Use integration by substitution to solve the integral below.
\(\int4e^{-7x}dx\)
Solution:
Let \(u=-7x\) \(\implies\) \(dx=-\frac{1}{7}dz\)
\(4\int e^z \frac{-1}{7}dz=\frac{-4}{7}\int e^zdz=-\frac{4}{7}e^z+C=-\frac{4}{7}e^{-7x}+C\)
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt}=-\frac{3150}{t^4}-220\) bacteria per cubic centimeter per day, where \(t\) is the number of days since treatment began. Find a function \(t\) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
Solution:
\(\int\frac{dN}{dt}=\int(\frac{-3150}{t^4} -220)dt=-\frac{12600}{t^3}-220t+C\)
Since \(N(1)=6530\) this can be used to find \(C\).
\(N(1)=6530=-\frac{12600}{t^3}-220(1)+C\)
\(C=6290\)
\(N(t)=-\frac{12600}{t^3}-220t+6290\)
Find the total area of the red rectangles in the figure below, where the equation of the line is \(f(x) = 2x+9\)
Solution:
\(\int_{4.5}^{8.5} 2x-9 dx\)
Using integrate function in R
func<-function(x){2*x-9}
int<-integrate(func, lower=4.5, upper=8.5)
int
## 16 with absolute error < 1.8e-13
Find the area of the region bounded by the graphs of the given equations,
\(y = x2- 2x- 2\)
\(y = x + 2\)
Solution:
\(x+2=x^2-2x-2\\ \implies x^2-3x-4=0\\ \implies(x-4)(x+1)=0\\ \implies x=4, -1\)
So the intersections occur at \(x=-1\) and \(x=4\)
\(Area=\int_{-1}^{4} x+2 dx - \int_{-1}^{4} x^2-2x-2 dx\)
Using integrate function in R
func<-function(x){x+2}
int<-integrate(func, lower=-1, upper=4)
func1<-function(x){x^2 -2*x -2}
int1<-integrate(func1, lower=-1, upper=4)
print(int$value-int1$value)
## [1] 20.83333
plot the area
plot (func, -5, 7)
plot (func1, -2, 5, add=TRUE)
A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
Solution:
Let C be cost, n be the number of orders per year and x be the lot size.
\(n*x=110 \implies x=110/n\)
\(C=8.25∗n+3.75∗x/2\)
Assuming half an order is in storage at on average
\(C=8.25*n + 3.75*(110/n)/2\)
\(\implies C=8.25*n + 206.25/n\)
\(dC/dn=8.25-206.25/n^2\)
Setting C=0,
\(8.25-206.25/n^2=0\)
\(n=\sqrt \frac{206.25}{8.25}\)
Therefore, number of orders is 5
\(x=110/5=22\)
Lot size is 22
Use integration by parts to solve the integral below.
\(\int ln(9x) x^6 dx\)
Solution:
Let \(u=ln(9x)\) and \(v=\frac{1}{7}x^7\)
\(du/dx=1/x \implies du=\frac{1}{x}dx\)
Using the formula \(\int u dv=uv-\int vdu\), we get
\(\int ln(9x) x^6 dx = ln(9x)\frac{1}{7}x^7 -\int \frac{1}{7}x^7 \frac {1}{x} dx\)
\(=\frac{ln(9x)x^7}{7}-\int \frac{x^7}{7x}dx\)
\(=\frac{ln(9x)x^7}{7}-\frac{1}{7}\int x^6 dx\)
\(=\frac{ln(9x)x^7}{7}-\frac{1}{7}(\frac{1}{7}x^7 + C)\)
\(=\frac{ln(9x)x^7}{7}-\frac{1}{49}x^7 +C\)
Determine whether f (x) is a probability density function on the interval [1, e^6] If not, determine the value of the definite integral.
\[f(x)=\frac{1}{6x}\]
Solution:
The integral of a PDF must be equal to 1:
\(\int_{1}^{e^6} \frac{1}{6x}dx\)
\(=\frac{1}{6} \int_{1}^{e^6} \frac{1}{x}dx\)
\(=\frac{1}{6}ln(x)|_{1}^{e^6}\)
\(=\frac{1}{6}(ln(e^6)-ln(1)\)
\(=\frac{1}{6}(6-0)\)
\(=1\)
f(x) is a probability density function on the interval [1,e6]
`