Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

who_data <- read.csv("who.csv")
str(who_data)
## 'data.frame':    190 obs. of  10 variables:
##  $ Country       : Factor w/ 190 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ LifeExp       : int  42 71 71 82 41 73 75 69 82 80 ...
##  $ InfantSurvival: num  0.835 0.985 0.967 0.997 0.846 0.99 0.986 0.979 0.995 0.996 ...
##  $ Under5Survival: num  0.743 0.983 0.962 0.996 0.74 0.989 0.983 0.976 0.994 0.996 ...
##  $ TBFree        : num  0.998 1 0.999 1 0.997 ...
##  $ PropMD        : num  2.29e-04 1.14e-03 1.06e-03 3.30e-03 7.04e-05 ...
##  $ PropRN        : num  0.000572 0.004614 0.002091 0.0035 0.001146 ...
##  $ PersExp       : int  20 169 108 2589 36 503 484 88 3181 3788 ...
##  $ GovtExp       : int  92 3128 5184 169725 1620 12543 19170 1856 187616 189354 ...
##  $ TotExp        : int  112 3297 5292 172314 1656 13046 19654 1944 190797 193142 ...
summary(who_data)
##                 Country       LifeExp      InfantSurvival   Under5Survival  
##  Afghanistan        :  1   Min.   :40.00   Min.   :0.8350   Min.   :0.7310  
##  Albania            :  1   1st Qu.:61.25   1st Qu.:0.9433   1st Qu.:0.9253  
##  Algeria            :  1   Median :70.00   Median :0.9785   Median :0.9745  
##  Andorra            :  1   Mean   :67.38   Mean   :0.9624   Mean   :0.9459  
##  Angola             :  1   3rd Qu.:75.00   3rd Qu.:0.9910   3rd Qu.:0.9900  
##  Antigua and Barbuda:  1   Max.   :83.00   Max.   :0.9980   Max.   :0.9970  
##  (Other)            :184                                                    
##      TBFree           PropMD              PropRN             PersExp       
##  Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883   Min.   :   3.00  
##  1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455   1st Qu.:  36.25  
##  Median :0.9992   Median :0.0010474   Median :0.0027584   Median : 199.50  
##  Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336   Mean   : 742.00  
##  3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164   3rd Qu.: 515.25  
##  Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387   Max.   :6350.00  
##                                                                            
##     GovtExp             TotExp      
##  Min.   :    10.0   Min.   :    13  
##  1st Qu.:   559.5   1st Qu.:   584  
##  Median :  5385.0   Median :  5541  
##  Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :476420.0   Max.   :482750  
## 
plot(who_data$LifeExp, who_data$TotExp, xlab = 'Life exp', ylab='Total exp')

linearReg <- lm(LifeExp~TotExp, data = who_data)
summary(linearReg)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
qqnorm(linearReg$residuals)
qqline(linearReg$residuals)

Also, the residuals are not normally distributed suggesting the model may not be properly fit.

2. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

who_data$LifeExp4.6 = who_data$LifeExp^4.6
who_data$TotExp.06 = who_data$TotExp^0.06

linearReg_updated <- lm(LifeExp4.6~TotExp.06, data = who_data)
summary(linearReg_updated)
## 
## Call:
## lm(formula = LifeExp4.6 ~ TotExp.06, data = who_data)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExp.06    620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
qqnorm(linearReg_updated$residuals)
qqline(linearReg_updated$residuals)

Also, Model 2 residuals are normally distributed when compared to Model 1 residuals. Therefore, Model 2 is better when compared to Model 1.

The model gives the below relation between LifeExp4.6 and TotExp.06

LifeExp4.6 = -736527910 + 620060216*TotExp.06

3. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5.

TotExp.06 <- 1.5
LifeExp4.6 <- -736527910 + 620060216*TotExp.06
LifeExp4.6^(1/4.6)
## [1] 63.31153

3. Then forecast life expectancy when TotExp^.06=2.5.

TotExp.06 <- 2.5
LifeExp4.6 <- -736527910 + 620060216*TotExp.06
LifeExp4.6^(1/4.6)
## [1] 86.50645

4. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

LifeExp = b0+b1 x PropMD + b2 x TotExp +b3 x PropMD x TotExp

linearReg_newFormula <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, who_data)
summary(linearReg_newFormula)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
qqnorm(linearReg_newFormula$residuals)
qqline(linearReg_newFormula$residuals)

LifeExp <- 6.277 + 1.497e+03 X PropMD + 7.233e-05 X TotExp - 6.026e-03 X PropMD X TotExp

5. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

PropMD <- .03
TotExp <- 14

LifeExp <- 6.277e+01 + 1.497e+03 * PropMD + 7.233e-05 * TotExp - 6.026e-03 * PropMD * TotExp
LifeExp
## [1] 107.6785

As per the summary of the data structure ‘who’ the median of The value of LifeExp is 70 and max is 83. 107 seems much unrealistic when compared.