library(ISLR)
attach(Wage)
library(boot)
#anova
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
## 
## Model  1: wage ~ poly(age, 1)
## Model  2: wage ~ poly(age, 2)
## Model  3: wage ~ poly(age, 3)
## Model  4: wage ~ poly(age, 4)
## Model  5: wage ~ poly(age, 5)
## Model  6: wage ~ poly(age, 6)
## Model  7: wage ~ poly(age, 7)
## Model  8: wage ~ poly(age, 8)
## Model  9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
##    Res.Df     RSS Df Sum of Sq        F    Pr(>F)    
## 1    2998 5022216                                    
## 2    2997 4793430  1    228786 143.7638 < 2.2e-16 ***
## 3    2996 4777674  1     15756   9.9005  0.001669 ** 
## 4    2995 4771604  1      6070   3.8143  0.050909 .  
## 5    2994 4770322  1      1283   0.8059  0.369398    
## 6    2993 4766389  1      3932   2.4709  0.116074    
## 7    2992 4763834  1      2555   1.6057  0.205199    
## 8    2991 4763707  1       127   0.0796  0.777865    
## 9    2990 4756703  1      7004   4.4014  0.035994 *  
## 10   2989 4756701  1         3   0.0017  0.967529    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#polynomial
all.deltas = rep(NA, 10)
for (i in 1:10) {
  glm.fit = glm(wage~poly(age, i), data=Wage)
  all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}


#plot
plot(wage~age, data=Wage, col="grey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 3), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)

#B
all.cvs = rep(NA, 10)
for (i in 2:10) {
  Wage$age.cut = cut(Wage$age, i)
  lm.fit = glm(wage~age.cut, data=Wage)
  all.cvs[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, all.cvs[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)

lm.fit = glm(wage~cut(age, 8), data=Wage)
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.pred = predict(lm.fit, data.frame(age=age.grid))
plot(wage~age, data=Wage, col="darkgrey")
lines(age.grid, lm.pred, col="red", lwd=2)

#A Anova shows that the lowest signifigant fit is a polynmial with degree 3. The Cv-lot shows the same with a low error.

#B CV shows that the test error is lowest for 8 cuts.

#A
attach(College)
#install.packages("leaps")
library(leaps)
## Warning: package 'leaps' was built under R version 3.6.3
train = sample(length(Outstate), length(Outstate)/2)
test = -train
College.train = College[train, ]
College.test = College[test, ]
reg.fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
reg.summary = summary(reg.fit)
par(mfrow = c(1, 3))
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2", 
    type = "l", ylim = c(0.4, 0.84))

max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
reg.fit = regsubsets(Outstate ~ ., data = College, method = "forward")
coef = coef(reg.fit, id = 6)
names(coef)
## [1] "(Intercept)" "PrivateYes"  "Room.Board"  "PhD"         "perc.alumni"
## [6] "Expend"      "Grad.Rate"
#B

library(gam)
## Loading required package: splines
## Loading required package: foreach
## Loaded gam 1.16.1
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) + 
    s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = College.train)
## Warning in model.matrix.default(mt, mf, contrasts): non-list contrasts
## argument ignored
par(mfrow = c(2, 3))
plot(gam.fit, se = T, col = "red")

#C
gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
## [1] 3825836
gam.tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
test.rss = 1 - gam.err/gam.tss
test.rss
## [1] 0.7853037
#D
summary(gam.fit)
## 
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, 
##     df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, 
##     df = 2), data = College.train)
## Deviance Residuals:
##      Min       1Q   Median       3Q      Max 
## -6748.38 -1038.11    16.28  1194.49  7697.89 
## 
## (Dispersion Parameter for gaussian family taken to be 3235247)
## 
##     Null Deviance: 5625311478 on 387 degrees of freedom
## Residual Deviance: 1206746303 on 372.9997 degrees of freedom
## AIC: 6933.77 
## 
## Number of Local Scoring Iterations: 2 
## 
## Anova for Parametric Effects
##                         Df     Sum Sq    Mean Sq F value    Pr(>F)    
## Private                  1 1407976222 1407976222 435.199 < 2.2e-16 ***
## s(Room.Board, df = 2)    1 1201628254 1201628254 371.418 < 2.2e-16 ***
## s(PhD, df = 2)           1  361062379  361062379 111.603 < 2.2e-16 ***
## s(perc.alumni, df = 2)   1  169873825  169873825  52.507 2.482e-12 ***
## s(Expend, df = 5)        1  594903749  594903749 183.882 < 2.2e-16 ***
## s(Grad.Rate, df = 2)     1   97879270   97879270  30.254 7.050e-08 ***
## Residuals              373 1206746303    3235247                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Anova for Nonparametric Effects
##                        Npar Df  Npar F     Pr(F)    
## (Intercept)                                         
## Private                                             
## s(Room.Board, df = 2)        1  2.2195  0.137117    
## s(PhD, df = 2)               1  2.3164  0.128863    
## s(perc.alumni, df = 2)       1  7.1334  0.007897 ** 
## s(Expend, df = 5)            4 15.3877 1.166e-11 ***
## s(Grad.Rate, df = 2)         1  0.5100  0.475581    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#C There was a slight improvement over the test RSS using the ols. We were able to get an r^2 .077 using gam and 6 optimal predicters

#D Expend and Oustate show evidence between a non-linear relationship using the p values.