This note came from Matt Dancho’s webpage.
Factor models are used in many financial appplications, suhc as:
Capital Asset Pricing Model (CAPM) is the most popular factor model. Although CAPM does not perform well in empirical testing, it’s important because it provides a starting point of many cost of capital calculations.
## # A tibble: 16,019 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 1990-04-30 1.40 1.42 1.39 1.41 34098400 1.14
## 2 AAPL 1990-05-01 1.42 1.43 1.41 1.42 40902400 1.15
## 3 AAPL 1990-05-02 1.42 1.43 1.40 1.42 33857600 1.15
## 4 AAPL 1990-05-03 1.42 1.44 1.42 1.43 41577200 1.16
## 5 AAPL 1990-05-04 1.43 1.46 1.40 1.43 42383600 1.16
## 6 AAPL 1990-05-07 1.42 1.49 1.42 1.48 33997600 1.21
## 7 AAPL 1990-05-08 1.46 1.5 1.46 1.49 28114800 1.21
## 8 AAPL 1990-05-09 1.49 1.5 1.47 1.50 24309600 1.22
## 9 AAPL 1990-05-10 1.49 1.49 1.45 1.48 44760800 1.20
## 10 AAPL 1990-05-11 1.48 1.53 1.46 1.52 53810400 1.24
## # … with 16,009 more rows
## # A tibble: 766 x 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 1990-04-30 0
## 2 AAPL 1990-05-31 0.0505
## 3 AAPL 1990-06-29 0.0848
## 4 AAPL 1990-07-31 -0.0615
## 5 AAPL 1990-08-31 -0.116
## 6 AAPL 1990-09-28 -0.216
## 7 AAPL 1990-10-31 0.0603
## 8 AAPL 1990-11-30 0.199
## 9 AAPL 1990-12-31 0.170
## 10 AAPL 1991-01-31 0.291
## # … with 756 more rows
## # A tibble: 241 x 2
## date Rb
## <date> <dbl>
## 1 2000-04-28 0
## 2 2000-05-31 -0.119
## 3 2000-06-30 0.166
## 4 2000-07-31 -0.0502
## 5 2000-08-31 0.117
## 6 2000-09-29 -0.127
## 7 2000-10-31 -0.0825
## 8 2000-11-30 -0.229
## 9 2000-12-29 -0.0490
## 10 2001-01-31 0.122
## # … with 231 more rows
## # A tibble: 766 x 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 1990-04-30 0 NA
## 2 AAPL 1990-05-31 0.0505 NA
## 3 AAPL 1990-06-29 0.0848 NA
## 4 AAPL 1990-07-31 -0.0615 NA
## 5 AAPL 1990-08-31 -0.116 NA
## 6 AAPL 1990-09-28 -0.216 NA
## 7 AAPL 1990-10-31 0.0603 NA
## 8 AAPL 1990-11-30 0.199 NA
## 9 AAPL 1990-12-31 0.170 NA
## 10 AAPL 1991-01-31 0.291 NA
## # … with 756 more rows
## # A tibble: 3 x 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.192 0.0185 0.245 1.20 1.11 1.31 0.637
## 2 GOOG 0.126 0.0115 0.147 1.02 1.06 0.889 0.557
## 3 NFLX 0.290 0.0306 0.435 1.17 1.15 0.799 0.354
## # … with 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
## # A tibble: 15,090 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2000-04-28 4.54 4.55 4.33 4.43 62395200 3.85
## 2 AAPL 2000-05-01 4.46 4.47 4.35 4.44 56548800 3.85
## 3 AAPL 2000-05-02 4.40 4.51 4.20 4.21 59108000 3.65
## 4 AAPL 2000-05-03 4.25 4.33 3.99 4.11 122449600 3.57
## 5 AAPL 2000-05-04 4.11 4.12 3.95 3.95 99878800 3.43
## 6 AAPL 2000-05-05 3.96 4.10 3.95 4.04 71019200 3.51
## 7 AAPL 2000-05-08 4.00 4.06 3.93 3.93 46225200 3.41
## 8 AAPL 2000-05-09 3.94 3.97 3.75 3.77 81785200 3.27
## 9 AAPL 2000-05-10 3.72 3.75 3.53 3.55 133772800 3.08
## 10 AAPL 2000-05-11 3.62 3.72 3.54 3.67 124936000 3.19
## # … with 15,080 more rows
Hint: Use NASDAQ Compsite Index as baseline.
## # A tibble: 241 x 2
## date Rb
## <date> <dbl>
## 1 2000-04-28 0
## 2 2000-05-31 -0.119
## 3 2000-06-30 0.166
## 4 2000-07-31 -0.0502
## 5 2000-08-31 0.117
## 6 2000-09-29 -0.127
## 7 2000-10-31 -0.0825
## 8 2000-11-30 -0.229
## 9 2000-12-29 -0.0490
## 10 2001-01-31 0.122
## # … with 231 more rows
## # A tibble: 723 x 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2000-04-28 0 0
## 2 AAPL 2000-05-31 -0.323 -0.119
## 3 AAPL 2000-06-30 0.247 0.166
## 4 AAPL 2000-07-31 -0.0298 -0.0502
## 5 AAPL 2000-08-31 0.199 0.117
## 6 AAPL 2000-09-29 -0.577 -0.127
## 7 AAPL 2000-10-31 -0.240 -0.0825
## 8 AAPL 2000-11-30 -0.157 -0.229
## 9 AAPL 2000-12-29 -0.0985 -0.0490
## 10 AAPL 2001-01-31 0.454 0.122
## # … with 713 more rows
## # A tibble: 3 x 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.197 0.0188 0.251 1.20 1.11 1.31 0.638
## 2 MSFT 0.0661 0.0069 0.0864 0.867 0.594 0.998 0.679
## 3 AMZN 0.165 0.0174 0.231 1.34 1.34 1.50 0.616
## # … with 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
On average Apple did .02% better then the market monthly. Microsoft on average did .007% monthly better then the market. Amazon on average did .0174% monthly better then the market.
Amazon is the most volitile with the highest beta of 1.34% which is 34% more then Nasdaq and Microsoft has a vey low volitility with .867% this means that microsoft is 10% less volitle then the market. Apple is in the middle which is 1.20 which means it’s 20% more volitile then the market.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.