Datos

Los datos se encuentran en el archivo ‘ProdPrim.csv’, y se cargan a R usando la funciĂ³n read_csv.

library(readr)
ProdPrim <- read_csv("ProdPrim.csv", na = "NA")
head(ProdPrim)
## # A tibble: 6 x 28
##   site_name site_id country landmark state    lat    long elevation map_mm
##   <chr>     <chr>   <chr>   <chr>    <chr>  <dbl>   <dbl>     <dbl>  <dbl>
## 1 Badkhyz   BDK     Turkme… Serheta… Mary   35.7    62          700   292.
## 2 Beacon H… BCN     UK      Portsmo… West…  50.9    -0.85       205   858.
## 3 Bridger   BRD     USA     Bozeman  Mont…  45.8  -111.        2340   382 
## 4 Calabozo  CLB     Venezu… Calabozo GuĂ¡r…   8.93  -67.4         98  1257 
## 5 Canas     CNS     Costa … Canas    Guan…  10.4   -85.1         45  1539.
## 6 Charlevi… CHR1    Austra… Charlev… Quee… -26.4   146.         304   483.
## # … with 19 more variables: meantmin_C <dbl>, meantmax_C <dbl>,
## #   biome <chr>, soil_type <chr>, ecoregion <chr>, species <chr>,
## #   vegetation <chr>, plot_mgmt <chr>, mgmt_hist <chr>, agb_gm2 <dbl>,
## #   bgb_gm2 <dbl>, ANPP_gm2yr <dbl>, BNPP_gm2yr <dbl>, start_date <dbl>,
## #   end_date <dbl>, s_interval <chr>, s_period <chr>, m_periods <chr>,
## #   reference <chr>

GrĂ¡ficas de relaciĂ³n de productividad primaria con atributos geogrĂ¡ficos

GrĂ¡ficas de ANPP versus latitud y elevaciĂ³n.

Latitud

library(ggplot2)
#grĂ¡fica de puntos
NPP_lat <- ggplot(data=ProdPrim, aes(x=lat, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  labs(x="Latitud", y="ANPP, g/m^2/yr")
NPP_lat

#grĂ¡fica con tendencia
NPP_lat <- ggplot(data=ProdPrim, aes(x=lat, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Latitud", y="ANPP, g/m^2/yr")
NPP_lat

Prueba de hipĂ³tesis - RegresiĂ³n polinomial

library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
regpoly <- lm(ANPP_gm2yr ~ lat + I(lat^2), data=ProdPrim)
tab_model(regpoly)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 989.40 867.34 – 1111.45 <0.001
lat 6.84 2.00 – 11.67 0.006
lat^2 -0.31 -0.41 – -0.22 <0.001
Observations 122
R2 / R2 adjusted 0.303 / 0.291

ElevaciĂ³n

library(ggplot2)
#grĂ¡fica de puntos
NPP_elev <- ggplot(data=ProdPrim, aes(x=elevation, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  labs(x="ElevaciĂ³n, m.s.n.m.", y="ANPP, g/m^2/yr")
NPP_elev

#grĂ¡fica con tendencia
NPP_elev <- ggplot(data=ProdPrim, aes(x=elevation, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="ElevaciĂ³n, m.s.n.m.", y="ANPP, g/m^2/yr")
NPP_elev

Prueba de hipĂ³tesis - RegresiĂ³n

regelev <- lm(ANPP_gm2yr ~ elevation, data=ProdPrim)
tab_model(regelev)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 862.18 717.29 – 1007.07 <0.001
elevation -0.17 -0.34 – -0.00 0.044
Observations 122
R2 / R2 adjusted 0.033 / 0.025

GrĂ¡ficas de relaciĂ³n de productividad primaria aĂ©rea con variables climĂ¡ticas

GrĂ¡ficas de ANPP versus temperatura (mĂ­nima, mĂ¡xima, promedio) y precipitaciĂ³n

Temperatura mĂ­nima

library(ggplot2)
#grĂ¡fica de puntos
NPP_tmin <- ggplot(data=ProdPrim, aes(x=meantmin_C, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="blue", size=2) +
  labs(x="Temperatura mĂ­nima media, C", y="ANPP, g/m^2/yr")
NPP_tmin

#grĂ¡fica con tendencia
NPP_tmin <- ggplot(data=ProdPrim, aes(x=meantmin_C, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="blue", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Temperatura mĂ­nima media, C", y="ANPP, g/m^2/yr")
NPP_tmin

Prueba de hipĂ³tesis - RegresiĂ³n

regtmin <- lm(ANPP_gm2yr ~ meantmin_C, data=ProdPrim)
tab_model(regtmin)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 677.77 586.80 – 768.73 <0.001
meantmin_C 20.97 15.70 – 26.24 <0.001
Observations 102
R2 / R2 adjusted 0.384 / 0.378

Temperatura mĂ¡xima

library(ggplot2)
#grĂ¡fica de puntos
NPP_tmax <- ggplot(data=ProdPrim, aes(x=meantmax_C, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="red", size=2) +
  labs(x="Temperatura mĂ¡xima media, C", y="ANPP, g/m^2/yr")
NPP_tmax

#grĂ¡fica con tendencia
NPP_tmax <- ggplot(data=ProdPrim, aes(x=meantmax_C, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="red", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Temperatura mĂ¡xima media, C", y="ANPP, g/m^2/yr")
NPP_tmax

Prueba de hipĂ³tesis - RegresiĂ³n

regtmax <- lm(ANPP_gm2yr ~ meantmax_C, data=ProdPrim)
tab_model(regtmax)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 518.46 206.43 – 830.50 0.001
meantmax_C 9.85 -1.91 – 21.61 0.100
Observations 103
R2 / R2 adjusted 0.027 / 0.017

Temperatura media

CĂ³mo no estĂ¡ reportada, vamos a usar el promedio entre la mĂ­nima y la mĂ¡xima:

#promedio tmin tmax
library(dplyr)
ProdPrim_tm <- mutate(ProdPrim, tmean=(meantmin_C + meantmax_C)/2)
head(ProdPrim_tm)
## # A tibble: 6 x 29
##   site_name site_id country landmark state    lat    long elevation map_mm
##   <chr>     <chr>   <chr>   <chr>    <chr>  <dbl>   <dbl>     <dbl>  <dbl>
## 1 Badkhyz   BDK     Turkme… Serheta… Mary   35.7    62          700   292.
## 2 Beacon H… BCN     UK      Portsmo… West…  50.9    -0.85       205   858.
## 3 Bridger   BRD     USA     Bozeman  Mont…  45.8  -111.        2340   382 
## 4 Calabozo  CLB     Venezu… Calabozo GuĂ¡r…   8.93  -67.4         98  1257 
## 5 Canas     CNS     Costa … Canas    Guan…  10.4   -85.1         45  1539.
## 6 Charlevi… CHR1    Austra… Charlev… Quee… -26.4   146.         304   483.
## # … with 20 more variables: meantmin_C <dbl>, meantmax_C <dbl>,
## #   biome <chr>, soil_type <chr>, ecoregion <chr>, species <chr>,
## #   vegetation <chr>, plot_mgmt <chr>, mgmt_hist <chr>, agb_gm2 <dbl>,
## #   bgb_gm2 <dbl>, ANPP_gm2yr <dbl>, BNPP_gm2yr <dbl>, start_date <dbl>,
## #   end_date <dbl>, s_interval <chr>, s_period <chr>, m_periods <chr>,
## #   reference <chr>, tmean <dbl>

NPP vs temperatura media

#grĂ¡fica de puntos
NPP_tmean <- ggplot(data=ProdPrim_tm, aes(x=tmean, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  labs(x="Temperatura media anual, C", y="ANPP, g/m^2/yr")
NPP_tmean

#grĂ¡fica con tendencia
NPP_tmean <- ggplot(data=ProdPrim_tm, aes(x=tmean, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="green", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Temperatura media anual, C", y="ANPP, g/m^2/yr")
NPP_tmean

Prueba de hipĂ³tesis - RegresiĂ³n

regtm <- lm(ANPP_gm2yr ~ tmean, data=ProdPrim_tm)
tab_model(regtm)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 325.97 169.25 – 482.69 <0.001
tmean 30.14 21.37 – 38.91 <0.001
Observations 102
R2 / R2 adjusted 0.318 / 0.311

PrecipitaciĂ³n

#grĂ¡fica de puntos
NPP_prec <- ggplot(data=ProdPrim, aes(x=map_mm, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="blue", size=2) +
  labs(x="PrecipitaciĂ³n anual media, mm", y="ANPP, g/m^2/yr")
NPP_prec

#grĂ¡fica con tendencia
NPP_prec <- ggplot(data=ProdPrim, aes(x=map_mm, y=ANPP_gm2yr)) +
  geom_point(pch=19, color="blue", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="PrecipitaciĂ³n anual media, mm", y="ANPP, g/m^2/yr")
NPP_prec

Prueba de hipĂ³tesis - RegresiĂ³n polinomial

library(sjPlot)
regprec <- lm(ANPP_gm2yr ~ map_mm + I(map_mm^2), data=ProdPrim)
tab_model(regprec)
  ANPP gm 2 yr
Predictors Estimates CI p
(Intercept) 11.58 -167.27 – 190.43 0.898
map_mm 0.88 0.66 – 1.10 <0.001
map_mm^2 -0.00 -0.00 – -0.00 <0.001
Observations 120
R2 / R2 adjusted 0.425 / 0.415

Biomasa y factores ambientales

Latitud

library(ggplot2)
#grĂ¡fica de puntos
biom_lat <- ggplot(data=ProdPrim, aes(x=lat, y=agb_gm2)) +
  geom_point(pch=19, color="darkgreen", size=2) +
  labs(x="Latitud", y="Biomasa, g/m2")
biom_lat

#grĂ¡fica con tendencia
biom_lat <- ggplot(data=ProdPrim, aes(x=lat, y=agb_gm2)) +
  geom_point(pch=19, color="darkgreen", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Latitud", y="Biomasa, g/m2")
biom_lat

Biomasa y temperatura media

#grĂ¡fica de puntos
biom_tm <- ggplot(data=ProdPrim_tm, aes(x=tmean, y=agb_gm2)) +
  geom_point(pch=19, color="darkgreen", size=2) +
  labs(x="Temperatura media anual, C", y="Biomasa, g/m2")
biom_tm

#grĂ¡fica con tendencia
biom_tm <- ggplot(data=ProdPrim_tm, aes(x=tmean, y=agb_gm2)) +
  geom_point(pch=19, color="darkgreen", size=2) +
  geom_smooth(stat = "smooth", method = "auto") +
  labs(x="Temperatura media anual, C", y="Biomasa, g/m2")
biom_tm

Sequoia sempervirens

Sequoia sempervirens