# I will now run the Bayesian analysis of the Marseilles trial using JAGS and MCMC
# This time I use a different Bayesian model which I think is more intuitive.
# Moreover, I add simulated one new patient from each group and their joint distribution.

setwd("/Users/richard/Desktop")
library('rjags')
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod,bugs
nA <- 2
nB <- 15
jags <- jags.model('raoult3.bug',
                    data = list('nA' = nA, 'nB' = nB), n.chains = 4, n.adapt = 100)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 2
##    Unobserved stochastic nodes: 6
##    Total graph size: 36
## 
## Initializing model
jags
## JAGS model:
## 
## model {
##  kA <- 16
##  kB <- 26
##  lambdaAB ~ dnorm(0, 1)
##  lambdaA ~ dnorm(0, 1)
##  lambdaB ~ dnorm(0, 1)
##  delta ~ dbern(0.5)
##  pA <- exp(lambdaA) / (1 + exp(lambdaA))
##  pB <- exp(lambdaB) / (1 + exp(lambdaB))
##  pAB <- exp(lambdaAB) / (1 + exp(lambdaAB))
##  chi <- delta * pA + (1 - delta) * pAB
##  tau <- delta * pB + (1 - delta) * pAB
##  nA ~ dbin(chi, kA)
##  nB ~ dbin(tau, kB)
##  alpha ~ dbern(chi)
##  beta ~ dbern(tau)
##  AplusBplus <- (alpha == 1) * (beta == 1)
##  AplusBmin <- (alpha == 1) * (beta == 0)
##  AminBplus <- (alpha == 0) * (beta == 1)
##  AminBmin <- (alpha == 0) * (beta == 0)
## }
## Fully observed variables:
##  nA nB
update(jags, 1000)
jags.samples(jags, c('alpha', 'beta', 'delta'), 1000)
## $alpha
## mcarray:
## [1] 0.22125
## 
## Marginalizing over: iteration(1000),chain(4) 
## 
## $beta
## mcarray:
## [1] 0.571
## 
## Marginalizing over: iteration(1000),chain(4) 
## 
## $delta
## mcarray:
## [1] 0.95025
## 
## Marginalizing over: iteration(1000),chain(4)
samples <- coda.samples(jags, c('alpha', 'beta', 'delta'), 1000)
summary(samples)
## 
## Iterations = 2101:3100
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 1000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##         Mean     SD Naive SE Time-series SE
## alpha 0.2233 0.4165 0.006585       0.006984
## beta  0.5605 0.4964 0.007849       0.007997
## delta 0.9577 0.2012 0.003181       0.007934
## 
## 2. Quantiles for each variable:
## 
##       2.5% 25% 50% 75% 97.5%
## alpha    0   0   0   0     1
## beta     0   0   1   1     1
## delta    0   1   1   1     1
plot(samples)

jags.samples(jags, c('AplusBplus', 'AplusBmin', 'AminBplus', 'AminBmin'), 1000)
## $AminBmin
## mcarray:
## [1] 0.351
## 
## Marginalizing over: iteration(1000),chain(4) 
## 
## $AminBplus
## mcarray:
## [1] 0.42675
## 
## Marginalizing over: iteration(1000),chain(4) 
## 
## $AplusBmin
## mcarray:
## [1] 0.10225
## 
## Marginalizing over: iteration(1000),chain(4) 
## 
## $AplusBplus
## mcarray:
## [1] 0.12
## 
## Marginalizing over: iteration(1000),chain(4)
samples <- coda.samples(jags, c('AplusBplus', 'AplusBmin', 'AminBplus', 'AminBmin'), 1000)
summary(samples)
## 
## Iterations = 4101:5100
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 1000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##              Mean     SD Naive SE Time-series SE
## AminBmin   0.3520 0.4777 0.007552       0.007691
## AminBplus  0.4255 0.4945 0.007818       0.007818
## AplusBmin  0.1022 0.3030 0.004791       0.004864
## AplusBplus 0.1202 0.3253 0.005143       0.005133
## 
## 2. Quantiles for each variable:
## 
##            2.5% 25% 50% 75% 97.5%
## AminBmin      0   0   0   1     1
## AminBplus     0   0   0   1     1
## AplusBmin     0   0   0   0     1
## AplusBplus    0   0   0   0     1