685273 -1714831634  -294298398   338078166
## [307] -1771106433   173094809  1311212193     2256114   240221274  1922604501
## [313]   -20468703 -1192925675  -501094336 -1667231142  -553913449  1473359147
## [319] -2112095941 -1783486239  1654440797   158027179 -1208461688  -444487578
## [325]   312263200 -1635610143  2097406488 -1934482883 -1114862411 -1989036662
## [331]  -447158254   520158146 -1171139463   252234254  1307130124 -1998912441
## [337]   365358586  2065278943  1558661786 -1813237757  1560154338  2103570796
## [343]   -86622649  -383614295  2067439054  1120044033   445691959   755803185
## [349]   557875276 -1648515470 -1097057438   667935566  1417231168  -469416485
## [355]  1359126884  1904226326   -28168221  1981904690 -1129718358 -1989030763
## [361]    79652751 -1026068936   557716860   449562686  -188574074  -291182665
## [367]  1750909445  -150761710  -253677707  -240170482  1461988656  -674325004
## [373] -1969032971  -960787490  -215295102  -476194710 -1073160869   -21592413
## [379] -1374613247  1259269157  -264506774 -1630300403   687342410  -976510228
## [385]  1878344904  2006027969 -1634643292 -1598496091   849297350  1321614421
## [391]  1067558903    69771022 -1662669761 -2041540228 -1144821118   663301797
## [397]   168877230  -412208232 -2108054613 -1694706814 -1657913424  -894080791
## [403]   685837793   227053865   317379919 -1284378664 -1751973627   659007177
## [409]  1703565095  -888242520  1970136525   157906667 -1362462591   470933606
## [415] -1453685465  1791332284  1214795695   -75889292  1874486637   138533901
## [421]  -851522036 -2091437455 -2000260632   -42107814   622737382   942599119
## [427]  1979458493  -115388660 -1739160479  1492389607   885102339  1155508554
## [433]  1599771611    86996643  -941000362 -1833355975   248217036   147725622
## [439] -2066561174 -1878566028   117024617  -661053191 -1835896731 -1238358142
## [445]  1605400424 -2100168767 -1541199571 -1055162652    41488157  1642126809
## [451]  -428404327  2031158666   553653345  -299338511  2043637133 -1225224630
## [457]  -992594931   728820224   -22164494  2130830804   150712438   277284330
## [463]   374723104   149323076 -1456076762 -2069939835  -474470573 -2117964728
## [469] -1137752040  1927927062 -1689848230   683207260 -1100954069 -1500288527
## [475]  2138813103  1873263798  1116787528 -1621963068 -1304305547  1890749748
## [481] -1054847243  1058831581   397772015  2117911974  -667157784   126679275
## [487]   710601042   985036664   408751837  1100054339   975019520 -1262174209
## [493]   -23527368  -884791587  -389942628  1227871662   803961652    93579874
## [499]  -372575044 -1584469467  1319037438 -1814554823  1031463800  -673305073
## [505]  -463241897  1885246726  1309452887    14597324   349175101 -1347719210
## [511] -1890289737   -71313089  -900833298  -841185236  1864074446  1502587030
## [517]   341796597  -208071136  1498609145 -1119342411 -1147788544  1779882270
## [523] -1362083280  -715376019 -1955810653  1622008812   384984595  1390230552
## [529]  1953351585  1080295342 -1133800139   511484400    19753003 -1225491814
## [535] -1380255389  1809005801  1372579834   676971458   774291711   310393126
## [541]   584366003  1837116843 -1283077195  1641776732   295093188 -1879560568
## [547]  1496018178  1923098879   -92233970  1047237842  1819480825   228580593
## [553]  -292934816  1398398297  -592428359   406554562    54982065  1292395712
## [559] -1397941944  1915552313 -1020769838  1465730333  1908558847 -1576567297
## [565]  1126167097  1518225996   437845840  1353389618  1250529677  -222421744
## [571]   969003103  1211503658  1215502539 -1358754508   515675793  1221329051
## [577] -1599893953 -1538015525  1328330707   146306567 -1707204370  -405827209
## [583] -1677041303   986572336  -168159186   820203557 -1676732262 -1806001044
## [589]   244954426 -1606928739 -1556523865  -948938446 -1093111947   589166807
## [595]  1599477038   401629826   450528781  1873468251 -1299825221  1347350579
## [601] -1350344890   367855182 -1324643556 -1104375098  -280631100   323482185
## [607] -1627072821 -1374306106  -810519260  1097019371  1033634217  -691506589
## [613]  2054521617  1033327136  1798438678  1692948377   984720857  1573863114
## [619]  -143192010   803969613 -1413146512  -310796884 -1829979155 -1486854289
## [625] -1754589973   800067800
#10-Fold
cv.err.2.10 <- cv.glm(dbike3, glm.2, K = 10)
cv.err.2.10
## $call
## cv.glm(data = dbike3, glmfit = glm.2, K = 10)
## 
## $K
## [1] 10
## 
## $delta
## [1] 18225.40 18223.74
## 
## $seed
##   [1]       10403         222 -1638873570  -387408225  -709098861 -1219530179
##   [7]   259825355   521526429    70163002   402937516  1618270355  1354629715
##  [13]   557589680  1389850336  1754597544 -1809768622 -1104307794 -2120431162
##  [19]    29998290 -1725884968  -606656570 -2068841915  1581139865  2057778581
##  [25]  -335451167  1411481939 -1134113652   672071217  1848935272  1876858046
##  [31] -1547830443   651367705  -124040078 -1846613522  2142925036  1163333007
##  [37] -2028884711  1624004312   454847663  1107609472  -470508770   552258998
##  [43]   785424325  1334169435  1722029194  1235696736  1815727454 -2080266580
##  [49]  -262459824    52657963  1906439057   502832506   141724125 -2103501919
##  [55] -1727467829   289128610  1295602753  1830987823   149614702  1060849728
##  [61]  -995347429  -352949213   290564075 -1533968597  -547442165 -1250972667
##  [67]  -797775276   587796247 -1570247213  1409754733   190275911  1306694291
##  [73]  1720177025    59718487  -561925150  -490970166  1133411127  1850807595
##  [79]   716220507  1365514365 -1610438923  1520581174   663125742  1106521041
##  [85]  -370875841 -2027980676   801378065  -266216332 -1154983787 -1568260570
##  [91] -1495057418   675808420  1197248366  -573240230  -317211712   283126405
##  [97]   856019419   588066494  -197785962 -1328712538  1514836702  1127592375
## [103] -1090791025   645778935 -1281699324 -1069137349   305618260   366847618
## [109]   884112226  2057155786   -75571125  1314763227   722199079  -899946506
## [115]  2025715274  1163386883  1906112670  1576377152   404094204  1574283938
## [121]  -770108355 -1723444908 -1817319388  1702283327  1597232783   607450779
## [127] -1338959555  1722870646  1643478631  -732573590  -762556818 -1440541679
## [133] -1966885714  1973300811 -1188003900   856727990  1042871754  1932708168
## [139]  1856844242 -1631844781  1138581370  -104548955  -292870505 -1524063088
## [145]  1424577915   -29983737 -1876190195 -1542192605   -70225927  -829779658
## [151]  -618707543 -1586816649 -1500709070   854118102  1240375555   730808122
## [157]  2055856334 -1109495740  1409688795 -1465533329  2143615223   494952479
## [163] -1470618136   370111775  1788698258  -749716073  -729247767  1295685647
## [169]  1069788378 -1648006203 -1410655763  -457336444  -746962678  1347311827
## [175]  -464380953  -961470772 -1852483301  -571519788  1369616675 -1749115078
## [181] -1063444393  1188733301   502573672   325437331   620401367  1111456244
## [187]   629596856  1421730959 -1479222389   517156415  -718481210  -263774916
## [193]  -899609235  1565831417  2008438037  1987527010  -573169809  2043040113
## [199]  -250948734  -524274801  -968698384  1469127511 -1823909224   399252814
## [205]   267015266 -1079427647  1077762337 -1455208245  1720394613 -1048909240
## [211] -1043171199   806334553  -689179743   631193854  -140347399 -1764789832
## [217] -1122299500  2103888359    41712375   -28250652   343996794  2092733073
## [223] -2026987186 -1474168967  -817031879  1083617832   772878329  1689322152
## [229]  1706619481  1039337007  -161142892   797269070  1547690273   561667465
## [235]  1972444435   -24141902  1784822198 -1412574133 -1279213185   425266819
## [241] -2091713723 -1964900454   -33494310  1411145845  -988075253  1108674504
## [247]  -754234776  -862065777     1876671   653908338  1604765717    43528771
## [253]  -259286390   758141557   -43955057   440336181 -1000839298   363439377
## [259]  -107724302 -1807341748  -539176837    76070897  1811884968   835635522
## [265]  2119199096  1842312055   572759557 -1425598559 -1783517404  1053297020
## [271]  -265469152    99650110  -944725440  -565678493 -1513221073  -722061987
## [277] -2073370011  1503134431  -587872443  1211371724   356458467 -1293111055
## [283]   857966602   674179006  1467113678  1934108758  -885915112 -1322512743
## [289] -1202467416 -1133267288  1067494900 -2126175835  1437439431   720776351
## [295]   106769839   661325077  2071623032   828776432  -956791504    58198335
## [301] -1381222376   815974755  1226608383  -351462080   120859828 -1715633970
## [307]   755899319   249909050   904514760 -1300715638 -1366216465   114503143
## [313]  1384296911 -2115775617  1292774104 -1254628561  -955805707 -1737234440
## [319] -1908358368 -1036637938  2113528740   691883475   926411649 -2036045203
## [325]  1150266049  1506351603 -2084953475   260780666  1172269843   242172067
## [331]  -656174013   394801857   243031934   -53274637 -1937560113 -1361703352
## [337] -1754907495   133599453   378571610  1470708042 -1647786581  1747179491
## [343]  1460782878  -355769059  1408490646    63155373  2037719612 -1492552625
## [349]  -421696791 -1364436828  1606629212 -1781441713  -960838560   688759807
## [355]   184009022 -1900278490   820262993  1902952951  1370614843   410262907
## [361] -1220904399   350295367  1280674196  1640129213  1593665812  -330604831
## [367]  -493938555  -254486342   685468406 -1254868473 -1203886530 -1941724495
## [373] -1775514841  1980210495  1627591678  1490267194    -4912655 -1607157161
## [379] -1048676605   273669658   788536515 -1131810198   564951645 -1417687600
## [385]   815150118   523869193  -394588017  2104567425   541732007  1411445894
## [391]   907355611 -2072418865   -98463355  -366752206 -1993602813  -250605318
## [397] -1779002134   800266897  -696821224  2103256872  -100739697 -1125485866
## [403]  2032077718  1167318665   711471148  -425701790  1370193328 -1070848717
## [409] -1148382908 -1728679395  -586677272 -1299765901   189238888  1145562648
## [415]   884526797 -1647313463  1412174972   700782319 -2095069906  1337095394
## [421]  1377049550 -1709404270 -1482153350   -85329210   624522974  1426721432
## [427]  -331267265   902644290  -540760099  1170280679  -979473264 -1583378425
## [433]  -148735381 -1755313237 -1836214653  1659280859  2119268443   260828189
## [439]   591059962  -469657162   831466822  -998584617  1342889638  1308394899
## [445]   469805187   561459362 -1525841767  1770439518   632019638  1992707400
## [451]  -537602799 -1827914993  1097857522    99233468   461515234  1475649730
## [457] -1147368476  -869701495    59707873 -1745996142  2134312640  -421270057
## [463]  1938957023 -1099654531  1023305167   -34563586  -268747849 -1401826098
## [469]   139986531   644132466  1817366790 -2048184988  1455660421  -291214735
## [475]  -821326359   637288863    -3354052  -363097714  -982138899   540945692
## [481] -1331411914   328758088   397851112  1273674255   104564318 -2096300058
## [487] -2099650579  1270581905   -87642398 -1670825108    -2085178  1740225885
## [493]  1244869719  -113197081  -903045909  1984239889 -1181433750  -330556009
## [499] -1548718639   683745491  -594420018   128068903   874252509  -218471653
## [505] -1459243957  -595765367  1652355809   481503023  -159745396  1818847732
## [511]  1569368718  2028473409   240354172 -1558742033    89140592 -2119051284
## [517] -1525566627  -940942651  2079236548  -379086773  -844568572  1921522482
## [523]  1119888881 -1775289041 -1111093435  1040954802   389595527  1348186793
## [529]   935182248  -632942788   995900903  2082889916  1351171641 -1417801900
## [535]  2090468876 -1845802406   283443304    67205139 -1381448188  -259853323
## [541] -1509586005 -1247813524 -2043622336  -908699702   278438349 -1854011400
## [547] -1761860164  -448153228  1847442788 -1212913413  -446997095 -1568198983
## [553]  1065256927  1498616609 -1198188609  -193981870  1027821235  1285546296
## [559]   -47758324 -1973867260  -176235061  -996096376   676090465   396467015
## [565]   359087955   912210586   277847493  -914932164   391742581  -599871160
## [571]   471117082  2104920581   631247105  -283884095  -676808219  1510226542
## [577]  1352877463  2038269565 -1028999954   932740793  1391596077   365957622
## [583]  1755518523 -1269047241   904854264   681531331  1668064332 -1678806975
## [589]  -361441920   662010161  1632343597 -1185301534  -455948520 -1685533693
## [595]    28840357  -341321650  -707305480  1956380754  -230367488   633827207
## [601]   371427340  1459845889   448618438  -290430796  -728843844   454301053
## [607]  2105297095   501037432 -1051090099 -1035871593  -482597473 -1668955859
## [613]  -532641893 -1205078129   192342457  2051066610   233291461  -167377359
## [619]  1856871066   -10101400  1543293495  -481681182  1817063779 -1414919382
## [625] -1128195158 -1721812713

The MSEs of LOOCV, 5-FOLD, 10-FOLD are 18223.67, 18222.13 and 18222.67 respectively. The MSE scores are not very sparsed compared to the former model. However, we generally use 10 fold cross validation since it has the relatively low error and costs less than the LOOCV.

# Q7.   Using the training data from question 3, perform ridge regression to pick a “good” model. Explain how the model was chosen  
grid <- 10^seq(10, -2, length = 100)
grid
##   [1] 1.000000e+10 7.564633e+09 5.722368e+09 4.328761e+09 3.274549e+09
##   [6] 2.477076e+09 1.873817e+09 1.417474e+09 1.072267e+09 8.111308e+08
##  [11] 6.135907e+08 4.641589e+08 3.511192e+08 2.656088e+08 2.009233e+08
##  [16] 1.519911e+08 1.149757e+08 8.697490e+07 6.579332e+07 4.977024e+07
##  [21] 3.764936e+07 2.848036e+07 2.154435e+07 1.629751e+07 1.232847e+07
##  [26] 9.326033e+06 7.054802e+06 5.336699e+06 4.037017e+06 3.053856e+06
##  [31] 2.310130e+06 1.747528e+06 1.321941e+06 1.000000e+06 7.564633e+05
##  [36] 5.722368e+05 4.328761e+05 3.274549e+05 2.477076e+05 1.873817e+05
##  [41] 1.417474e+05 1.072267e+05 8.111308e+04 6.135907e+04 4.641589e+04
##  [46] 3.511192e+04 2.656088e+04 2.009233e+04 1.519911e+04 1.149757e+04
##  [51] 8.697490e+03 6.579332e+03 4.977024e+03 3.764936e+03 2.848036e+03
##  [56] 2.154435e+03 1.629751e+03 1.232847e+03 9.326033e+02 7.054802e+02
##  [61] 5.336699e+02 4.037017e+02 3.053856e+02 2.310130e+02 1.747528e+02
##  [66] 1.321941e+02 1.000000e+02 7.564633e+01 5.722368e+01 4.328761e+01
##  [71] 3.274549e+01 2.477076e+01 1.873817e+01 1.417474e+01 1.072267e+01
##  [76] 8.111308e+00 6.135907e+00 4.641589e+00 3.511192e+00 2.656088e+00
##  [81] 2.009233e+00 1.519911e+00 1.149757e+00 8.697490e-01 6.579332e-01
##  [86] 4.977024e-01 3.764936e-01 2.848036e-01 2.154435e-01 1.629751e-01
##  [91] 1.232847e-01 9.326033e-02 7.054802e-02 5.336699e-02 4.037017e-02
##  [96] 3.053856e-02 2.310130e-02 1.747528e-02 1.321941e-02 1.000000e-02
y <- dbike3$cnt
X <- model.matrix(cnt ~ ., dbike3)[, -1]  # Get rid of the intercept
set.seed(49204366)

train <- sample(1:nrow(X), nrow(X)/2)
X.train <- X[train,]
y.train <- y[train]
X.test <- X[-train,]
y.test <- y[-train]
dbike3.train <- dbike3[train,]
dbike3.test <- dbike3[-train,]
# alpha = 0 mean Ridge Regression (1 for LASSO)
ridge.mod <- glmnet(X.train, y.train, alpha = 0, 
                    lambda = grid, thresh = 1e-12)
summary(ridge.mod)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      3700   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         6   -none-    call   
## nobs         1   -none-    numeric
ridge.pred <- matrix(0, nrow = length(y.test), ncol = 100)
testerr <- matrix(0, nrow = 100, ncol = 1)
for (j in 1:100) {
  ridge.pred[,j] <- predict(ridge.mod, s = grid[j],
                            newx = X.test)
  testerr[j] <- mean((ridge.pred[,j] - y.test)^2)
}
plot(testerr, xlab = "Model No.",
     ylab = "Test Mean Square Error")

which.min(testerr)
## [1] 100
set.seed(49204366)
cv.out <- cv.glmnet(X.train, y.train, alpha = 0)
plot(cv.out)

names(cv.out)
##  [1] "lambda"     "cvm"        "cvsd"       "cvup"       "cvlo"      
##  [6] "nzero"      "call"       "name"       "glmnet.fit" "lambda.min"
## [11] "lambda.1se"
bestlam = cv.out$lambda.min
bestlam
## [1] 9.126328
log(bestlam)
## [1] 2.211163
#  Use the best value of lambda to estimate the test MSE on the validation data
ridge.pred <- predict(ridge.mod, s=bestlam, newx = X.test)
mean((ridge.pred-y.test)^2)
## [1] 17059.18
#  It turns out the best lambda is a lot smaller than the 1232.847 we had computed above.

#  Use the best lambda to compute its ridge regression on all the data
ridge.mod.best <- glmnet(X, y, alpha = 0, lambda = bestlam)
names(ridge.mod.best)
##  [1] "a0"        "beta"      "df"        "dim"       "lambda"    "dev.ratio"
##  [7] "nulldev"   "npasses"   "jerr"      "offset"    "call"      "nobs"
coef(ridge.mod.best)
## 38 x 1 sparse Matrix of class "dgCMatrix"
##                         s0
## (Intercept)     8.15210797
## yr             77.68944227
## holiday       -26.13567060
## workday         3.56753765
## temp           90.31993988
## atemp         106.62531728
## hum           -65.30995548
## windspeed      83.87283537
## daytime       141.78333787
## season.1      -28.49016862
## season.2        0.01444333
## season.3      -30.36349309
## mnth.1         -1.73449364
## mnth.2         -0.86772164
## mnth.3          5.31654397
## mnth.4        -10.22778272
## mnth.5         -1.89921605
## mnth.6        -31.22331035
## mnth.7        -53.92793058
## mnth.8        -23.01750790
## mnth.9         16.67514174
## mnth.10        11.50492829
## mnth.11        -1.61717875
## wkday.0        -7.27655768
## wkday.1        -1.94308949
## wkday.2        -1.49646692
## wkday.3         0.56908902
## wkday.4        -1.15483490
## wkday.5         4.15073151
## wkday.6         7.07037616
## weathersit.1    9.20767388
## weathersit.2   -0.18853426
## weathersit.3  -27.64045558
## temp2          57.33500040
## atemp2         47.93923147
## hum2          -75.44972450
## windspeed2   -195.25316549
## temp_dif_s     23.97463537
# Q8.   Repeat question 7 using LASSO.
lasso.mod <- glmnet(X.train, y.train , alpha = 1, 
                    lambda = grid)
plot(lasso.mod, label = TRUE)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values

plot(lasso.mod, xvar='lambda', label = TRUE)

lasso.pred <- matrix(0,nrow = length(y.test), ncol = 100)
validerr1 <- matrix(0, nrow = 100, ncol = 1)

for (j in 1:100) {
  lasso.pred[,j] <- predict(lasso.mod, s = grid[j], 
                            newx = X.test)
  validerr1[j] <- mean((lasso.pred[,j] - y.test)^2)
}

plot(validerr1, xlab = "Model Number",
     ylab = "Validation Error")

which.min(validerr1)
## [1] 100
lasso.mod$lambda[100]
## [1] 0.01
validerr1[100]
## [1] 16992.24
set.seed(49204366)
cv1.out <- cv.glmnet(X.train, y.train, alpha = 1)
plot(cv1.out)

names(cv1.out)
##  [1] "lambda"     "cvm"        "cvsd"       "cvup"       "cvlo"      
##  [6] "nzero"      "call"       "name"       "glmnet.fit" "lambda.min"
## [11] "lambda.1se"
bestlam = cv1.out$lambda.min
bestlam
## [1] 0.2599211
log(bestlam)
## [1] -1.347377
lasso.pred <- predict(lasso.mod, s=bestlam, newx = X.test)
mean((lasso.pred-y.test)^2)
## [1] 17020.57
lasso.mod.best <- glmnet(X, y, alpha = 1, lambda = bestlam)
names(lasso.mod.best)
##  [1] "a0"        "beta"      "df"        "dim"       "lambda"    "dev.ratio"
##  [7] "nulldev"   "npasses"   "jerr"      "offset"    "call"      "nobs"
coef(lasso.mod.best)
## 38 x 1 sparse Matrix of class "dgCMatrix"
##                        s0
## (Intercept)   -36.1109960
## yr             80.5405612
## holiday       -29.4174099
## workday         .        
## temp          136.5869660
## atemp         141.5007277
## hum            -0.6877709
## windspeed     110.9829246
## daytime       149.0015895
## season.1      -26.3657045
## season.2        .        
## season.3      -30.0594303
## mnth.1          0.1569174
## mnth.2          .        
## mnth.3          4.2921394
## mnth.4        -12.0434377
## mnth.5         -4.7375278
## mnth.6        -35.4762345
## mnth.7        -60.6265431
## mnth.8        -29.8075336
## mnth.9          8.4497962
## mnth.10         2.2608123
## mnth.11        -6.7068220
## wkday.0        -9.3489275
## wkday.1        -0.2904927
## wkday.2         .        
## wkday.3         1.0954148
## wkday.4         .        
## wkday.5         4.9240135
## wkday.6         4.8330053
## weathersit.1   10.5601782
## weathersit.2    .        
## weathersit.3  -26.1524538
## temp2          15.8857731
## atemp2          .        
## hum2         -126.0163664
## windspeed2   -257.8701579
## temp_dif_s     29.5328837
# Q9.   Based on models from questions 3-8, compute and display the test MSEs for each of the models estimated. What is learned from this? 
reg_all_pred <- predict(reg_all, test_set)
## Warning in predict.lm(reg_all, test_set): prediction from a rank-deficient fit
## may be misleading
RSS_Test <- sum((test_set$cnt - reg_all_pred)^2)
MSE_Test <- RSS_Test/8621
MSE_Test
## [1] 15928.44
# Q4
reg_bic_pred <- predict(reg_bic, test_set)
## Warning in predict.lm(reg_bic, test_set): prediction from a rank-deficient fit
## may be misleading
RSS_Test <- sum((test_set$cnt - reg_bic_pred)^2)
MSE_Test <- RSS_Test/8621
MSE_Test
## [1] 16021.78
reg_bic_fwd_pred <- predict(reg_bic_fwd, test_set)
RSS_Test <- sum((test_set$cnt - reg_bic_fwd_pred)^2)
MSE_Test <- RSS_Test/8621
MSE_Test
## [1] 17203.56
reg_bic_bwd_pred <- predict(reg_bic_bwd, test_set)
RSS_Test <- sum((test_set$cnt - reg_bic_bwd_pred)^2)
MSE_Test <- RSS_Test/8621
MSE_Test
## [1] 17156.15
# Q6 Forward min_bic
MSE.LOOCV.1
## [1] 17055.53
# 5-Fold
MSE.5.1
## [1] 17050.47 17046.54
# 10-Fold
MSE.10.1
## [1] 17049.78 17047.95
# Q6 Backward min_bic
cv.err.2
## $call
## cv.glm(data = dbike3, glmfit = glm.2)
## 
## $K
## [1] 17379
## 
## $delta
## [1] 18223.67 18223.67
## 
## $seed
##   [1]       10403         188  1077329476   610674084 -2113862655 -1024038508
##   [7] -1955727596   306522696 -1841834735 -1461462276 -1198267463  -115386373
##  [13]   944868980 -2008551803   311709003 -1450835770 -2055625295 -1793800812
##  [19]  1192707820  -389273099   473851391  1022759321  1071796079  -247297840
##  [25]    77783733  1654790731 -2047622228   224977577   113692845 -1161120840
##  [31]  1444924786 -1161348212  -359223090  -101984981  -806279225  1613689450
##  [37]  1828680783   -53684575 -1922158355 -1797996641 -1492574976  -472849192
##  [43]  -552503328  1004151751  1543327191  -185289332  1494697437 -1002857496
##  [49] -2141259278 -2093532514 -1094395035   743138088  2054523443 -1193601487
##  [55]  -353552601   -61256919  -357698898  2032538668  1785777687 -1493969092
##  [61]  -564976998 -2124525243 -2089643739  1252501744  1062149369 -1407779565
##  [67]  1219441698 -1282659892   742098048  1241956367  -835487523  -727688927
##  [73]  -713630967   505244766   252159788 -1621732464  2031904011  1795896924
##  [79] -1802386131  -786257445  -793241775  -407528505 -1354983189 -1520360683
##  [85]   523238374 -1506690392     -528305  1829270956  1309754840  1051021841
##  [91]  -693961798 -1497386487 -1464337852  1702126483  1102851769  -685127170
##  [97]   180504283  1728093188 -1772164452   532282142  -246878231 -1925074985
## [103]  -539036012  1171211471 -1416561732  1825614530 -1076374333   847045038
## [109] -1555559405 -1364783250 -1316649987  1907448237  -285365992   722597175
## [115]  -689669668  1960174028  -962720654  -970603356  1623672471  -618342272
## [121]  1009451060  1434330415   693811645   241399535  -826072159    26525908
## [127]  1584584425   -57028893   953216754   884437345 -1343249146  -332045213
## [133]  -798065557    79798763 -1696041964  1178969177   -33312177  1267647748
## [139]  1865279697  -294923649  -541590171  1934423689 -1680161494  -271836478
## [145]   132673877  1083797415  1307340340  -253886819   584297700  1551036111
## [151]  1631481736  1283500852  -695486083   249040282  1200597677 -1695789750
## [157]  -652686274   635868204  1750772781 -1461436613 -1184092410 -1317102212
## [163]   976478847 -1484276327  1953562768  -636509520   124882705 -1812874828
## [169]  1195249611 -1776501508  1615507158   888681652  1565181919 -1087496730
## [175]   263439982 -1168782894   114425508  -656071998  -727884638  1032070957
## [181] -1837988082  1081714701   406175449  -837512301  -395894993 -1031544095
## [187]  -837791153  2046925696  1846795206  1587424393  -199707355  -998553418
## [193]   348709629  1532047799  -505887791  -461094850  1844851593 -1306423594
## [199]  1957177101 -1120877343  1512728990 -1832117585  1605776816   422290045
## [205]   236538340   986950046  1026523755 -1463828659 -1383604815 -1731624672
## [211] -1903337796   553203205   880914158   829916917  1862249219 -2145648553
## [217]   150524446  1165553616   503754771  1407947558   810185640 -1533277299
## [223]  1569438033   589187277   449159987  1285529065 -1644136525   -22749839
## [229]  -379276868 -1923280676 -1513838947   -87511175  1087982093  -587675762
## [235]  -218907112 -2100590177    77308977  1005701812 -2012742350 -1910761705
## [241]  1087088686  -607151256  -520832550  1930600201 -1940168919 -2097386337
## [247] -1732714241   -55315537  1933911696  -351228844  -862302407  -919405249
## [253]  1886369778  1230679334 -1347289563  1784183116   744412332  -282988538
## [259]    19181432 -1861933091  -150334637 -1375906825   516447398  2012951433
## [265]  1584367441  -230223540 -1614009579  1568520362   610542931  1545438442
## [271] -1660701935  1121424430  -507490400 -1008347445 -1784219826  -736962404
## [277] -2020852607  1181397596   794262469   -19432376 -1028391299  1854269808
## [283]  -738588265 -1510126324  -918242457   350486943  1645344210  -536034932
## [289]   451743868 -1236066661 -1301025880 -1975990371 -1790138667  -554492973
## [295] -1079928863  1379832325   142771289   617706074 -1154313923  1803438263
## [301]  -542980363  1466052474  1201536115   447149659  -927831453 -1041263763
## [307] -1116687005  1467599628 -1561278891  1138269197  1229779673  1369028317
## [313] -2040327621   524957556 -1823560736 -1832313911  -493810876  -387125669
## [319]   831304148 -1111976835   413639659  -595778928   545180157   967696075
## [325]  -523986749  1174579903   702345035  1207479528  -800774280  -421403974
## [331]   496509986  1044283336  -939337026  -445913576  1204324783  1074608542
## [337] -1645033085 -1322180686  1734292968  -636006016   860423944  -256262393
## [343]  -155914319  -449596615 -1823002420 -1745263304  1810257172     2508166
## [349]   538826985  1253901939 -1961331346  1762978090 -1048509624   870862166
## [355]  -106548744 -1665635851     5467222  1518271243   272757923   826313671
## [361] -1754421470   374696691   393732699   416305362  -388363438 -1596693236
## [367] -1597398980  -473825832   608427517    61374161   618186026   871872522
## [373]  -101513767  -885080934  1816542912   641935263   -19427057  -200742833
## [379]  1258668740  -890154910    82301451  1379047147   478369698  1436830792
## [385]   388945269   728281610   235892330  -524657515    22493484  -317070877
## [391]  1838610383   617752623  1475936135   802933242 -1878262318   952931513
## [397] -1918911172  1907248592  1676441680  1687275054 -1844049510  1834045982
## [403]   139129759 -1636481062   269650553   236605079 -1464145048   770247881
## [409]  1969513634  1105604101  1518169394 -1416330003 -1806798995  1037849203
## [415]   299618340 -1007246405 -2035954588   471430470  1049610937  -348827243
## [421]  1814369172  1861559080    -5447391  1559267135   359316882  1407897933
## [427] -2010387997  1004458851 -1280525372 -1552488842 -1001041596  1838290315
## [433] -1412559015  -520596204  1307604480  1407877553  1874722326   126248170
## [439]  1495653003  -566302557   957734259 -1807664167  1506484820  -697861000
## [445]  -262879044 -1892737954  1775333473  -655877485   470297310   693135422
## [451]   132266268  -909180779  1814274732  1961626325   741638901 -1419756139
## [457]    -2586224 -1039973510  1263614293  -841232599  1528835681 -1995135791
## [463]  -719103021  1481443304 -2078173262  1574854361  -598537822  1945217279
## [469]  1510581524  -792549424  1857911565   782741015  2000176956  -135303848
## [475] -1727552866 -1969342606  -871681520 -2055849053  -343838282  2076405853
## [481]  1890508505   942194319  -595817375  1699785984  1484701973   475019788
## [487]   526776263  -364276939  1551116960  -737847484   513456533 -1916078687
## [493]  -754757906 -1800430990 -1907949898  -489555301 -1450202349 -1000518994
## [499] -1307237042   510499872 -1581109461  1527577277  -197306381 -1679069329
## [505]  -734659816  1454026167 -1871049637  1495827866  -809100101   399052851
## [511] -1925719258  -476079451 -1207685906  1404933292 -2084485196  1122126510
## [517]  1136791615  -609681211  -564790100 -1638662656  1354020923 -1482059730
## [523]   -80699129  1246343519 -1516994903  -986337274 -1337034472 -1230924754
## [529]  -329193940   701428558  1863246696  1762599847   380568005 -1505325506
## [535]    37004038  -290846888 -1417755900   968276642  -398483073  -306735261
## [541] -1092222479  -417946810  2016211048   -62573466    82248431 -1103715450
## [547] -1940875928   525036004  -375483787   650172114  2113224256  1636711296
## [553] -2045176557  1349520503   529132299  1721451210 -1289167378   946861368
## [559]  1226038796  -612270371 -1485981270  1574160254 -1908403295    79300749
## [565]   663366490  -173981821  -853488270   424744569  -825312902 -2130361097
## [571]  -491192822   281032058   991591621  1216311504  1386545684   858519762
## [577]  -775142413 -2128726756   911221560  -983868978  -338696006  1941555682
## [583]  -873865379 -1010507598 -1770952451   995904649 -1584105203  1750285995
## [589]   807232470 -1774831438 -1561211460   987537179  1879025813 -1665673718
## [595] -1394941745 -1785621595  -712911641 -1101320161  1045268158  1022178336
## [601]  -758210068 -2046339890   289612721  1004116597 -1586549258  -353064300
## [607]  -800472687  -466628922   744810202  -705808878  -637213633  1043921561
## [613]  -435773576  1765287483  -152814525   822066372 -1188315444  -315106652
## [619]   762924632   827994557  1656735557  -606726250   153643118  1841629729
## [625] -1845649713  1140270962
# 5-Fold
cv.err.2.5
## $call
## cv.glm(data = dbike3, glmfit = glm.2, K = 5)
## 
## $K
## [1] 5
## 
## $delta
## [1] 18224.69 18221.25
## 
## $seed
##   [1]       10403          62  1774323545  -750303354  -896698764  1563263850
##   [7]  1243797079 -1041264708  -853462195  1125340654 -1381404098  -322088854
##  [13]  1416522295 -1718858230 -1857162506 -1974701556  -675392767    17278200
##  [19]  -329656659   401699641 -1346389945   285542777 -1233605153   955535774
##  [25]  -142111092  -411758768 -1320384991  -426191011   942423726  2146912952
##  [31]   794552699  1585164545  1397201962 -1756688484 -1730317197 -1340933670
##  [37] -1044611390   537892654   668384330   411498208  1920083463 -1933430240
##  [43]  1704802634  1856063144   294358645  -540965148  1010153990   -46640816
##  [49]  -319645509 -1722603818  1160049636 -1986059733 -1825034116  1864752803
##  [55]  1023726069       12865   123984582  -838830266  -772139563 -1414205266
##  [61]   204510559 -1820181988 -1251045074   356587195 -2098705526 -1240748841
##  [67]   470810256 -1402465581  1359116137 -1284971855 -1885815136  -687869157
##  [73]  -994367566   148492471    33049600    14943690   210777868  -839221791
##  [79] -1917181791   385591360  1123364569   186022385  1859738707    75937078
##  [85]   601731673 -1965268259  1901530262   887657099  1868646177   553100237
##  [91]   310979486 -1241965754  1415254543   803124159  -429010540  1598535078
##  [97]   862843872  2083652981 -1612036099  1647051717   816228134  2059661481
## [103] -1938681351  -523350676 -2016494513   477396105   -49462445  1895160989
## [109]  1508889177 -2086137003  -634512090  1297988670  1750554735  -872558053
## [115] -1564847355   198918427  1920901185 -1111888172 -1355419302 -1265426817
## [121]  1174578990 -2059781965  1623425039   558788717  -450462263   187379680
## [127]   195893644  1957975407  1719533924 -1497507044  1748817795  -654076705
## [133]  1053798547 -2042459687   390637361  1170567292  1057863296   681274528
## [139]  -616402735 -1076216315   173417282  1904261663  -382885192   555824983
## [145]   950222281  1084047833 -2003033231   -72650762  -131880524  1431531748
## [151] -1987713609   458901430   630129086 -1803465489  1781928002   615873208
## [157]  1206257047   866821852 -1339060595   923753756 -2139608107 -1149479864
## [163] -2144289771   629718118 -1707888551 -1042368937   805210662   -28662458
## [169] -1964799902 -1362005118  1830431837  -614932893   456225745     6097700
## [175]  -905688819   149300673  1238237996   422958334 -1843905671  1471991055
## [181] -1008050044 -1938726446   505852650  2128321435  -379670267  -813466869
## [187]  -181062584   313797234    87368562  1599011419 -1755458476  -184210159
## [193]  1187208365  -587567713  -883641305 -2140143876  2144181045   570668747
## [199]   882129221   799982305  -362880394  -722762037 -1883328611  -346165626
## [205] -1459215860  -109218154 -1170001309   554711280  -662454866  1006762874
## [211]  -261893831  1482523858  -936420556  -417013368 -1540613726  1236166057
## [217] -1519625851  1761823720 -1643268797 -1006334548  -599832996   996296097
## [223] -1495470856 -1704882184  -511139591 -1555780278   617559694  -464922780
## [229]     4678529  -656492814 -1013686276  -401703827 -1280763744 -1483792073
## [235]   -83243639   495122890  1651981590 -2115499055  1160359187  1781439335
## [241]  -945363746   385499259  1844713482  2091679943 -2068647985  -759502159
## [247] -1822558856 -1963604081 -1117767792  1691327389   -35159687  -732289092
## [253]  1445455117   973026462 -1271623798 -1356096032 -1112220946   697903833
## [259] -1590643303   389969898  1800258414  -403567849    93347879   709690675
## [265] -2099084818 -2010752389  1621236489  2034068021  1948267773 -1153106725
## [271] -1408179230  -695508241   374224222   848580906 -1838776756 -2042708317
## [277]   706595589  -198707768  1496874137   857234891  1444033676  1321549146
## [283]  1424659185 -2053921105  1320506057 -1757260970 -1529807021  -337405554
## [289]    92095228 -1447586911    80924242  -937869006  1993268386   540815461
## [295]   469076523   -78922235 -1067317875  -325344013 -2007550547  -645631150
## [301]   993639598  -581890568  1128685273 -1714831634  -294298398   338078166
## [307] -1771106433   173094809  1311212193     2256114   240221274  1922604501
## [313]   -20468703 -1192925675  -501094336 -1667231142  -553913449  1473359147
## [319] -2112095941 -1783486239  1654440797   158027179 -1208461688  -444487578
## [325]   312263200 -1635610143  2097406488 -1934482883 -1114862411 -1989036662
## [331]  -447158254   520158146 -1171139463   252234254  1307130124 -1998912441
## [337]   365358586  2065278943  1558661786 -1813237757  1560154338  2103570796
## [343]   -86622649  -383614295  2067439054  1120044033   445691959   755803185
## [349]   557875276 -1648515470 -1097057438   667935566  1417231168  -469416485
## [355]  1359126884  1904226326   -28168221  1981904690 -1129718358 -1989030763
## [361]    79652751 -1026068936   557716860   449562686  -188574074  -291182665
## [367]  1750909445  -150761710  -253677707  -240170482  1461988656  -674325004
## [373] -1969032971  -960787490  -215295102  -476194710 -1073160869   -21592413
## [379] -1374613247  1259269157  -264506774 -1630300403   687342410  -976510228
## [385]  1878344904  2006027969 -1634643292 -1598496091   849297350  1321614421
## [391]  1067558903    69771022 -1662669761 -2041540228 -1144821118   663301797
## [397]   168877230  -412208232 -2108054613 -1694706814 -1657913424  -894080791
## [403]   685837793   227053865   317379919 -1284378664 -1751973627   659007177
## [409]  1703565095  -888242520  1970136525   157906667 -1362462591   470933606
## [415] -1453685465  1791332284  1214795695   -75889292  1874486637   138533901
## [421]  -851522036 -2091437455 -2000260632   -42107814   622737382   942599119
## [427]  1979458493  -115388660 -1739160479  1492389607   885102339  1155508554
## [433]  1599771611    86996643  -941000362 -1833355975   248217036   147725622
## [439] -2066561174 -1878566028   117024617  -661053191 -1835896731 -1238358142
## [445]  1605400424 -2100168767 -1541199571 -1055162652    41488157  1642126809
## [451]  -428404327  2031158666   553653345  -299338511  2043637133 -1225224630
## [457]  -992594931   728820224   -22164494  2130830804   150712438   277284330
## [463]   374723104   149323076 -1456076762 -2069939835  -474470573 -2117964728
## [469] -1137752040  1927927062 -1689848230   683207260 -1100954069 -1500288527
## [475]  2138813103  1873263798  1116787528 -1621963068 -1304305547  1890749748
## [481] -1054847243  1058831581   397772015  2117911974  -667157784   126679275
## [487]   710601042   985036664   408751837  1100054339   975019520 -1262174209
## [493]   -23527368  -884791587  -389942628  1227871662   803961652    93579874
## [499]  -372575044 -1584469467  1319037438 -1814554823  1031463800  -673305073
## [505]  -463241897  1885246726  1309452887    14597324   349175101 -1347719210
## [511] -1890289737   -71313089  -900833298  -841185236  1864074446  1502587030
## [517]   341796597  -208071136  1498609145 -1119342411 -1147788544  1779882270
## [523] -1362083280  -715376019 -1955810653  1622008812   384984595  1390230552
## [529]  1953351585  1080295342 -1133800139   511484400    19753003 -1225491814
## [535] -1380255389  1809005801  1372579834   676971458   774291711   310393126
## [541]   584366003  1837116843 -1283077195  1641776732   295093188 -1879560568
## [547]  1496018178  1923098879   -92233970  1047237842  1819480825   228580593
## [553]  -292934816  1398398297  -592428359   406554562    54982065  1292395712
## [559] -1397941944  1915552313 -1020769838  1465730333  1908558847 -1576567297
## [565]  1126167097  1518225996   437845840  1353389618  1250529677  -222421744
## [571]   969003103  1211503658  1215502539 -1358754508   515675793  1221329051
## [577] -1599893953 -1538015525  1328330707   146306567 -1707204370  -405827209
## [583] -1677041303   986572336  -168159186   820203557 -1676732262 -1806001044
## [589]   244954426 -1606928739 -1556523865  -948938446 -1093111947   589166807
## [595]  1599477038   401629826   450528781  1873468251 -1299825221  1347350579
## [601] -1350344890   367855182 -1324643556 -1104375098  -280631100   323482185
## [607] -1627072821 -1374306106  -810519260  1097019371  1033634217  -691506589
## [613]  2054521617  1033327136  1798438678  1692948377   984720857  1573863114
## [619]  -143192010   803969613 -1413146512  -310796884 -1829979155 -1486854289
## [625] -1754589973   800067800
# 10-Fold
cv.err.2.10
## $call
## cv.glm(data = dbike3, glmfit = glm.2, K = 10)
## 
## $K
## [1] 10
## 
## $delta
## [1] 18225.40 18223.74
## 
## $seed
##   [1]       10403         222 -1638873570  -387408225  -709098861 -1219530179
##   [7]   259825355   521526429    70163002   402937516  1618270355  1354629715
##  [13]   557589680  1389850336  1754597544 -1809768622 -1104307794 -2120431162
##  [19]    29998290 -1725884968  -606656570 -2068841915  1581139865  2057778581
##  [25]  -335451167  1411481939 -1134113652   672071217  1848935272  1876858046
##  [31] -1547830443   651367705  -124040078 -1846613522  2142925036  1163333007
##  [37] -2028884711  1624004312   454847663  1107609472  -470508770   552258998
##  [43]   785424325  1334169435  1722029194  1235696736  1815727454 -2080266580
##  [49]  -262459824    52657963  1906439057   502832506   141724125 -2103501919
##  [55] -1727467829   289128610  1295602753  1830987823   149614702  1060849728
##  [61]  -995347429  -352949213   290564075 -1533968597  -547442165 -1250972667
##  [67]  -797775276   587796247 -1570247213  1409754733   190275911  1306694291
##  [73]  1720177025    59718487  -561925150  -490970166  1133411127  1850807595
##  [79]   716220507  1365514365 -1610438923  1520581174   663125742  1106521041
##  [85]  -370875841 -2027980676   801378065  -266216332 -1154983787 -1568260570
##  [91] -1495057418   675808420  1197248366  -573240230  -317211712   283126405
##  [97]   856019419   588066494  -197785962 -1328712538  1514836702  1127592375
## [103] -1090791025   645778935 -1281699324 -1069137349   305618260   366847618
## [109]   884112226  2057155786   -75571125  1314763227   722199079  -899946506
## [115]  2025715274  1163386883  1906112670  1576377152   404094204  1574283938
## [121]  -770108355 -1723444908 -1817319388  1702283327  1597232783   607450779
## [127] -1338959555  1722870646  1643478631  -732573590  -762556818 -1440541679
## [133] -1966885714  1973300811 -1188003900   856727990  1042871754  1932708168
## [139]  1856844242 -1631844781  1138581370  -104548955  -292870505 -1524063088
## [145]  1424577915   -29983737 -1876190195 -1542192605   -70225927  -829779658
## [151]  -618707543 -1586816649 -1500709070   854118102  1240375555   730808122
## [157]  2055856334 -1109495740  1409688795 -1465533329  2143615223   494952479
## [163] -1470618136   370111775  1788698258  -749716073  -729247767  1295685647
## [169]  1069788378 -1648006203 -1410655763  -457336444  -746962678  1347311827
## [175]  -464380953  -961470772 -1852483301  -571519788  1369616675 -1749115078
## [181] -1063444393  1188733301   502573672   325437331   620401367  1111456244
## [187]   629596856  1421730959 -1479222389   517156415  -718481210  -263774916
## [193]  -899609235  1565831417  2008438037  1987527010  -573169809  2043040113
## [199]  -250948734  -524274801  -968698384  1469127511 -1823909224   399252814
## [205]   267015266 -1079427647  1077762337 -1455208245  1720394613 -1048909240
## [211] -1043171199   806334553  -689179743   631193854  -140347399 -1764789832
## [217] -1122299500  2103888359    41712375   -28250652   343996794  2092733073
## [223] -2026987186 -1474168967  -817031879  1083617832   772878329  1689322152
## [229]  1706619481  1039337007  -161142892   797269070  1547690273   561667465
## [235]  1972444435   -24141902  1784822198 -1412574133 -1279213185   425266819
## [241] -2091713723 -1964900454   -33494310  1411145845  -988075253  1108674504
## [247]  -754234776  -862065777     1876671   653908338  1604765717    43528771
## [253]  -259286390   758141557   -43955057   440336181 -1000839298   363439377
## [259]  -107724302 -1807341748  -539176837    76070897  1811884968   835635522
## [265]  2119199096  1842312055   572759557 -1425598559 -1783517404  1053297020
## [271]  -265469152    99650110  -944725440  -565678493 -1513221073  -722061987
## [277] -2073370011  1503134431  -587872443  1211371724   356458467 -1293111055
## [283]   857966602   674179006  1467113678  1934108758  -885915112 -1322512743
## [289] -1202467416 -1133267288  1067494900 -2126175835  1437439431   720776351
## [295]   106769839   661325077  2071623032   828776432  -956791504    58198335
## [301] -1381222376   815974755  1226608383  -351462080   120859828 -1715633970
## [307]   755899319   249909050   904514760 -1300715638 -1366216465   114503143
## [313]  1384296911 -2115775617  1292774104 -1254628561  -955805707 -1737234440
## [319] -1908358368 -1036637938  2113528740   691883475   926411649 -2036045203
## [325]  1150266049  1506351603 -2084953475   260780666  1172269843   242172067
## [331]  -656174013   394801857   243031934   -53274637 -1937560113 -1361703352
## [337] -1754907495   133599453   378571610  1470708042 -1647786581  1747179491
## [343]  1460782878  -355769059  1408490646    63155373  2037719612 -1492552625
## [349]  -421696791 -1364436828  1606629212 -1781441713  -960838560   688759807
## [355]   184009022 -1900278490   820262993  1902952951  1370614843   410262907
## [361] -1220904399   350295367  1280674196  1640129213  1593665812  -330604831
## [367]  -493938555  -254486342   685468406 -1254868473 -1203886530 -1941724495
## [373] -1775514841  1980210495  1627591678  1490267194    -4912655 -1607157161
## [379] -1048676605   273669658   788536515 -1131810198   564951645 -1417687600
## [385]   815150118   523869193  -394588017  2104567425   541732007  1411445894
## [391]   907355611 -2072418865   -98463355  -366752206 -1993602813  -250605318
## [397] -1779002134   800266897  -696821224  2103256872  -100739697 -1125485866
## [403]  2032077718  1167318665   711471148  -425701790  1370193328 -1070848717
## [409] -1148382908 -1728679395  -586677272 -1299765901   189238888  1145562648
## [415]   884526797 -1647313463  1412174972   700782319 -2095069906  1337095394
## [421]  1377049550 -1709404270 -1482153350   -85329210   624522974  1426721432
## [427]  -331267265   902644290  -540760099  1170280679  -979473264 -1583378425
## [433]  -148735381 -1755313237 -1836214653  1659280859  2119268443   260828189
## [439]   591059962  -469657162   831466822  -998584617  1342889638  1308394899
## [445]   469805187   561459362 -1525841767  1770439518   632019638  1992707400
## [451]  -537602799 -1827914993  1097857522    99233468   461515234  1475649730
## [457] -1147368476  -869701495    59707873 -1745996142  2134312640  -421270057
## [463]  1938957023 -1099654531  1023305167   -34563586  -268747849 -1401826098
## [469]   139986531   644132466  1817366790 -2048184988  1455660421  -291214735
## [475]  -821326359   637288863    -3354052  -363097714  -982138899   540945692
## [481] -1331411914   328758088   397851112  1273674255   104564318 -2096300058
## [487] -2099650579  1270581905   -87642398 -1670825108    -2085178  1740225885
## [493]  1244869719  -113197081  -903045909  1984239889 -1181433750  -330556009
## [499] -1548718639   683745491  -594420018   128068903   874252509  -218471653
## [505] -1459243957  -595765367  1652355809   481503023  -159745396  1818847732
## [511]  1569368718  2028473409   240354172 -1558742033    89140592 -2119051284
## [517] -1525566627  -940942651  2079236548  -379086773  -844568572  1921522482
## [523]  1119888881 -1775289041 -1111093435  1040954802   389595527  1348186793
## [529]   935182248  -632942788   995900903  2082889916  1351171641 -1417801900
## [535]  2090468876 -1845802406   283443304    67205139 -1381448188  -259853323
## [541] -1509586005 -1247813524 -2043622336  -908699702   278438349 -1854011400
## [547] -1761860164  -448153228  1847442788 -1212913413  -446997095 -1568198983
## [553]  1065256927  1498616609 -1198188609  -193981870  1027821235  1285546296
## [559]   -47758324 -1973867260  -176235061  -996096376   676090465   396467015
## [565]   359087955   912210586   277847493  -914932164   391742581  -599871160
## [571]   471117082  2104920581   631247105  -283884095  -676808219  1510226542
## [577]  1352877463  2038269565 -1028999954   932740793  1391596077   365957622
## [583]  1755518523 -1269047241   904854264   681531331  1668064332 -1678806975
## [589]  -361441920   662010161  1632343597 -1185301534  -455948520 -1685533693
## [595]    28840357  -341321650  -707305480  1956380754  -230367488   633827207
## [601]   371427340  1459845889   448618438  -290430796  -728843844   454301053
## [607]  2105297095   501037432 -1051090099 -1035871593  -482597473 -1668955859
## [613]  -532641893 -1205078129   192342457  2051066610   233291461  -167377359
## [619]  1856871066   -10101400  1543293495  -481681182  1817063779 -1414919382
## [625] -1128195158 -1721812713

The all-in model is the best among all the others according to the MSE, but the model created in Q4 with min_bic is fairly good.

# Q10.  Summarize three lessons learned for bike share company management from working with this data in this homework assignment.
## We trained model on different set of features by subsetting and different cross validation methods. The 10 fold cv is the most common used one ant it is more efficient than LOO. More features do not mean higher accuracy and lower MSE.