Find the equation of the regression line for the given points. Round any final values to the nearest hundredth, if necessary.
\[ (5.6, 8.8), (6.3,12.4), (7,14.8), (7.7,18.2), (8.4,20.8) \]
x <- c(5.6,6.3,7,7.7,8.4)
y <- c(8.8, 12.4,14.8, 18.2,20.8)
df <- data.frame (x,y)
#round the coefficients of the regression line to the nearest hundredth
round(coef(lm(y~x, data=df)),2)## (Intercept) x
## -14.80 4.26
\[ {y} = -14.80 + 4.26x \]
Find all local maxima, local minima, and saddle points for the function given below. Write your answer(s) in the form (x, y, z). Separate multiple points with a comma.
\[ f(x,y) = 24x-6xy^2-8y^3\]
\[f_x = 24 - 6y^2\] \[f_y = -12xy - 24y^2\]
Set \(f_x = 0\)
\[24-6y^2=0\] \[24=6y^2\] \[4=y^2\] \[\pm2 = y\] Substitute y-values into \(f_y =0\)
\[-12xy - 24y^2=0\] \[xy+2y^2=0\] Substitute y=2 \[x(2) + 2(2)^2 = 0\]
\[2x+8=0\] \[2x=-8\] \[x=-4\]
Substitute y=-2 \[x(-2) + 2(-2)^2 = 0\]
\[-2x+8=0\] \[-2x=-8\] \[x=4\] Substitute (x,y) values for z \[ f(x,y) = 24x-6xy^2-8y^3\] Substitute (-4,2)
\[ z = 24(-4)-6(-4)(2)^2-8(2)^3\] \[z = -96+96-64\] \[z=-64\] Substitute (4,-2)
\[ z = 24(4)-6(4)(-2)^2-8(-2)^3\] \[z = 96-96+64\] \[z=64\]
Referring to the definition in page 752 of the textbook
\[f_{xx} = 0\] \[f_{yy} = -12x - 48y\] \[f_{xy} = - 12y\] Plug into formula \[ D = f_{xx}(x,y)*f_{yy}(x,y) - f_{xy}^2(x,y)\]
\[ D = 0(x,y)*(-12x - 48y(x,y) )- (- 12y)^2(x,y)\] \[ D = 0- 144y^2(x,y)\] \[D = -144y^2(x,y)\]
A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell \(81 - 21x + 17y\) units of the “house” brand and \(40 + 11x - 23y\) units of the “name” brand.
Revenue = units sold x price
\[R(x,y) = x(81-21x+17y) + y(40+11x-23y)\]
\[R(x,y)=81x-21x^2+17xy + 40y+11xy-23y^2\]
\[R(x,y)=-21x^2-23y^2+28xy+81x+40y\]
\[R(2.3,4.1)=-21(2.3)^2-23(4.1)^2+28(2.3)(4.1)+81(2.3)+40(4.1)\]
#house brand price
x <- 2.3
#name brand price
y <- 4.1
#revenue function from step 1
revenue <- -21*x^2-23*y^2+28*x*y+81*x+40*y
#answer
print(paste("$",revenue))## [1] "$ 116.62"
A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by \(C(x,y)= \frac{1}{6}x^2 + \frac{1}{6}y^2 +7x+25y+700\), where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
Given \(x+y=96\)
y=96-x
Substitute (96-x) into y \[C(x,y)= \frac{1}{6}x^2 + \frac{1}{6}y^2 +7x+25y+700\]
\[C(x,y)= \frac{1}{6}x^2 + \frac{1}{6}(96-x)^2 +7x+25(96-x)+700\] \[C(x,y)= \frac{1}{6}x^2 + \frac{1}{6}(9216-192x+x^2) +7x+2400-25x+700\] \[C(x,y)= \frac{1}{6}x^2 + 1536-32x+\frac{x^2}{6} +7x+2400-25x+700\] \[C(x,y)= \frac{1}{3}x^2-50x+4636\] Similar to Question 5, we need to set derivative = zero.
\[C'= \frac{2}{3}x-50\] \[0 = \frac{2}{3}x-50\] \[50 = \frac{2}{3}x\]
\[75 = x\]
#define the function as only a function of x
C <- function(x){1/3*(x^2) -50*x + 4636}
#plot labels
plot(C(0:96), type='l', main= 'Los Angeles Production', xlab = 'Units Produced',
ylab = 'Total Weekly Cost ($)')
#point where total weekly cost is at the minimum
points(75, 2761, pch=8, col="#009999")Evaluate the double integral on the given region.
\[\underset{R}{\iint} (e^{8x+3y})dA;R:2\le x\le4, 2\le y\le4\]
Write your answer in exact form without decimals.
u=8x+3y, du = 8
\[\ \frac{1}{8}\int_{2}^{4} e^u du \]
\[=\left. \ \frac{e^{8x+3y}}{8}\right|_{2}^{4}\] \[=\ \frac{e^{8(4)+3y}}{8} - \frac{e^{8(2)+3y}}{8}\] \[=\ \frac{e^{32+3y}}{8} - \frac{e^{16+3y}}{8}\]
\[\ \int_{2}^{4} \frac{e^{32+3y}-e^{16+3y}}{8} dy \] Separate into two integrals
\[ \frac{1}{8}\int_{2}^{4} e^{32+3y} dy -\frac{1}{8}\int_{2}^{4} e^{16+3y} dy\]
\[=(\frac{1}{8})\left. \ \frac{e^{32+3y}}{3}\right|_{2}^{4}-(\frac{1}{8})\left. \ \frac{e^{16+3y}}{3}\right|_{2}^{4}\] \[=\ (\frac{1}{8})(\frac{e^{32+3(4)}}{3} - \frac{e^{32+3(2)}}{3})- (\frac{1}{8})(\frac{e^{16+3(4)}}{3} - \frac{e^{16+3(2)}}{3})\]
\[=\ (\frac{1}{8})(\frac{e^{32+12}}{3} - \frac{e^{32+6}}{3})- (\frac{1}{8})(\frac{e^{16+12}}{3} - \frac{e^{16+6}}{3})\] \[=\ \frac{e^{44}}{24} - \frac{e^{38}}{24}- \frac{e^{28}}{24} + \frac{e^{22}}{24}\] \[ = \frac{e^{44}-e^{38}-e^{28}+e^{22}}{24}\]