knitr::opts_chunk$set(echo = TRUE) library(knitr) library(ggplot2) library(GGally)
## Registered S3 method overwritten by 'GGally': ## method from ## +.gg ggplot2
library(e1071) library(plyr) library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4 ## ✓ tidyr 1.0.2 ✓ stringr 1.4.0 ## ✓ readr 1.3.1 ✓ forcats 0.4.0 ## ✓ purrr 0.3.3
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ## x dplyr::arrange() masks plyr::arrange() ## x purrr::compact() masks plyr::compact() ## x dplyr::count() masks plyr::count() ## x dplyr::failwith() masks plyr::failwith() ## x dplyr::filter() masks stats::filter() ## x dplyr::id() masks plyr::id() ## x dplyr::lag() masks stats::lag() ## x dplyr::mutate() masks plyr::mutate() ## x dplyr::rename() masks plyr::rename() ## x dplyr::summarise() masks plyr::summarise() ## x dplyr::summarize() masks plyr::summarize()
library(tidyr) library(plotly)
## ## Attaching package: 'plotly'
## The following objects are masked from 'package:plyr': ## ## arrange, mutate, rename, summarise
## The following object is masked from 'package:ggplot2': ## ## last_plot
## The following object is masked from 'package:stats': ## ## filter
## The following object is masked from 'package:graphics': ## ## layout
library(readxlsb) library(readxl) library(ez)
## Registered S3 methods overwritten by 'lme4': ## method from ## cooks.distance.influence.merMod car ## influence.merMod car ## dfbeta.influence.merMod car ## dfbetas.influence.merMod car
library(ggthemes) library(dplyr) library(MOTE) library(mice)
## ## Attaching package: 'mice'
## The following objects are masked from 'package:base': ## ## cbind, rbind
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## ## Attaching package: 'Hmisc'
## The following object is masked from 'package:plotly': ## ## subplot
## The following objects are masked from 'package:dplyr': ## ## src, summarize
## The following objects are masked from 'package:plyr': ## ## is.discrete, summarize
## The following object is masked from 'package:e1071': ## ## impute
## The following objects are masked from 'package:base': ## ## format.pval, units
library(ppcor)
## Loading required package: MASS
## ## Attaching package: 'MASS'
## The following object is masked from 'package:plotly': ## ## select
## The following object is masked from 'package:dplyr': ## ## select
library(lattice) library(moments)
## ## Attaching package: 'moments'
## The following objects are masked from 'package:e1071': ## ## kurtosis, moment, skewness
library(MASS) library (ggplot2movies) ep1 <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 1) ep1_t4 <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 2) ep1_w <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 3) ep1 <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 1) ep1_t4 <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 2) ep1_w <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 3) ep1_n <- read_xlsx("/Users/na/Desktop/Shri R Projects/ANLY500 Projects/epl/epl1.xlsx", sheet = 4) ep1$pos <- factor(ep1$pos) ep1$season <- factor(ep1$season) ep1_t4$pos <- factor(ep1_t4$pos) ep1_t4$season <- factor(ep1_t4$season) ep1_w$pos <- factor(ep1_w$pos) ep1_w$season <- factor(ep1_w$season) colnames(ep1)
## [1] "season" "name" "pos" "team" "p" "w" "d" "l" ## [9] "f" "a" "gd" "points"
colnames(ep1_t4)
## [1] "season" "name" "pos" "team" "p" "w" "d" "l" ## [9] "f" "a" "gd" "points"
colnames(ep1_w)
## [1] "season" "name" "pos" "team" "p" "w" "d" "l" ## [9] "f" "a" "gd" "points"
names(ep1) = c("Season", "Name", "Position", "Team", "Played", "Won", "Drawn", "Lost", "Goals.For", "Goals.Against", "Goal.Difference", "Points") names(ep1_t4) = c("Season", "Name", "Position","Team", "Played", "Won", "Drawn", "Lost", "Goals.For", "Goals.Against", "Goal.Difference", "Points") names(ep1_w) = c("Season", "Name", "Position","Team", "Played", "Won", "Drawn", "Lost", "Goals.For", "Goals.Against", "Goal.Difference", "Points") names(ep1_n) = c("Season", "Name", "Position","Team", "Played", "Won", "Drawn", "Lost", "Goals.For", "Goals.Against", "Goal.Difference", "Points")
#pts - All ggplot(data = ep1_t4, mapping = aes(x=Season, y= Points, group = Position, color = Position)) + geom_line() + labs(title = "Points by Premier League Top 4 teams", subtitle = "English Premier League", x = "Season", y = "Points", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1))
ggplot(data = ep1_t4, mapping = aes(x=Season, y= Points, group = Position, color = Position)) + geom_line() + facet_wrap(facets = vars(Position), nrow = 4) + labs(title = "Points by Premier League Top 4 teams", subtitle = "English Premier League", x = "Season", y = "Points", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1))
ggplot(data = ep1_w, mapping = aes(x=Season, y= Points, group = Position, color = Position)) + geom_line() + labs(title = "Points by Premier League Top 4 teams", subtitle = "English Premier League", x = "Season", y = "Points", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1))
#Wins - All- Winners ggplot(data = ep1_w, mapping = aes(x=Season, y= Points, color = Team)) + geom_point() + geom_smooth() + labs(title = "Premier League Winning teams", subtitle = "English Premier League", x = "Season", y = "Winners", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
ep1wptsall <- ggplot(data = ep1_w, mapping = aes(x=Season, y= Points, color = Team)) + geom_point() + labs(title = "Premier League Winning teams", subtitle = "English Premier League", x = "Season", y = "Winners", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1wpts_new <- ggplotly(ep1wptsall) ep1wpts_new
ep1t4 <- ggplot(data = ep1_t4, mapping = aes(x=Season, y= Points, fill=Team)) + geom_bar(stat = "identity") + labs(title = "Points by Premier League Top 4 teams", subtitle = "English Premier League", x = "Season", y = "Points", caption = "Data includes 1968-2018") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1t4teams <- ggplotly(ep1t4) ep1t4teams
##Top 4 = 1995- 2018 ##env_u6ld_bos <- env_u6ld %>% filter(Value < 100, Place =="Boston, MA") ep1_n_t4 <-ep1_n %>% filter(Position < 5) #ggplot(data = ep1_n_t4, mapping = aes(x=Season, y= Points, shape = Season)) + # geom_point(alpha= 0.5) + #theme(axis.text.x=element_text(angle=90, hjust=1)) #ggplot(data = ep1_n_t4, mapping = aes(x=Season, y= Points, color = Position)) + # geom_point() + #geom_smooth() + # labs(title = "Premier League Winning teams", subtitle = "English Premier League", x = "Season", y = "Winners", caption = "Data includes 1968-2018") + #theme(axis.text.x=element_text(angle=90, hjust=1)) #ggplot(data = ep1_n_t4, mapping = aes(x=Season, y= Goals.For, group = Position, color = Position)) + # geom_line(method= "lm") + # labs(title = "Goals scored by Top 4 Premier League teams", subtitle = "English Premier League", x = "Season", y = "Goals", caption = "Data includes 1968-2018") + # theme(axis.text.x=element_text(angle=90, hjust=1)) #losses - Increasing order ep1nloss <- ggplot(data = ep1_n_t4, mapping = aes(x=Position, y= Lost, color= Team)) + geom_boxplot(aes(group=Position), alpha=0) + geom_jitter(alpha=0.8) + labs(title = "Losses by Top 4 Premier League teams", subtitle = "English Premier League", x = "Position", y = "Games Lost", caption = "Data includes 1995-2018") ep1nloss1 <- ggplotly(ep1nloss) ep1nloss1
#Wins - Decreasing order ep1nwin <- ggplot(data = ep1_n_t4, mapping = aes(x=Position, y= Won, color=Team)) + geom_boxplot(aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Wins by Top 4 Premier League teams", subtitle = "English Premier League", x = "Position", y = "Games Won", caption = "Data includes 1995-2018") ep1nwin1 <- ggplotly(ep1nwin) ep1nwin1
##Wins and Losses - Very Imp Graphs ep1_nw <- ep1_n %>% filter (Position == 1) ep1wins <- ggplot(data = ep1_nw, mapping = aes(x=Season, y= Won, color= Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Wins by Premier League Winners", subtitle = "English Premier League", x = "Season", y = "Games Won", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1wwins <- ggplotly(ep1wins) ep1wwins
ep1loss <- ggplot(data = ep1_nw, mapping = aes(x=Season, y= Lost, color= Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Losses by Premier League Winners", subtitle = "English Premier League", x = "Position", y = "Games Lost", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1wloss <- ggplotly(ep1loss) ep1wloss
#geom_jitter(alpha=0.8)+ ep1pts <- ggplot(data = ep1_nw, mapping = aes(x=Season, y= Points, color= Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Points by Premier League Winners", subtitle = "English Premier League", x = "Position", y = "Points", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1wpts <- ggplotly(ep1pts) ep1wpts
ep1gd <- ggplot(data = ep1_nw, mapping = aes(x=Season, y= Goal.Difference, color= Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Goal Differnce for Premier League Winners", subtitle = "English Premier League", x = "Position", y = "Goal Differnce", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1wgd <- ggplotly(ep1gd) ep1wgd
##Bottom 3 teams - Points ep1_b3 <- ep1_n %>% filter(Position >17) ep1_b <- ep1_n %>% filter(Position ==20) ep1_19 <- ep1_n %>% filter(Position == 19) ep1_18 <- ep1_n %>% filter(Position == 18) ep1bpts <- ggplot(data = ep1_b, mapping = aes(x=Season, y= Points, color=Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Points by PL team Ranked #20 every Season", subtitle = "English Premier League", x = "Position", y = "Points", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1rbpts <- ggplotly(ep1bpts) ep1rbpts
ep1bgd <- ggplot(data = ep1_b, mapping = aes(x=Season, y= Goal.Difference, color=Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Goal Difference for PL team Ranked #20 every Season", subtitle = "English Premier League", x = "Position", y = "Points", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1rbgd <- ggplotly(ep1bgd) ep1rbgd
ep119pts <- ggplot(data = ep1_19, mapping = aes(x=Season, y= Points, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Points by PL team Ranked #19 every Season", subtitle = "English Premier League", x = "Position", y = "Points", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r19pts <- ggplotly(ep119pts) ep1r19pts
ep118pts <- ggplot(data = ep1_18, mapping = aes(x=Season, y= Points, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Points by PL team Ranked #18 every Season", subtitle = "English Premier League", x = "Position", y = "Points", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r18pts <- ggplotly(ep118pts) ep1r18pts
##Wins by Bottom 3 ep1bw <- ggplot(data = ep1_b, mapping = aes(x=Season, y= Won, color=Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Won by Pl team Ranked #20 every Season", subtitle = "English Premier League", x = "Position", y = "Games Won", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1rbw <- ggplotly(ep1bw) ep1rbw
ep119w <- ggplot(data = ep1_19, mapping = aes(x=Season, y= Won, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Won by PL team Ranked #19 every Season", subtitle = "English Premier League", x = "Position", y = "Games Won", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r19w <- ggplotly(ep119w) ep1r19w
ep118w <- ggplot(data = ep1_18, mapping = aes(x=Season, y= Won, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Won by PL team Ranked #18 every Season", subtitle = "English Premier League", x = "Position", y = "Games Won", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r18w <- ggplotly(ep118w) ep1r18w
##Losses by Bottom 3 ep1bl <- ggplot(data = ep1_b, mapping = aes(x=Season, y= Lost, color=Team)) + geom_smooth(method = "lm", aes(group=Position), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Lost by Pl team Ranked #20 every Season", subtitle = "English Premier League", x = "Position", y = "Games Lost", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1rbl <- ggplotly(ep1bl) ep1rbl
ep119l <- ggplot(data = ep1_19, mapping = aes(x=Season, y= Lost, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Lost by PL team Ranked #19 every Season", subtitle = "English Premier League", x = "Position", y = "Games Lost", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r19l <- ggplotly(ep119l) ep1r19l
ep118l <- ggplot(data = ep1_18, mapping = aes(x=Season, y= Lost, color=Team)) + geom_smooth(method = "lm", aes(group=Position, color = Team), alpha=0) + geom_jitter(alpha=0.8)+ labs(title = "Games Lost by PL team Ranked #18 every Season", subtitle = "English Premier League", x = "Position", y = "Games Lost", caption = "Data includes 1995/1996-2018/2019 Seasons") + theme(axis.text.x=element_text(angle=90, hjust=1)) ep1r18l <- ggplotly(ep118l) ep1r18l