#Mariela Camacho Chaparro 164956
#Estadistica Aplicada
#Analisis de datos COVID-19
#Acontinuacion se presenta una grafica haciendo representacion de los casos COVID-19
library(readr)
## Warning: package 'readr' was built under R version 3.6.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.3
## -- Attaching packages ---------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v dplyr 0.8.5
## v tibble 3.0.1 v stringr 1.4.0
## v tidyr 1.0.2 v forcats 0.5.0
## v purrr 0.3.4
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'tidyr' was built under R version 3.6.3
## Warning: package 'purrr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts ------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(gganimate)
## Warning: package 'gganimate' was built under R version 3.6.3
library(plotly)
## Warning: package 'plotly' was built under R version 3.6.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(gifski)
## Warning: package 'gifski' was built under R version 3.6.3
#Declaraci?n de URL
url_conf <- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv"
url_decesos <-"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv"
url_recuperados <-"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv"
#Variables en marcos de datos (data frames)
datos_conf <- read.csv(url_conf)
datos_decesos <- read.csv(url_decesos)
datos_recuperados <- read.csv(url_recuperados)
#PAIS: Afganistan
conf_Afghanistan<-t(datos_conf[datos_conf$Country.Region=="Afghanistan" ,])
decesos_Afghanistan <-t(datos_decesos[datos_decesos$Country.Region=="Afghanistan" ,])
recuperados_Afghanistan <-t(datos_recuperados[datos_recuperados$Country.Region=="Afghanistan" ,])
#Figura 1
plot(conf_Afghanistan)
## Warning in xy.coords(x, y, xlabel, ylabel, log): NAs introducidos por coerción

#Vector de fecha
Fecha=seq(from=as.Date("2020-01-22"),to=as.Date("2020-04-22"),by='day')
#Casos confirmados
vec1<- as.vector(conf_Afghanistan)
vec2<-vec1[5:96]
num1<-as.numeric(vec2)
Confirmados<-as.vector(num1)
#Decesos
vec1<- as.vector(decesos_Afghanistan)
vec2<-vec1[5:96]
num1<-as.numeric(vec2)
Decesos<-as.vector(num1)
#Recuperados
vec1<- as.vector(recuperados_Afghanistan)
vec2<-vec1[5:96]
num1<-as.numeric(vec2)
Recuperados<-as.vector(num1)
#Generacion de un data frame
datos1<-data.frame(Fecha,Confirmados,Decesos,Recuperados)
#Figura 2 Confirmados frame
ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Confirmados))

#Figura 3 Decesos frame
ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Decesos))

#Figura 4 Recuperadosframe
ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Recuperados))

#Animacion 1 simple
ggplot(data=datos1)+
ggtitle("Casos confirmados COVID-19 en Afghanistan (Fuente:JHU CSSE) yair martinez")+
geom_line(mapping=aes(x=Fecha,y=Confirmados))+
transition_reveal(Fecha)

#Figura 5 multi ejes ggplot
ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Confirmados),colour='red')+
geom_line(mapping=aes(x=Fecha,y=Decesos),colour='blue')+
geom_line(mapping=aes(x=Fecha,y=Recuperados),colour='green')+
ylab('COVID-19 Afghanistan')+xlab('Fecha')+
theme_bw()

#Animacion 2
ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Confirmados),colour='red')+
geom_line(mapping=aes(x=Fecha,y=Decesos),colour='blue')+
geom_line(mapping=aes(x=Fecha,y=Recuperados),colour='green')+
ylab('COVID-19 Afghanistan')+xlab('Fecha')+
transition_reveal(Fecha)

#Grafica interctiva compuesta
gcov<-ggplot(data=datos1)+
geom_line(mapping=aes(x=Fecha,y=Confirmados),colour='red')+
geom_line(mapping=aes(x=Fecha,y=Decesos),colour='blue')+
geom_line(mapping=aes(x=Fecha,y=Recuperados),colour='green')+
ylab('COVID-19 Afghanistan')+xlab('Fecha')+
transition_reveal(Fecha)
ggplotly(gcov)