library(ISLR)
attach(Wage)
library(boot)
#anova
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#polynomial
all.deltas = rep(NA, 10)
for (i in 1:10) {
glm.fit = glm(wage~poly(age, i), data=Wage)
all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}
#plot
plot(wage~age, data=Wage, col="grey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 3), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)
#B
all.cvs = rep(NA, 10)
for (i in 2:10) {
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage~age.cut, data=Wage)
all.cvs[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, all.cvs[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)
lm.fit = glm(wage~cut(age, 8), data=Wage)
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.pred = predict(lm.fit, data.frame(age=age.grid))
plot(wage~age, data=Wage, col="darkgrey")
lines(age.grid, lm.pred, col="red", lwd=2)
#A Anova shows that the lowest signifigant fit is a polynmial with degree 3. The Cv-lot shows the same with a low error.
#B CV shows that the test error is lowest for 8 cuts.
#A
attach(College)
#install.packages("leaps")
library(leaps)
## Warning: package 'leaps' was built under R version 3.6.3
train = sample(length(Outstate), length(Outstate)/2)
test = -train
College.train = College[train, ]
College.test = College[test, ]
reg.fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
reg.summary = summary(reg.fit)
par(mfrow = c(1, 3))
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2",
type = "l", ylim = c(0.4, 0.84))
max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
reg.fit = regsubsets(Outstate ~ ., data = College, method = "forward")
coef = coef(reg.fit, id = 6)
names(coef)
## [1] "(Intercept)" "PrivateYes" "Room.Board" "PhD" "perc.alumni"
## [6] "Expend" "Grad.Rate"
#B
library(gam)
## Loading required package: splines
## Loading required package: foreach
## Loaded gam 1.16.1
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) +
s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = College.train)
## Warning in model.matrix.default(mt, mf, contrasts): non-list contrasts
## argument ignored
par(mfrow = c(2, 3))
plot(gam.fit, se = T, col = "red")
#C
gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
## [1] 3825836
gam.tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
test.rss = 1 - gam.err/gam.tss
test.rss
## [1] 0.7853037
#D
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD,
## df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate,
## df = 2), data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6748.38 -1038.11 16.28 1194.49 7697.89
##
## (Dispersion Parameter for gaussian family taken to be 3235247)
##
## Null Deviance: 5625311478 on 387 degrees of freedom
## Residual Deviance: 1206746303 on 372.9997 degrees of freedom
## AIC: 6933.77
##
## Number of Local Scoring Iterations: 2
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1407976222 1407976222 435.199 < 2.2e-16 ***
## s(Room.Board, df = 2) 1 1201628254 1201628254 371.418 < 2.2e-16 ***
## s(PhD, df = 2) 1 361062379 361062379 111.603 < 2.2e-16 ***
## s(perc.alumni, df = 2) 1 169873825 169873825 52.507 2.482e-12 ***
## s(Expend, df = 5) 1 594903749 594903749 183.882 < 2.2e-16 ***
## s(Grad.Rate, df = 2) 1 97879270 97879270 30.254 7.050e-08 ***
## Residuals 373 1206746303 3235247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, df = 2) 1 2.2195 0.137117
## s(PhD, df = 2) 1 2.3164 0.128863
## s(perc.alumni, df = 2) 1 7.1334 0.007897 **
## s(Expend, df = 5) 4 15.3877 1.166e-11 ***
## s(Grad.Rate, df = 2) 1 0.5100 0.475581
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#C There was a slight improvement over the test RSS using the ols. We were able to get an r^2 .077 using gam and 6 optimal predicters
#D Expend and Oustate show evidence between a non-linear relationship using the p values.