library(ggplot2)
library(magrittr)
Kuhn, Max. Applied Predictive Modeling (p. 168).
library(caret)
library(mlbench)
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)
## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)
Tune several models on these data. For example:
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.466085 0.5121775 2.816838
## 7 3.349428 0.5452823 2.727410
## 9 3.264276 0.5785990 2.660026
## 11 3.214216 0.6024244 2.603767
## 13 3.196510 0.6176570 2.591935
## 15 3.184173 0.6305506 2.577482
## 17 3.183130 0.6425367 2.567787
## 19 3.198752 0.6483184 2.592683
## 21 3.188993 0.6611428 2.588787
## 23 3.200458 0.6638353 2.604529
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample' can be used to get the test set performance values
postResample(pred = knnPred, obs = testData$y)
## RMSE Rsquared MAE
## 3.2040595 0.6819919 2.5683461
Which models appear to give the best performance? Does MARS select the informative predictors (those named X1-X5)?
## Ensure that the maximum absolute pairwise correlation betwween
## the predictors is less than 0.75
findCorrelation(cor(trainingData$x), cutoff = .75)
## integer(0)
## In this case there were no rows identified with such correlation threshold
## Create a specific candidate set of models to evaluate:
nnetGrid <- expand.grid(size = c(1:10),
decay = c(0, 0.01, 0.1),
bag = FALSE)
ctrl <- trainControl(method = "cv")
nnetTune <- train(trainingData$x, trainingData$y,
method = "avNNet",
tuneGrid = nnetGrid,
trControl = ctrl,
preProcess = c("center", "scale"),
linout = TRUE,
trace = FALSE,
MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,
maxit = 500
)
nnetTune
## Model Averaged Neural Network
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## size decay RMSE Rsquared MAE
## 1 0.00 2.434845 0.7683498 1.921367
## 1 0.01 2.437343 0.7689596 1.935100
## 1 0.10 2.450747 0.7652079 1.941971
## 2 0.00 2.564619 0.7437707 2.049075
## 2 0.01 2.493438 0.7576380 2.004657
## 2 0.10 2.470469 0.7623416 1.942559
## 3 0.00 2.107356 0.8283417 1.681631
## 3 0.01 2.118485 0.8252286 1.695232
## 3 0.10 2.113338 0.8296311 1.726697
## 4 0.00 1.993740 0.8454879 1.559778
## 4 0.01 2.055123 0.8382896 1.618923
## 4 0.10 2.111877 0.8360611 1.687825
## 5 0.00 2.173066 0.8230241 1.721098
## 5 0.01 2.117938 0.8262887 1.708309
## 5 0.10 2.126142 0.8313323 1.668135
## 6 0.00 3.011411 0.7133146 2.156020
## 6 0.01 2.245598 0.8059848 1.812856
## 6 0.10 2.200281 0.8204366 1.778666
## 7 0.00 6.423508 0.4711110 3.500348
## 7 0.01 2.369153 0.8044959 1.896450
## 7 0.10 2.277288 0.8082229 1.826526
## 8 0.00 5.161402 0.5296825 3.078540
## 8 0.01 2.375962 0.7935227 1.874543
## 8 0.10 2.355936 0.7886816 1.877549
## 9 0.00 7.052266 0.4257688 4.006578
## 9 0.01 2.443129 0.7865069 1.912185
## 9 0.10 2.242392 0.8071338 1.780744
## 10 0.00 2.906893 0.7036006 2.190651
## 10 0.01 2.516951 0.7569720 2.016432
## 10 0.10 2.238560 0.8113030 1.787851
##
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0 and bag
## = FALSE.
nnetPred <- predict(nnetTune, newdata = testData$x)
postResample(pred = nnetPred, obs = testData$y)
## RMSE Rsquared MAE
## 2.496722 0.784618 1.685182
library(earth)
#marsFit <- earth(trainingData$x, trainingData$y)
#marsFit
#summary(marsFit)
#marsPred <- predict(marsFit, newdata = testData$x)
#postResample(pred = marsPred, obs = testData$y)
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
marsTuned <- train(trainingData$x, trainingData$y,
method = "earth",
tuneGrid = marsGrid,
trControl = ctrl)
marsTuned
## Multivariate Adaptive Regression Spline
##
## 200 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 4.334325 0.2599883 3.607719
## 1 3 3.599334 0.4805557 2.888987
## 1 4 2.637145 0.7290848 2.087677
## 1 5 2.283872 0.7939684 1.817343
## 1 6 2.125875 0.8183677 1.647491
## 1 7 1.766013 0.8733619 1.410328
## 1 8 1.671282 0.8842102 1.324258
## 1 9 1.645406 0.8867947 1.322041
## 1 10 1.597968 0.8926582 1.297518
## 1 11 1.540109 0.8996361 1.237949
## 1 12 1.545349 0.8992979 1.243771
## 1 13 1.535169 0.9010122 1.233571
## 1 14 1.529405 0.9018457 1.223874
## 1 15 1.529405 0.9018457 1.223874
## 1 16 1.529405 0.9018457 1.223874
## 1 17 1.529405 0.9018457 1.223874
## 1 18 1.529405 0.9018457 1.223874
## 1 19 1.529405 0.9018457 1.223874
## 1 20 1.529405 0.9018457 1.223874
## 1 21 1.529405 0.9018457 1.223874
## 1 22 1.529405 0.9018457 1.223874
## 1 23 1.529405 0.9018457 1.223874
## 1 24 1.529405 0.9018457 1.223874
## 1 25 1.529405 0.9018457 1.223874
## 1 26 1.529405 0.9018457 1.223874
## 1 27 1.529405 0.9018457 1.223874
## 1 28 1.529405 0.9018457 1.223874
## 1 29 1.529405 0.9018457 1.223874
## 1 30 1.529405 0.9018457 1.223874
## 1 31 1.529405 0.9018457 1.223874
## 1 32 1.529405 0.9018457 1.223874
## 1 33 1.529405 0.9018457 1.223874
## 1 34 1.529405 0.9018457 1.223874
## 1 35 1.529405 0.9018457 1.223874
## 1 36 1.529405 0.9018457 1.223874
## 1 37 1.529405 0.9018457 1.223874
## 1 38 1.529405 0.9018457 1.223874
## 2 2 4.334325 0.2599883 3.607719
## 2 3 3.599334 0.4805557 2.888987
## 2 4 2.637145 0.7290848 2.087677
## 2 5 2.271844 0.7927888 1.823675
## 2 6 2.114868 0.8200184 1.659485
## 2 7 1.780140 0.8733216 1.429346
## 2 8 1.663164 0.8891928 1.294968
## 2 9 1.460976 0.9122520 1.180387
## 2 10 1.399692 0.9175376 1.122526
## 2 11 1.380002 0.9216251 1.110556
## 2 12 1.312883 0.9284253 1.063321
## 2 13 1.285612 0.9343029 1.014216
## 2 14 1.328520 0.9286650 1.052185
## 2 15 1.322954 0.9298515 1.045527
## 2 16 1.341454 0.9283961 1.053190
## 2 17 1.344590 0.9280972 1.054209
## 2 18 1.340821 0.9285264 1.050274
## 2 19 1.340821 0.9285264 1.050274
## 2 20 1.340821 0.9285264 1.050274
## 2 21 1.340821 0.9285264 1.050274
## 2 22 1.340821 0.9285264 1.050274
## 2 23 1.340821 0.9285264 1.050274
## 2 24 1.340821 0.9285264 1.050274
## 2 25 1.340821 0.9285264 1.050274
## 2 26 1.340821 0.9285264 1.050274
## 2 27 1.340821 0.9285264 1.050274
## 2 28 1.340821 0.9285264 1.050274
## 2 29 1.340821 0.9285264 1.050274
## 2 30 1.340821 0.9285264 1.050274
## 2 31 1.340821 0.9285264 1.050274
## 2 32 1.340821 0.9285264 1.050274
## 2 33 1.340821 0.9285264 1.050274
## 2 34 1.340821 0.9285264 1.050274
## 2 35 1.340821 0.9285264 1.050274
## 2 36 1.340821 0.9285264 1.050274
## 2 37 1.340821 0.9285264 1.050274
## 2 38 1.340821 0.9285264 1.050274
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 13 and degree = 2.
varImp(marsTuned)
## earth variable importance
##
## Overall
## X1 100.00
## X4 85.05
## X2 69.03
## X5 48.88
## X3 39.40
## X8 0.00
## X6 0.00
## X9 0.00
## X10 0.00
## X7 0.00
marsPred <- predict(marsTuned, newdata = testData$x)
postResample(pred = marsPred, obs = testData$y)
## RMSE Rsquared MAE
## 1.2803060 0.9335241 1.0168673
svmRTuned <- train(trainingData$x, trainingData$y,
method = "svmRadial",
preProcess = c("center", "scale"),
tuneLength = 15,
trControl = ctrl)
svmRTuned
## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.475062 0.7977926 1.976810
## 0.50 2.234423 0.8109248 1.779439
## 1.00 2.038468 0.8361825 1.620497
## 2.00 1.921966 0.8527644 1.509636
## 4.00 1.818693 0.8681554 1.421402
## 8.00 1.779439 0.8753612 1.403365
## 16.00 1.773106 0.8765124 1.417872
## 32.00 1.770587 0.8767984 1.416072
## 64.00 1.770587 0.8767984 1.416072
## 128.00 1.770587 0.8767984 1.416072
## 256.00 1.770587 0.8767984 1.416072
## 512.00 1.770587 0.8767984 1.416072
## 1024.00 1.770587 0.8767984 1.416072
## 2048.00 1.770587 0.8767984 1.416072
## 4096.00 1.770587 0.8767984 1.416072
##
## Tuning parameter 'sigma' was held constant at a value of 0.06115065
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06115065 and C = 32.
svmRPred <- predict(svmRTuned, newdata = testData$x)
postResample(pred = svmRPred, obs = testData$y)
## RMSE Rsquared MAE
## 2.0695945 0.8263152 1.5720887
MARS model appears to give the best performance as evident from RMSE value in the table below.
rbind(
"mars" = postResample(pred = marsPred, obs = testData$y),
"svm" = postResample(pred = svmRPred, obs = testData$y),
"net" = postResample(pred = nnetPred, obs = testData$y),
"knn" = postResample(pred = knnPred, obs = testData$y)
)
## RMSE Rsquared MAE
## mars 1.280306 0.9335241 1.016867
## svm 2.069594 0.8263152 1.572089
## net 2.496722 0.7846180 1.685182
## knn 3.204059 0.6819919 2.568346
The MARS model does select the informative predictors (those named X1-X5) as shown by the variable importance table (varImp) below.
varImp(marsTuned)
## earth variable importance
##
## Overall
## X1 100.00
## X4 85.05
## X2 69.03
## X5 48.88
## X3 39.40
## X9 0.00
## X7 0.00
## X10 0.00
## X6 0.00
## X8 0.00
Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.
Data Pre-Processing
library(AppliedPredictiveModeling)
data("ChemicalManufacturingProcess")
preP <- preProcess(ChemicalManufacturingProcess,
method = c("BoxCox", "knnImpute", "center", "scale"))
df <- predict(preP, ChemicalManufacturingProcess)
## Restore the response variable values to original
df$Yield = ChemicalManufacturingProcess$Yield
## Split the data into a training and a test set
trainRows <- createDataPartition(df$Yield, p = .80, list = FALSE)
df.train <- df[trainRows, ]
df.test <- df[-trainRows, ]
Nonlinear Regression Models Training
colYield <- which(colnames(df) == "Yield")
trainX <- df.train[, -colYield]
trainY <- df.train$Yield
testX <- df.test[, -colYield]
testY <- df.test$Yield
## KNN Model
knnModel <- train(x = trainX,
y = trainY,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10)
knnPred <- predict(knnModel, newdata = testX)
## Neural Networks Model
tooHigh <- findCorrelation(cor(trainX), cutoff = .75)
trainXnnet <- trainX[, -tooHigh]
testXnnet <- testX[, -tooHigh]
nnetGrid <- expand.grid(size = c(1:10),
decay = c(0, 0.01, 0.1),
bag = FALSE)
ctrl <- trainControl(method = "cv")
nnetTune <- train(trainXnnet, trainY,
method = "avNNet",
tuneGrid = nnetGrid,
trControl = ctrl,
linout = TRUE,
trace = FALSE,
MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,
maxit = 500
)
nnetPred <- predict(nnetTune, newdata = testXnnet)
## MARS Model
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
marsTuned <- train(trainX, trainY,
method = "earth",
tuneGrid = marsGrid,
trControl = ctrl)
marsPred <- predict(marsTuned, newdata = testX)
## SVM Model
svmRTuned <- train(trainX, trainY,
method = "svmRadial",
tuneLength = 15,
trControl = ctrl)
svmRPred <- predict(svmRTuned, newdata = testX)
print("Train set performance")
## [1] "Train set performance"
rbind(
"mars" = postResample(pred = predict(marsTuned), obs = trainY),
"svm" = postResample(pred = predict(svmRTuned), obs = trainY),
"net" = postResample(pred = predict(nnetTune), obs = trainY),
"knn" = postResample(pred = predict(knnModel), obs = trainY)
)
## RMSE Rsquared MAE
## mars 1.1120471 0.6158278 0.9054960
## svm 0.3214276 0.9714781 0.2352552
## net 0.9065690 0.7467772 0.7278436
## knn 1.2072326 0.5881212 0.9786301
print("Test set performance")
## [1] "Test set performance"
rbind(
"mars" = postResample(pred = marsPred, obs = testY),
"svm" = postResample(pred = svmRPred, obs = testY),
"net" = postResample(pred = nnetPred, obs = testY),
"knn" = postResample(pred = knnPred, obs = testY)
)
## RMSE Rsquared MAE
## mars 1.325448 0.6074336 1.0133286
## svm 1.186958 0.6714407 0.9525214
## net 1.949432 0.2532809 1.5542291
## knn 1.528433 0.4980650 1.2285140
Based on the lowest RMSE values, presented above for training and test set performances, SVM appears to be most optimal.
varImp(svmRTuned)
## loess r-squared variable importance
##
## only 20 most important variables shown (out of 57)
##
## Overall
## ManufacturingProcess32 100.00
## ManufacturingProcess36 88.20
## BiologicalMaterial06 77.67
## ManufacturingProcess13 72.24
## ManufacturingProcess31 67.58
## BiologicalMaterial02 64.95
## ManufacturingProcess09 61.65
## BiologicalMaterial12 61.29
## BiologicalMaterial03 58.14
## ManufacturingProcess17 57.23
## ManufacturingProcess29 56.80
## ManufacturingProcess33 55.59
## ManufacturingProcess06 54.88
## BiologicalMaterial04 50.39
## BiologicalMaterial01 44.56
## BiologicalMaterial08 43.96
## ManufacturingProcess11 40.97
## BiologicalMaterial11 39.07
## ManufacturingProcess30 35.43
## ManufacturingProcess26 25.23
The above list shows most important predictors at the top, for the optimal model (SVM). There are slightly more process variables dominating the list rather than biological ones.
The below listings of top ten important predictors from the less optimal models against the SVM model, confirm that process variables dominate the list as being the most important. However, different models selected different process variables in the top ten list of importance.
varImp(marsTuned)
## earth variable importance
##
## only 20 most important variables shown (out of 57)
##
## Overall
## ManufacturingProcess32 100.00
## ManufacturingProcess09 53.06
## ManufacturingProcess02 0.00
## BiologicalMaterial08 0.00
## ManufacturingProcess40 0.00
## ManufacturingProcess14 0.00
## BiologicalMaterial07 0.00
## ManufacturingProcess03 0.00
## ManufacturingProcess44 0.00
## BiologicalMaterial03 0.00
## ManufacturingProcess06 0.00
## ManufacturingProcess21 0.00
## ManufacturingProcess17 0.00
## ManufacturingProcess35 0.00
## ManufacturingProcess39 0.00
## ManufacturingProcess16 0.00
## ManufacturingProcess41 0.00
## ManufacturingProcess12 0.00
## ManufacturingProcess04 0.00
## ManufacturingProcess07 0.00
varImp(nnetTune)
## loess r-squared variable importance
##
## only 20 most important variables shown (out of 37)
##
## Overall
## ManufacturingProcess36 100.00
## ManufacturingProcess31 76.61
## BiologicalMaterial03 65.90
## ManufacturingProcess17 64.87
## ManufacturingProcess33 63.01
## ManufacturingProcess06 62.21
## BiologicalMaterial11 44.28
## ManufacturingProcess30 40.16
## BiologicalMaterial10 27.41
## ManufacturingProcess12 26.42
## ManufacturingProcess18 26.08
## ManufacturingProcess35 25.24
## ManufacturingProcess20 23.91
## BiologicalMaterial09 23.55
## ManufacturingProcess02 21.83
## ManufacturingProcess04 21.53
## ManufacturingProcess28 19.89
## ManufacturingProcess01 19.68
## ManufacturingProcess24 15.44
## ManufacturingProcess10 15.26
varImp(knnModel)
## loess r-squared variable importance
##
## only 20 most important variables shown (out of 57)
##
## Overall
## ManufacturingProcess32 100.00
## ManufacturingProcess36 88.20
## BiologicalMaterial06 77.67
## ManufacturingProcess13 72.24
## ManufacturingProcess31 67.58
## BiologicalMaterial02 64.95
## ManufacturingProcess09 61.65
## BiologicalMaterial12 61.29
## BiologicalMaterial03 58.14
## ManufacturingProcess17 57.23
## ManufacturingProcess29 56.80
## ManufacturingProcess33 55.59
## ManufacturingProcess06 54.88
## BiologicalMaterial04 50.39
## BiologicalMaterial01 44.56
## BiologicalMaterial08 43.96
## ManufacturingProcess11 40.97
## BiologicalMaterial11 39.07
## ManufacturingProcess30 35.43
## ManufacturingProcess26 25.23
vip <- varImp(svmRTuned)$importance
top10Vars <- head(rownames(vip)[order(-vip$Overall)], 10)
as.data.frame(top10Vars)
## top10Vars
## 1 ManufacturingProcess32
## 2 ManufacturingProcess36
## 3 BiologicalMaterial06
## 4 ManufacturingProcess13
## 5 ManufacturingProcess31
## 6 BiologicalMaterial02
## 7 ManufacturingProcess09
## 8 BiologicalMaterial12
## 9 BiologicalMaterial03
## 10 ManufacturingProcess17
#featurePlot(trainX[,top10Vars], trainY)
plotX <- df[,top10Vars]
plotY <- df[,colYield]
## Shorten the variable names for readability
colnames(plotX) <- gsub("(Process|Material)", "", colnames(plotX))
featurePlot(plotX, plotY)
The plots above reveal the relationship between the top 10 predictors and the response. These plots suggest that for the SVM (the optimal model here), the top predictors have much of a linear relationship with the response. Intuitively, one can eiher increase or decrease (depending on the linear slope) the biological or process variables in order to have a better result on the yield (response variable).