# I will now run the Bayesian analysis of the Marseilles trial using JAGS and MCMC
setwd("/Users/richard")
library('rjags')
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod,bugs
library('coda')
X <- 2
Y <- 15
jags <- jags.model('raoult.bug',
data = list('X' = X, 'Y' = Y), n.chains = 4, n.adapt = 100)
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 2
## Unobserved stochastic nodes: 3
## Total graph size: 21
##
## Initializing model
jags
## JAGS model:
##
## model {
## m <- 16
## n <- 26
## psi ~ dnorm(0, 1)
## mu ~ dnorm(0, 1)
## D ~ dbern(0.5)
## Xodds <- exp(mu + D * psi / 2)
## Yodds <- exp(mu - D * psi / 2)
## Xprob <- Xodds / (1 + Xodds)
## Yprob <- Yodds / (1 + Yodds)
## X ~ dbin(Xprob, m)
## Y ~ dbin(Yprob, n)
## }
## Fully observed variables:
## X Y
update(jags, 1000)
jags.samples(jags, c('mu', 'psi', 'D'), 1000)
## $D
## mcarray:
## [1] 0.9225
##
## Marginalizing over: iteration(1000),chain(4)
##
## $mu
## mcarray:
## [1] -0.5557471
##
## Marginalizing over: iteration(1000),chain(4)
##
## $psi
## mcarray:
## [1] -1.31069
##
## Marginalizing over: iteration(1000),chain(4)
samples <- coda.samples(jags, c('mu', 'psi', 'D'), 1000)
summary(samples)
##
## Iterations = 2101:3100
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## D 0.9230 0.2666 0.004216 0.007330
## mu -0.5557 0.3414 0.005399 0.008094
## psi -1.3100 0.7490 0.011843 0.021629
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## D 0.000 1.0000 1.0000 1.0000 1.00000
## mu -1.261 -0.7809 -0.5409 -0.3266 0.08586
## psi -2.639 -1.7863 -1.3428 -0.9172 0.45581
plot(samples)

samples2 <- coda.samples(jags, c('Xprob', 'Yprob'), 1000)
summary(samples2)
##
## Iterations = 3101:4100
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Xprob 0.2468 0.1006 0.001590 0.002840
## Yprob 0.5240 0.0942 0.001489 0.001844
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Xprob 0.08866 0.1750 0.2312 0.3053 0.4740
## Yprob 0.33974 0.4613 0.5238 0.5900 0.7072
plot(samples2)
