who <- read.csv("https://raw.githubusercontent.com/bpersaud104/Data605/master/who.csv")
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
Solution:
plot(LifeExp ~ TotExp, data = who)
model1 <- lm(LifeExp ~ TotExp, data = who)
summary(model1)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
The F statistics is 65.26 on 1 and 188 DF. Multiple R^2 is 0.2577 and Adjusted R^2 is 0.2537. The standard error is 9.371 on 188 degrees of freedom. The p-values are 7.714e-14.
plot(fitted(model1), resid(model1))
qqnorm(resid(model1))
qqline(resid(model1))
Based on the plots, assumptions of simple linear regression is not met since the plots show that the residuals are not normally distributed.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
Solution:
plot((LifeExp ^ 4.6) ~ I(TotExp ^ 0.06), data = who)
model2 <- lm((LifeExp ^ 4.6) ~ I(TotExp ^ 0.06), data = who)
summary(model2)
##
## Call:
## lm(formula = (LifeExp^4.6) ~ I(TotExp^0.06), data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## I(TotExp^0.06) 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
The F statistics is 507.7 on 1 and 188 DF. Multiple R^2 is 0.7298 and Adjusted R^2 is 0.7283. The standard error is 90490000 on 188 degrees of freedom. The p-values are < 2.2e-16.
plot(fitted(model2), resid(model2))
qqnorm(resid(model2))
qqline(resid(model2))
The model that is “better” would be the second model.
Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
Solution:
Using the model we made in 2, we can use the coefficients to make the formula y = 620060216x - 736527910. Here we are looking at two values for x, 1.5 and 2.5. Then we raise y to (1 / 4.6) to get our forecast life expectancy.
y_1.5 <- (620060216 * 1.5) - 736527910
life_expectancy_1.5 <- y_1.5 ^ (1 / 4.6)
round(life_expectancy_1.5)
## [1] 63
y_2.5 <- (620060216 * 2.5) - 736527910
life_expectancy_2.5 <- y_2.5 ^ (1 / 4.6)
round(life_expectancy_2.5)
## [1] 87
The life expectancy when TotExp ^ .06 = 1.5 is 63 years. The life expectancy when TotExp ^ .06 = 2.5 is 87 years.
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
Solution:
model3 <- lm(LifeExp ~ PropMD + TotExp + (PropMD * TotExp), data = who)
summary(model3)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + (PropMD * TotExp), data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
The F statistics is 34.49 on 3 and 186 DF. Multiple R^2 is 0.3574 and Adjusted R^2 is 0.3471. The standard error is 8.765 on 186 degrees of freedom. The p-values are < 2.2e-16.
plot(fitted(model3), resid(model3))
qqnorm(resid(model3))
qqline(resid(model3))
This model is good since the p-values are less than 0.05. However looking at the residual analysis we see that it is similar to the first model we made as the distribution does not look normal.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
life_expectancy_5 <- (6.277 * (10 ^ 1)) + (1.497 * (10 ^ 3) * 0.03) + (7.233 * (10 ^ (-5)) * 14) - (6.026 * (10 ^ (-3)) * 0.03 * 14)
round(life_expectancy_5)
## [1] 108
max(who$LifeExp)
## [1] 83
LifeExp when PropMD = 0.03 and TotExp = 14 is 108. This forecast does not seem realistic because the max LifeExp in the dataset is 83.