Datos
Los datos se encuentran en el archivo ‘ProdPrim.csv’, y se cargan a R usando la funciĂ³n read_csv.
library(readr)
ProdPrim <- read_csv("ProdPrim.csv", na = "NA")
head(ProdPrim)
## # A tibble: 6 x 28
## site_name site_id country landmark state lat long elevation map_mm
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Badkhyz BDK Turkme… Serheta… Mary 35.7 62 700 292.
## 2 Beacon H… BCN UK Portsmo… West… 50.9 -0.85 205 858.
## 3 Bridger BRD USA Bozeman Mont… 45.8 -111. 2340 382
## 4 Calabozo CLB Venezu… Calabozo GuĂ¡r… 8.93 -67.4 98 1257
## 5 Canas CNS Costa … Canas Guan… 10.4 -85.1 45 1539.
## 6 Charlevi… CHR1 Austra… Charlev… Quee… -26.4 146. 304 483.
## # … with 19 more variables: meantmin_C <dbl>, meantmax_C <dbl>,
## # biome <chr>, soil_type <chr>, ecoregion <chr>, species <chr>,
## # vegetation <chr>, plot_mgmt <chr>, mgmt_hist <chr>, agb_gm2 <dbl>,
## # bgb_gm2 <dbl>, ANPP_gm2yr <dbl>, BNPP_gm2yr <dbl>, start_date <dbl>,
## # end_date <dbl>, s_interval <chr>, s_period <chr>, m_periods <chr>,
## # reference <chr>
GrĂ¡ficas de relaciĂ³n de productividad primaria con atributos geogrĂ¡ficos
GrĂ¡ficas de ANPP versus latitud y elevaciĂ³n.
Latitud
library(ggplot2)
#grĂ¡fica de puntos
NPP_lat <- ggplot(data=ProdPrim, aes(x=lat, y=ANPP_gm2yr)) +
geom_point(pch=19, color="green", size=2) +
labs(x="Latitud", y="ANPP, g/m^2/yr")
NPP_lat

#grĂ¡fica con tendencia
NPP_lat <- ggplot(data=ProdPrim, aes(x=lat, y=ANPP_gm2yr)) +
geom_point(pch=19, color="green", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="Latitud", y="ANPP, g/m^2/yr")
NPP_lat

Prueba de hipĂ³tesis - RegresiĂ³n polinomial
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
regpoly <- lm(ANPP_gm2yr ~ lat + I(lat^2), data=ProdPrim)
tab_model(regpoly)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
989.40
|
867.34 – 1111.45
|
<0.001
|
lat
|
6.84
|
2.00 – 11.67
|
0.006
|
lat^2
|
-0.31
|
-0.41 – -0.22
|
<0.001
|
Observations
|
122
|
R2 / R2 adjusted
|
0.303 / 0.291
|
ElevaciĂ³n
library(ggplot2)
#grĂ¡fica de puntos
NPP_elev <- ggplot(data=ProdPrim, aes(x=elevation, y=ANPP_gm2yr)) +
geom_point(pch=19, color="green", size=2) +
labs(x="ElevaciĂ³n, m.s.n.m.", y="ANPP, g/m^2/yr")
NPP_elev

#grĂ¡fica con tendencia
NPP_elev <- ggplot(data=ProdPrim, aes(x=elevation, y=ANPP_gm2yr)) +
geom_point(pch=19, color="green", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="ElevaciĂ³n, m.s.n.m.", y="ANPP, g/m^2/yr")
NPP_elev

Prueba de hipĂ³tesis - RegresiĂ³n
regelev <- lm(ANPP_gm2yr ~ elevation, data=ProdPrim)
tab_model(regelev)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
862.18
|
717.29 – 1007.07
|
<0.001
|
elevation
|
-0.17
|
-0.34 – -0.00
|
0.044
|
Observations
|
122
|
R2 / R2 adjusted
|
0.033 / 0.025
|
GrĂ¡ficas de relaciĂ³n de productividad primaria aĂ©rea con variables climĂ¡ticas
GrĂ¡ficas de ANPP versus temperatura (mĂnima, mĂ¡xima, promedio) y precipitaciĂ³n
Temperatura mĂnima
library(ggplot2)
#grĂ¡fica de puntos
NPP_tmin <- ggplot(data=ProdPrim, aes(x=meantmin_C, y=ANPP_gm2yr)) +
geom_point(pch=19, color="blue", size=2) +
labs(x="Temperatura mĂnima media, C", y="ANPP, g/m^2/yr")
NPP_tmin

#grĂ¡fica con tendencia
NPP_tmin <- ggplot(data=ProdPrim, aes(x=meantmin_C, y=ANPP_gm2yr)) +
geom_point(pch=19, color="blue", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="Temperatura mĂnima media, C", y="ANPP, g/m^2/yr")
NPP_tmin

Prueba de hipĂ³tesis - RegresiĂ³n
regtmin <- lm(ANPP_gm2yr ~ meantmin_C, data=ProdPrim)
tab_model(regtmin)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
677.77
|
586.80 – 768.73
|
<0.001
|
meantmin_C
|
20.97
|
15.70 – 26.24
|
<0.001
|
Observations
|
102
|
R2 / R2 adjusted
|
0.384 / 0.378
|
Temperatura mĂ¡xima
library(ggplot2)
#grĂ¡fica de puntos
NPP_tmax <- ggplot(data=ProdPrim, aes(x=meantmax_C, y=ANPP_gm2yr)) +
geom_point(pch=19, color="red", size=2) +
labs(x="Temperatura mĂ¡xima media, C", y="ANPP, g/m^2/yr")
NPP_tmax

#grĂ¡fica con tendencia
NPP_tmax <- ggplot(data=ProdPrim, aes(x=meantmax_C, y=ANPP_gm2yr)) +
geom_point(pch=19, color="red", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="Temperatura mĂ¡xima media, C", y="ANPP, g/m^2/yr")
NPP_tmax

Prueba de hipĂ³tesis - RegresiĂ³n
regtmax <- lm(ANPP_gm2yr ~ meantmax_C, data=ProdPrim)
tab_model(regtmax)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
518.46
|
206.43 – 830.50
|
0.001
|
meantmax_C
|
9.85
|
-1.91 – 21.61
|
0.100
|
Observations
|
103
|
R2 / R2 adjusted
|
0.027 / 0.017
|
Prueba de hipĂ³tesis - RegresiĂ³n
regtm <- lm(ANPP_gm2yr ~ tmean, data=ProdPrim_tm)
tab_model(regtm)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
325.97
|
169.25 – 482.69
|
<0.001
|
tmean
|
30.14
|
21.37 – 38.91
|
<0.001
|
Observations
|
102
|
R2 / R2 adjusted
|
0.318 / 0.311
|
PrecipitaciĂ³n
#grĂ¡fica de puntos
NPP_prec <- ggplot(data=ProdPrim, aes(x=map_mm, y=ANPP_gm2yr)) +
geom_point(pch=19, color="blue", size=2) +
labs(x="PrecipitaciĂ³n anual media, mm", y="ANPP, g/m^2/yr")
NPP_prec

#grĂ¡fica con tendencia
NPP_prec <- ggplot(data=ProdPrim, aes(x=map_mm, y=ANPP_gm2yr)) +
geom_point(pch=19, color="blue", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="PrecipitaciĂ³n anual media, mm", y="ANPP, g/m^2/yr")
NPP_prec

Prueba de hipĂ³tesis - RegresiĂ³n polinomial
library(sjPlot)
regprec <- lm(ANPP_gm2yr ~ map_mm + I(map_mm^2), data=ProdPrim)
tab_model(regprec)
Â
|
ANPP gm 2 yr
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
11.58
|
-167.27 – 190.43
|
0.898
|
map_mm
|
0.88
|
0.66 – 1.10
|
<0.001
|
map_mm^2
|
-0.00
|
-0.00 – -0.00
|
<0.001
|
Observations
|
120
|
R2 / R2 adjusted
|
0.425 / 0.415
|
Biomasa y factores ambientales
Latitud
library(ggplot2)
#grĂ¡fica de puntos
biom_lat <- ggplot(data=ProdPrim, aes(x=lat, y=agb_gm2)) +
geom_point(pch=19, color="darkgreen", size=2) +
labs(x="Latitud", y="Biomasa, g/m2")
biom_lat

#grĂ¡fica con tendencia
biom_lat <- ggplot(data=ProdPrim, aes(x=lat, y=agb_gm2)) +
geom_point(pch=19, color="darkgreen", size=2) +
geom_smooth(stat = "smooth", method = "auto") +
labs(x="Latitud", y="Biomasa, g/m2")
biom_lat
